首页 > 最新文献

Cell Systems最新文献

英文 中文
Transcriptional activators in the early Drosophila embryo perform different kinetic roles. 转录激活因子在果蝇早期胚胎中发挥着不同的动力学作用。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 DOI: 10.1016/j.cels.2023.03.006
Timothy T Harden, Ben J Vincent, Angela H DePace

Combinatorial regulation of gene expression by transcription factors (TFs) may in part arise from kinetic synergy-wherein TFs regulate different steps in the transcription cycle. Kinetic synergy requires that TFs play distinguishable kinetic roles. Here, we used live imaging to determine the kinetic roles of three TFs that activate transcription in the Drosophila embryo-Zelda, Bicoid, and Stat92E-by introducing their binding sites into the even-skipped stripe 2 enhancer. These TFs influence different sets of kinetic parameters, and their influence can change over time. All three TFs increased the fraction of transcriptionally active nuclei; Zelda also shortened the first-passage time into transcription and regulated the interval between transcription events. Stat92E also increased the lifetimes of active transcription. Different TFs can therefore play distinct kinetic roles in activating the transcription. This has consequences for understanding the composition and flexibility of regulatory DNA sequences and the biochemical function of TFs. A record of this paper's transparent peer review process is included in the supplemental information.

转录因子(tf)对基因表达的组合调控可能部分源于动力学协同作用,其中tf调节转录周期的不同步骤。动能协同作用要求tf发挥不同的动能作用。在这里,我们使用实时成像技术,通过将三种tf的结合位点引入到均匀跳过的条带2增强子中,来确定它们在果蝇胚胎中激活转录的动力学作用——zelda、Bicoid和stat92e。这些TFs影响不同的动力学参数集,它们的影响可以随着时间的推移而改变。三种tf均增加了转录活性核的比例;Zelda还缩短了进入转录的首次传代时间,并调节了转录事件之间的间隔。Stat92E也增加了活性转录的寿命。因此,不同的tf在激活转录方面可以发挥不同的动力学作用。这对理解调控DNA序列的组成和灵活性以及tf的生化功能具有重要意义。本文的透明同行评议过程记录包含在补充信息中。
{"title":"Transcriptional activators in the early Drosophila embryo perform different kinetic roles.","authors":"Timothy T Harden,&nbsp;Ben J Vincent,&nbsp;Angela H DePace","doi":"10.1016/j.cels.2023.03.006","DOIUrl":"https://doi.org/10.1016/j.cels.2023.03.006","url":null,"abstract":"<p><p>Combinatorial regulation of gene expression by transcription factors (TFs) may in part arise from kinetic synergy-wherein TFs regulate different steps in the transcription cycle. Kinetic synergy requires that TFs play distinguishable kinetic roles. Here, we used live imaging to determine the kinetic roles of three TFs that activate transcription in the Drosophila embryo-Zelda, Bicoid, and Stat92E-by introducing their binding sites into the even-skipped stripe 2 enhancer. These TFs influence different sets of kinetic parameters, and their influence can change over time. All three TFs increased the fraction of transcriptionally active nuclei; Zelda also shortened the first-passage time into transcription and regulated the interval between transcription events. Stat92E also increased the lifetimes of active transcription. Different TFs can therefore play distinct kinetic roles in activating the transcription. This has consequences for understanding the composition and flexibility of regulatory DNA sequences and the biochemical function of TFs. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"258-272.e4"},"PeriodicalIF":9.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473017/pdf/nihms-1919371.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10496130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic analysis of antigen-specific CDR3 domains identifies essential binding motifs shared by CDR3s with different antigen specificities. 抗原特异性 CDR3 结构域的熵分析确定了不同抗原特异性 CDR3 共享的基本结合基序。
IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 Epub Date: 2023-03-30 DOI: 10.1016/j.cels.2023.03.001
Alexander M Xu, William Chour, Diana C DeLucia, Yapeng Su, Ana Jimena Pavlovitch-Bedzyk, Rachel Ng, Yusuf Rasheed, Mark M Davis, John K Lee, James R Heath

Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify "essential" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and "super-essential" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.

