Pub Date : 2024-02-01DOI: 10.15251/jor.2024.201.93
A. Modwi, M. A. Aissa, A. Alakhras, H. Idriss
The work reported herein demonstrates the fabrication of CaO nanosheets employing a thermal decomposition method. The obtained CaO nanosheets were characterized using TEM, BET, XRD, EDX, and FTIR instruments. Moreover, the effect of initial dye concentration and pH on MB removal by CaO nanosheets was studied. The result showed that the nanoparticles have sizes around 100 nm, and the CaO nanosheets have an average diameter of 50 nm. Meanwhile, the average pore diameter and surface area of CaO are 15.847 Å and 5.881 m2. g−1 , respectively. Numerical models based on Temkin, Freundlich, and Langmuir were applied to adsorption data to better understand the MB dye adsorption onto CaO nanoparticles. The sorption findings demonstrated a stronger fit with the Temkin model (R2 = 0.983) compared to the Freundlich model (R2 = 0.947) and Langmuir model (R2 = 0.968). The maximum adsorption capacity of MB on the CaO nanoparticles is 688.01 mg/g. The investigation determined that the adsorption kinetics adhered to the Pseudo-second-order kinetic model(R2 =0.982).
本文报告的工作展示了利用热分解法制造氧化钙纳米片的过程。利用 TEM、BET、XRD、EDX 和 FTIR 仪器对获得的 CaO 纳米片进行了表征。此外,还研究了初始染料浓度和 pH 值对 CaO 纳米片去除甲基溴的影响。结果表明,纳米颗粒的尺寸约为 100 nm,而 CaO 纳米片的平均直径为 50 nm。同时,CaO 的平均孔径和表面积分别为 15.847 Å 和 5.881 m2. g-1。为了更好地理解 MB 染料在 CaO 纳米颗粒上的吸附情况,对吸附数据应用了基于 Temkin、Freundlich 和 Langmuir 的数值模型。吸附结果表明,与 Freundlich 模型(R2 = 0.947)和 Langmuir 模型(R2 = 0.968)相比,Temkin 模型(R2 = 0.983)的拟合度更高。MB 在 CaO 纳米粒子上的最大吸附容量为 688.01 mg/g。研究表明,吸附动力学符合伪二阶动力学模型(R2 =0.982)。
{"title":"Adsorption kinetics behavior of MB dye on CaO nanosheets","authors":"A. Modwi, M. A. Aissa, A. Alakhras, H. Idriss","doi":"10.15251/jor.2024.201.93","DOIUrl":"https://doi.org/10.15251/jor.2024.201.93","url":null,"abstract":"The work reported herein demonstrates the fabrication of CaO nanosheets employing a thermal decomposition method. The obtained CaO nanosheets were characterized using TEM, BET, XRD, EDX, and FTIR instruments. Moreover, the effect of initial dye concentration and pH on MB removal by CaO nanosheets was studied. The result showed that the nanoparticles have sizes around 100 nm, and the CaO nanosheets have an average diameter of 50 nm. Meanwhile, the average pore diameter and surface area of CaO are 15.847 Å and 5.881 m2. g−1 , respectively. Numerical models based on Temkin, Freundlich, and Langmuir were applied to adsorption data to better understand the MB dye adsorption onto CaO nanoparticles. The sorption findings demonstrated a stronger fit with the Temkin model (R2 = 0.983) compared to the Freundlich model (R2 = 0.947) and Langmuir model (R2 = 0.968). The maximum adsorption capacity of MB on the CaO nanoparticles is 688.01 mg/g. The investigation determined that the adsorption kinetics adhered to the Pseudo-second-order kinetic model(R2 =0.982).","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"324 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139877114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15251/jor.2024.201.85
A. V. Balan, P. Gopinath, V. Radhika
XRD and SEM images of ZnO nanoparticles prepared by the precipitation method allow investigation of their morphology and morphological refinement. No contamination was observed in the XRD spectrum and SEM confirmed that the nanoparticles were wellcoordinated ZnO at 30 nm size. UV-Vis spectroscopy was used to tune the optical properties and they appeared not to be fixed at 3.34 eV. The band gap of semiconductor materials makes them competitive for solar cell applications. The O-rich stoichiometry measured by XPS may be a direct result of zinc deficiency. Therefore, ZnO nanoparticles were prepared to fabricate secretory solar cells (DSSCs). From the perspective of J-V, open circuit voltage (Voc), barrier thickness (Jsc), fill factor (FF) and efficiency (η) were not chosen as much as possible and the quality was calculated as 0.65V, 6.26mA. , 62.2% and 1.96% respectively at 100mW/cm2 .