抗原特异性 T 细胞受体(TCR)序列具有预后、预测和治疗价值,但破解 TCR 识别的特异性仍是一项挑战。与碱基配对的 DNA 链不同,TCR 以不同的方向和不同的长度与它们的靶标结合,这使得比较变得复杂。我们采用归一化 TCR 长度扫描参数(SPAN-TCR)来分析抗原特异性 TCR CDR3 序列,并确定驱动 TCR-pMHC 特异性的模式。通过熵分析,SPAN-TCR 确定了降低 CDR3 多样性(熵)的 2-mer 主题。这些基团是能预测 CDR3 组成的最常见模式,我们确定了在包含 2-mer的同一条 CDR3 α 或 β 链中降低熵的 "基本 "基团,以及在两条链中都降低熵的 "超基本 "基团。分子动力学分析进一步表明,这些基团可能在结合过程中发挥重要作用。然后,我们利用 TCR 序列公共数据库,使用 SPAN-TCR 解决了针对不同抗原的 TCR 复合物的相似性问题。
{"title":"Entropic analysis of antigen-specific CDR3 domains identifies essential binding motifs shared by CDR3s with different antigen specificities.","authors":"Alexander M Xu, William Chour, Diana C DeLucia, Yapeng Su, Ana Jimena Pavlovitch-Bedzyk, Rachel Ng, Yusuf Rasheed, Mark M Davis, John K Lee, James R Heath","doi":"10.1016/j.cels.2023.03.001","DOIUrl":"10.1016/j.cels.2023.03.001","url":null,"abstract":"<p><p>Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify \"essential\" motifs that decrease entropy in the same CDR3 α or β chain containing the 2-mer, and \"super-essential\" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"273-284.e5"},"PeriodicalIF":9.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9895818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the spatial landscape of molecular interactions within the tumor microenvironment through latent spaces. 通过潜伏空间揭示肿瘤微环境中分子相互作用的空间景观。
IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 DOI: 10.1016/j.cels.2023.03.004
Atul Deshpande, Melanie Loth, Dimitrios N Sidiropoulos, Shuming Zhang, Long Yuan, Alexander T F Bell, Qingfeng Zhu, Won Jin Ho, Cesar Santa-Maria, Daniele M Gilkes, Stephen R Williams, Cedric R Uytingco, Jennifer Chew, Andrej Hartnett, Zachary W Bent, Alexander V Favorov, Aleksander S Popel, Mark Yarchoan, Ashley Kiemen, Pei-Hsun Wu, Kohei Fujikura, Denis Wirtz, Laura D Wood, Lei Zheng, Elizabeth M Jaffee, Robert A Anders, Ludmila Danilova, Genevieve Stein-O'Brien, Luciane T Kagohara, Elana J Fertig

Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.

空间转录组学(STs)的最新进展是在保留组织样本空间背景的情况下测量其基因表达。这项技术能以前所未有的方式原位解析导致肿瘤异质性和肿瘤微环境(TME)的调控途径。利用空间技术对细胞共定位的直接表征有助于量化细胞-细胞直接相互作用所产生的分子变化,就像在肿瘤-免疫相互作用中发生的那样。我们介绍的 SpaceMarkers 是一种生物信息学算法,可从 ST 数据的潜在空间分析中推断细胞-细胞相互作用产生的分子变化。我们应用这种方法来推断 Visium 空间转录组学数据中肿瘤转移、侵袭性和前驱性病变以及免疫疗法治疗中肿瘤-免疫相互作用的分子变化。在匹配的 scRNA-seq 数据中进一步转移学习,可以进一步量化 SpaceMarkers 富集的特定细胞类型。总之,SpaceMarkers 可以从 ST 数据中识别 TME 内的位置和特定环境的分子相互作用。
{"title":"Uncovering the spatial landscape of molecular interactions within the tumor microenvironment through latent spaces.","authors":"Atul Deshpande, Melanie Loth, Dimitrios N Sidiropoulos, Shuming Zhang, Long Yuan, Alexander T F Bell, Qingfeng Zhu, Won Jin Ho, Cesar Santa-Maria, Daniele M Gilkes, Stephen R Williams, Cedric R Uytingco, Jennifer Chew, Andrej Hartnett, Zachary W Bent, Alexander V Favorov, Aleksander S Popel, Mark Yarchoan, Ashley Kiemen, Pei-Hsun Wu, Kohei Fujikura, Denis Wirtz, Laura D Wood, Lei Zheng, Elizabeth M Jaffee, Robert A Anders, Ludmila Danilova, Genevieve Stein-O'Brien, Luciane T Kagohara, Elana J Fertig","doi":"10.1016/j.cels.2023.03.004","DOIUrl":"10.1016/j.cels.2023.03.004","url":null,"abstract":"<p><p>Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"285-301.e4"},"PeriodicalIF":9.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10044262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling collective cell behavior in cancer: Perspectives from an interdisciplinary conversation. 癌症细胞集体行为的建模:跨学科对话的视角。
IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 DOI: 10.1016/j.cels.2023.03.002
Frederick R Adler, Alexander R A Anderson, Abhinav Bhushan, Paul Bogdan, Jose Javier Bravo-Cordero, Amy Brock, Yun Chen, Edna Cukierman, Kathleen E DelGiorno, Gerald V Denis, Meghan C Ferrall-Fairbanks, Zev Jordan Gartner, Ronald N Germain, Deborah M Gordon, Ginger Hunter, Mohit Kumar Jolly, Loukia Georgiou Karacosta, Karthikeyan Mythreye, Parag Katira, Rajan P Kulkarni, Matthew L Kutys, Arthur D Lander, Ashley M Laughney, Herbert Levine, Emil Lou, Pedro R Lowenstein, Kristyn S Masters, Dana Pe'er, Shelly R Peyton, Manu O Platt, Jeremy E Purvis, Gerald Quon, Jennifer K Richer, Nicole C Riddle, Analiz Rodriguez, Joshua C Snyder, Gregory Lee Szeto, Claire J Tomlin, Itai Yanai, Ioannis K Zervantonakis, Hannah Dueck

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.

集体细胞行为有助于癌症发展的所有阶段。了解集体行为是如何通过细胞-细胞相互作用和决策产生的,将促进我们对癌症生物学的理解,并提供新的治疗方法。在此,我们总结了关于癌症多细胞行为的跨学科讨论,从其他科学学科中吸取教训,并确定了未来的方向。
{"title":"Modeling collective cell behavior in cancer: Perspectives from an interdisciplinary conversation.","authors":"Frederick R Adler, Alexander R A Anderson, Abhinav Bhushan, Paul Bogdan, Jose Javier Bravo-Cordero, Amy Brock, Yun Chen, Edna Cukierman, Kathleen E DelGiorno, Gerald V Denis, Meghan C Ferrall-Fairbanks, Zev Jordan Gartner, Ronald N Germain, Deborah M Gordon, Ginger Hunter, Mohit Kumar Jolly, Loukia Georgiou Karacosta, Karthikeyan Mythreye, Parag Katira, Rajan P Kulkarni, Matthew L Kutys, Arthur D Lander, Ashley M Laughney, Herbert Levine, Emil Lou, Pedro R Lowenstein, Kristyn S Masters, Dana Pe'er, Shelly R Peyton, Manu O Platt, Jeremy E Purvis, Gerald Quon, Jennifer K Richer, Nicole C Riddle, Analiz Rodriguez, Joshua C Snyder, Gregory Lee Szeto, Claire J Tomlin, Itai Yanai, Ioannis K Zervantonakis, Hannah Dueck","doi":"10.1016/j.cels.2023.03.002","DOIUrl":"10.1016/j.cels.2023.03.002","url":null,"abstract":"<p><p>Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"252-257"},"PeriodicalIF":9.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional kinetic synergy: A complex landscape revealed by integrating modeling and synthetic biology. 转录动力学协同作用:一个复杂的景观揭示了整合建模和合成生物学。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 DOI: 10.1016/j.cels.2023.02.003
Rosa Martinez-Corral, Minhee Park, Kelly M Biette, Dhana Friedrich, Clarissa Scholes, Ahmad S Khalil, Jeremy Gunawardena, Angela H DePace

Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that "kinetic synergy" can arise through TFs acting on distinct steps of the transcription cycle. These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experimentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA, such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the transcription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.

转录因子(TFs)控制基因表达,通常协同作用。经典热力学模型为基于结合协同性和RNA聚合酶的调节募集的协同作用提供了生物物理解释。由于转录需要聚合酶在多个状态中转换,最近的研究表明,“动能协同”可以通过tf作用于转录周期的不同步骤而产生。这些类型的协同作用并不是相互排斥的,很难从概念上和实验上加以区分。在这里,我们模拟并构建了一个合成电路,其中tf与DNA上的单个共享位点结合,这样tf就不能通过同时结合来协同作用。我们将mRNA的产生建模为TF结合和转录周期调控的功能,揭示了依赖于TF浓度、DNA结合亲和力和调控活性的复杂景观。我们使用合成tf来证实转录周期必须与基因募集相结合,以定量了解基因调控。
{"title":"Transcriptional kinetic synergy: A complex landscape revealed by integrating modeling and synthetic biology.","authors":"Rosa Martinez-Corral,&nbsp;Minhee Park,&nbsp;Kelly M Biette,&nbsp;Dhana Friedrich,&nbsp;Clarissa Scholes,&nbsp;Ahmad S Khalil,&nbsp;Jeremy Gunawardena,&nbsp;Angela H DePace","doi":"10.1016/j.cels.2023.02.003","DOIUrl":"https://doi.org/10.1016/j.cels.2023.02.003","url":null,"abstract":"<p><p>Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that \"kinetic synergy\" can arise through TFs acting on distinct steps of the transcription cycle. These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experimentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA, such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the transcription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"324-339.e7"},"PeriodicalIF":9.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/01/6d/nihms-1894994.PMC10472254.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10197841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular communication graphs. scTenifoldXct:预测细胞间相互作用和绘制细胞通讯图的半监督方法
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 Epub Date: 2023-02-13 DOI: 10.1016/j.cels.2023.01.004
Yongjian Yang, Guanxun Li, Yan Zhong, Qian Xu, Yu-Te Lin, Cristhian Roman-Vicharra, Robert S Chapkin, James J Cai

We present scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold alignment, using LR pairs as inter-data correspondences to embed ligand and receptor genes expressed in interacting cells into a unified latent space. Neural networks are employed to minimize the distance between corresponding genes while preserving the structure of gene regression networks. We apply scTenifoldXct to real datasets for testing and demonstrate that our method detects interactions with high consistency compared with other methods. More importantly, scTenifoldXct uncovers weak but biologically relevant interactions overlooked by other methods. We also demonstrate how scTenifoldXct can be used to compare different samples, such as healthy vs. diseased and wild type vs. knockout, to identify differential interactions, thereby revealing functional implications associated with changes in cellular communication status.

我们介绍的 scTenifoldXct 是一种半监督计算工具,用于检测配体-受体(LR)介导的细胞-细胞相互作用并绘制细胞通讯图谱。我们的方法以流形配准为基础,使用 LR 对作为数据间的对应关系,将相互作用细胞中表达的配体和受体基因嵌入统一的潜在空间。在保留基因回归网络结构的同时,采用神经网络最小化对应基因之间的距离。我们将 scTenifoldXct 应用于真实数据集进行测试,结果表明,与其他方法相比,我们的方法能以较高的一致性检测到相互作用。更重要的是,scTenifoldXct 发现了其他方法忽略的微弱但与生物相关的相互作用。我们还展示了 scTenifoldXct 如何用于比较不同样本,如健康样本与患病样本、野生型样本与基因敲除样本,以识别不同的相互作用,从而揭示与细胞通讯状态变化相关的功能影响。
{"title":"scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular communication graphs.","authors":"Yongjian Yang, Guanxun Li, Yan Zhong, Qian Xu, Yu-Te Lin, Cristhian Roman-Vicharra, Robert S Chapkin, James J Cai","doi":"10.1016/j.cels.2023.01.004","DOIUrl":"10.1016/j.cels.2023.01.004","url":null,"abstract":"<p><p>We present scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold alignment, using LR pairs as inter-data correspondences to embed ligand and receptor genes expressed in interacting cells into a unified latent space. Neural networks are employed to minimize the distance between corresponding genes while preserving the structure of gene regression networks. We apply scTenifoldXct to real datasets for testing and demonstrate that our method detects interactions with high consistency compared with other methods. More importantly, scTenifoldXct uncovers weak but biologically relevant interactions overlooked by other methods. We also demonstrate how scTenifoldXct can be used to compare different samples, such as healthy vs. diseased and wild type vs. knockout, to identify differential interactions, thereby revealing functional implications associated with changes in cellular communication status.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"302-311.e4"},"PeriodicalIF":9.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9519439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genes enriched in A/T-ending codons are co-regulated and conserved across mammals. 富含A/ t末端密码子的基因在哺乳动物中是共同调控和保守的。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-19 DOI: 10.1016/j.cels.2023.02.002
Hannah Benisty, Xavier Hernandez-Alias, Marc Weber, Miquel Anglada-Girotto, Federica Mantica, Leandro Radusky, Gökçe Senger, Ferriol Calvet, Donate Weghorn, Manuel Irimia, Martin H Schaefer, Luis Serrano

Codon usage influences gene expression distinctly depending on the cell context. Yet, the importance of codon bias in the simultaneous turnover of specific groups of protein-coding genes remains to be investigated. Here, we find that genes enriched in A/T-ending codons are expressed more coordinately in general and across tissues and development than those enriched in G/C-ending codons. tRNA abundance measurements indicate that this coordination is linked to the expression changes of tRNA isoacceptors reading A/T-ending codons. Genes with similar codon composition are more likely to be part of the same protein complex, especially for genes with A/T-ending codons. The codon preferences of genes with A/T-ending codons are conserved among mammals and other vertebrates. We suggest that this orchestration contributes to tissue-specific and ontogenetic-specific expression, which can facilitate, for instance, timely protein complex formation.

密码子的使用对基因表达的影响取决于细胞环境。然而,密码子偏置在蛋白质编码基因的特定组同时更新中的重要性仍有待研究。本研究发现,与G/ c末端密码子富集的基因相比,A/ t末端密码子富集的基因在整个组织和发育过程中的表达更加协调。tRNA丰度测量表明,这种协调与读取A/ t端密码子的tRNA同工受体的表达变化有关。具有相似密码子组成的基因更有可能是相同蛋白质复合体的一部分,特别是对于具有A/ t结尾密码子的基因。A/ t端密码子基因的密码子偏好在哺乳动物和其他脊椎动物中是保守的。我们认为这种协调有助于组织特异性和个体特异性表达,例如,它可以促进及时的蛋白质复合物形成。
{"title":"Genes enriched in A/T-ending codons are co-regulated and conserved across mammals.","authors":"Hannah Benisty,&nbsp;Xavier Hernandez-Alias,&nbsp;Marc Weber,&nbsp;Miquel Anglada-Girotto,&nbsp;Federica Mantica,&nbsp;Leandro Radusky,&nbsp;Gökçe Senger,&nbsp;Ferriol Calvet,&nbsp;Donate Weghorn,&nbsp;Manuel Irimia,&nbsp;Martin H Schaefer,&nbsp;Luis Serrano","doi":"10.1016/j.cels.2023.02.002","DOIUrl":"https://doi.org/10.1016/j.cels.2023.02.002","url":null,"abstract":"<p><p>Codon usage influences gene expression distinctly depending on the cell context. Yet, the importance of codon bias in the simultaneous turnover of specific groups of protein-coding genes remains to be investigated. Here, we find that genes enriched in A/T-ending codons are expressed more coordinately in general and across tissues and development than those enriched in G/C-ending codons. tRNA abundance measurements indicate that this coordination is linked to the expression changes of tRNA isoacceptors reading A/T-ending codons. Genes with similar codon composition are more likely to be part of the same protein complex, especially for genes with A/T-ending codons. The codon preferences of genes with A/T-ending codons are conserved among mammals and other vertebrates. We suggest that this orchestration contributes to tissue-specific and ontogenetic-specific expression, which can facilitate, for instance, timely protein complex formation.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"312-323.e3"},"PeriodicalIF":9.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A complete allosteric map of a GTPase switch in its native cellular network. 原生细胞网络中 GTPase 开关的完整异构图。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-03-15 Epub Date: 2023-02-17 DOI: 10.1016/j.cels.2023.01.003
Christopher J P Mathy, Parul Mishra, Julia M Flynn, Tina Perica, David Mavor, Daniel N A Bolon, Tanja Kortemme

Allosteric regulation is central to protein function in cellular networks. A fundamental open question is whether cellular regulation of allosteric proteins occurs only at a few defined positions or at many sites distributed throughout the structure. Here, we probe the regulation of GTPases-protein switches that control signaling through regulated conformational cycling-at residue-level resolution by deep mutagenesis in the native biological network. For the GTPase Gsp1/Ran, we find that 28% of the 4,315 assayed mutations show pronounced gain-of-function responses. Twenty of the sixty positions enriched for gain-of-function mutations are outside the canonical GTPase active site switch regions. Kinetic analysis shows that these distal sites are allosterically coupled to the active site. We conclude that the GTPase switch mechanism is broadly sensitive to cellular allosteric regulation. Our systematic discovery of new regulatory sites provides a functional map to interrogate and target GTPases controlling many essential biological processes.

异构调节是细胞网络中蛋白质功能的核心。一个基本的悬而未决的问题是,细胞对异构蛋白的调控是只发生在几个确定的位置上,还是发生在分布在整个结构中的许多位置上。在这里,我们通过在原生生物网络中进行深度诱变,在残基级分辨率上探究了 GTP 酶(通过调节构象循环控制信号传递的蛋白质开关)的调控。对于 GTP 酶 Gsp1/Ran,我们发现 4315 个检测突变中有 28% 显示出明显的功能增益反应。功能增益突变富集的 60 个位置中有 20 个位于典型 GTPase 活性位点开关区域之外。动力学分析表明,这些远端位点与活性位点存在异构耦合。我们的结论是,GTPase 开关机制对细胞异构调控具有广泛的敏感性。我们对新调控位点的系统性发现提供了一个功能图谱,可以对控制许多重要生物过程的 GTPase 进行询问和定位。
{"title":"A complete allosteric map of a GTPase switch in its native cellular network.","authors":"Christopher J P Mathy, Parul Mishra, Julia M Flynn, Tina Perica, David Mavor, Daniel N A Bolon, Tanja Kortemme","doi":"10.1016/j.cels.2023.01.003","DOIUrl":"10.1016/j.cels.2023.01.003","url":null,"abstract":"<p><p>Allosteric regulation is central to protein function in cellular networks. A fundamental open question is whether cellular regulation of allosteric proteins occurs only at a few defined positions or at many sites distributed throughout the structure. Here, we probe the regulation of GTPases-protein switches that control signaling through regulated conformational cycling-at residue-level resolution by deep mutagenesis in the native biological network. For the GTPase Gsp1/Ran, we find that 28% of the 4,315 assayed mutations show pronounced gain-of-function responses. Twenty of the sixty positions enriched for gain-of-function mutations are outside the canonical GTPase active site switch regions. Kinetic analysis shows that these distal sites are allosterically coupled to the active site. We conclude that the GTPase switch mechanism is broadly sensitive to cellular allosteric regulation. Our systematic discovery of new regulatory sites provides a functional map to interrogate and target GTPases controlling many essential biological processes.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 3","pages":"237-246.e7"},"PeriodicalIF":9.3,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9819255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel network approach to multiscale biological regulation. 多尺度生物调控的新网络方法。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-03-15 DOI: 10.1016/j.cels.2023.02.004
Guido Gigante, Alessandro Giuliani, Maurizio Mattia

Modeling systems at multiple interacting scales is probably the most relevant task for pursuing a physically motivated explanation of biological regulation. In a new study, Smart and Zilman develop a convincing, albeit preliminary, model of the interplay between the cell microscale and the macroscopic tissue organization in biological systems.

在多个相互作用的尺度上对系统进行建模可能是追求生物调节的物理动机解释的最相关的任务。在一项新的研究中,Smart和Zilman开发了一个令人信服的模型,尽管是初步的,在生物系统中细胞微观尺度和宏观组织组织之间的相互作用。
{"title":"A novel network approach to multiscale biological regulation.","authors":"Guido Gigante,&nbsp;Alessandro Giuliani,&nbsp;Maurizio Mattia","doi":"10.1016/j.cels.2023.02.004","DOIUrl":"https://doi.org/10.1016/j.cels.2023.02.004","url":null,"abstract":"<p><p>Modeling systems at multiple interacting scales is probably the most relevant task for pursuing a physically motivated explanation of biological regulation. In a new study, Smart and Zilman develop a convincing, albeit preliminary, model of the interplay between the cell microscale and the macroscopic tissue organization in biological systems.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 3","pages":"177-179"},"PeriodicalIF":9.3,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9218734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Undersampling and the inference of coevolution in proteins. 蛋白质中的欠采样和共同进化推论
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-03-15 Epub Date: 2023-01-23 DOI: 10.1016/j.cels.2022.12.013
Yaakov Kleeorin, William P Russ, Olivier Rivoire, Rama Ranganathan

Protein structure, function, and evolution depend on local and collective epistatic interactions between amino acids. A powerful approach to defining these interactions is to construct models of couplings between amino acids that reproduce the empirical statistics (frequencies and correlations) observed in sequences comprising a protein family. The top couplings are then interpreted. Here, we show that as currently implemented, this inference unequally represents epistatic interactions, a problem that fundamentally arises from limited sampling of sequences in the context of distinct scales at which epistasis occurs in proteins. We show that these issues explain the ability of current approaches to predict tertiary contacts between amino acids and the inability to obviously expose larger networks of functionally relevant, collectively evolving residues called sectors. This work provides a necessary foundation for more deeply understanding and improving evolution-based models of proteins.

蛋白质的结构、功能和进化取决于氨基酸之间局部和集体的表观相互作用。定义这些相互作用的一个有效方法是构建氨基酸之间的耦合模型,再现在组成蛋白质家族的序列中观察到的经验统计数据(频率和相关性)。然后对顶级耦合进行解释。在这里,我们展示了目前实施的这种推论不平等地代表了表观相互作用,这个问题从根本上说是由于在蛋白质中发生表观作用的不同尺度背景下序列采样有限而引起的。我们表明,这些问题解释了当前方法预测氨基酸间三级接触的能力,以及无法明显揭示功能相关的、集体进化的残基(称为扇区)的更大网络的原因。这项工作为更深入地理解和改进基于进化的蛋白质模型奠定了必要的基础。
{"title":"Undersampling and the inference of coevolution in proteins.","authors":"Yaakov Kleeorin, William P Russ, Olivier Rivoire, Rama Ranganathan","doi":"10.1016/j.cels.2022.12.013","DOIUrl":"10.1016/j.cels.2022.12.013","url":null,"abstract":"<p><p>Protein structure, function, and evolution depend on local and collective epistatic interactions between amino acids. A powerful approach to defining these interactions is to construct models of couplings between amino acids that reproduce the empirical statistics (frequencies and correlations) observed in sequences comprising a protein family. The top couplings are then interpreted. Here, we show that as currently implemented, this inference unequally represents epistatic interactions, a problem that fundamentally arises from limited sampling of sequences in the context of distinct scales at which epistasis occurs in proteins. We show that these issues explain the ability of current approaches to predict tertiary contacts between amino acids and the inability to obviously expose larger networks of functionally relevant, collectively evolving residues called sectors. This work provides a necessary foundation for more deeply understanding and improving evolution-based models of proteins.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 3","pages":"210-219.e7"},"PeriodicalIF":9.3,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9487134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1