{"title":"Enhanced photovoltaic performance of dye sensitized solar cell based on nanocomposites of zinc oxide photoanode","authors":"A. V. Balan, P. Gopinath, V. Radhika","doi":"10.15251/jor.2024.201.85","DOIUrl":"https://doi.org/10.15251/jor.2024.201.85","url":null,"abstract":"XRD and SEM images of ZnO nanoparticles prepared by the precipitation method allow investigation of their morphology and morphological refinement. No contamination was observed in the XRD spectrum and SEM confirmed that the nanoparticles were wellcoordinated ZnO at 30 nm size. UV-Vis spectroscopy was used to tune the optical properties and they appeared not to be fixed at 3.34 eV. The band gap of semiconductor materials makes them competitive for solar cell applications. The O-rich stoichiometry measured by XPS may be a direct result of zinc deficiency. Therefore, ZnO nanoparticles were prepared to fabricate secretory solar cells (DSSCs). From the perspective of J-V, open circuit voltage (Voc), barrier thickness (Jsc), fill factor (FF) and efficiency (η) were not chosen as much as possible and the quality was calculated as 0.65V, 6.26mA. , 62.2% and 1.96% respectively at 100mW/cm2 .","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"8 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139887467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15251/jor.2024.201.93
A. Modwi, M. A. Aissa, A. Alakhras, H. Idriss
The work reported herein demonstrates the fabrication of CaO nanosheets employing a thermal decomposition method. The obtained CaO nanosheets were characterized using TEM, BET, XRD, EDX, and FTIR instruments. Moreover, the effect of initial dye concentration and pH on MB removal by CaO nanosheets was studied. The result showed that the nanoparticles have sizes around 100 nm, and the CaO nanosheets have an average diameter of 50 nm. Meanwhile, the average pore diameter and surface area of CaO are 15.847 Å and 5.881 m2. g−1 , respectively. Numerical models based on Temkin, Freundlich, and Langmuir were applied to adsorption data to better understand the MB dye adsorption onto CaO nanoparticles. The sorption findings demonstrated a stronger fit with the Temkin model (R2 = 0.983) compared to the Freundlich model (R2 = 0.947) and Langmuir model (R2 = 0.968). The maximum adsorption capacity of MB on the CaO nanoparticles is 688.01 mg/g. The investigation determined that the adsorption kinetics adhered to the Pseudo-second-order kinetic model(R2 =0.982).
本文报告的工作展示了利用热分解法制造氧化钙纳米片的过程。利用 TEM、BET、XRD、EDX 和 FTIR 仪器对获得的 CaO 纳米片进行了表征。此外,还研究了初始染料浓度和 pH 值对 CaO 纳米片去除甲基溴的影响。结果表明,纳米颗粒的尺寸约为 100 nm,而 CaO 纳米片的平均直径为 50 nm。同时,CaO 的平均孔径和表面积分别为 15.847 Å 和 5.881 m2. g-1。为了更好地理解 MB 染料在 CaO 纳米颗粒上的吸附情况,对吸附数据应用了基于 Temkin、Freundlich 和 Langmuir 的数值模型。吸附结果表明,与 Freundlich 模型(R2 = 0.947)和 Langmuir 模型(R2 = 0.968)相比,Temkin 模型(R2 = 0.983)的拟合度更高。MB 在 CaO 纳米粒子上的最大吸附容量为 688.01 mg/g。研究表明,吸附动力学符合伪二阶动力学模型(R2 =0.982)。
{"title":"Adsorption kinetics behavior of MB dye on CaO nanosheets","authors":"A. Modwi, M. A. Aissa, A. Alakhras, H. Idriss","doi":"10.15251/jor.2024.201.93","DOIUrl":"https://doi.org/10.15251/jor.2024.201.93","url":null,"abstract":"The work reported herein demonstrates the fabrication of CaO nanosheets employing a thermal decomposition method. The obtained CaO nanosheets were characterized using TEM, BET, XRD, EDX, and FTIR instruments. Moreover, the effect of initial dye concentration and pH on MB removal by CaO nanosheets was studied. The result showed that the nanoparticles have sizes around 100 nm, and the CaO nanosheets have an average diameter of 50 nm. Meanwhile, the average pore diameter and surface area of CaO are 15.847 Å and 5.881 m2. g−1 , respectively. Numerical models based on Temkin, Freundlich, and Langmuir were applied to adsorption data to better understand the MB dye adsorption onto CaO nanoparticles. The sorption findings demonstrated a stronger fit with the Temkin model (R2 = 0.983) compared to the Freundlich model (R2 = 0.947) and Langmuir model (R2 = 0.968). The maximum adsorption capacity of MB on the CaO nanoparticles is 688.01 mg/g. The investigation determined that the adsorption kinetics adhered to the Pseudo-second-order kinetic model(R2 =0.982).","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"19 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139817129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15251/jor.2024.201.103
V. Balasubramanian, R. Jeyachitra, T. S. Senthil, S. Kalpana
The key goal of this study is to innovate the pure and 0.05, 0.10 and 0.15 wt.% of Cudoped ZnO NPs through co-precipitation technique. PXRD pattern shows the hexagonal crystal structure with no any phase impurity were observed for all the synthesized samples. From UV-Vis DRS spectra, band gap was obtained as 3.18, 3.24, 3.29 and 3.33 eV respectively for undoped, Cu-doped ZnO NPs (0.05, 0.10 and 0.15 wt.%). From SEM analysis, the agglomeration of rod-like morphology for pure ZnO NPs, spherical-like morphology for Cu-doped ZnO NPs (0.05 wt.%) and flake-like morphology for Cu-doped ZnO NPs (0.10 wt.%) and flower-like morphology for Cu-doped ZnO NPs (0.15 wt.%). The photocatalytic performance of the synthesized NPs was studied by the dye degradation of Methylene Blue (MB) under UV irradiation. The result exposed that, 0.15 wt.% of Cu-doped ZnO NPs is found to have efficient degradation candidate materials.
{"title":"Enhanced photocatalytic degradation of pure and Cu-doped ZnO nanoparticles prepared under Co-precipitation method","authors":"V. Balasubramanian, R. Jeyachitra, T. S. Senthil, S. Kalpana","doi":"10.15251/jor.2024.201.103","DOIUrl":"https://doi.org/10.15251/jor.2024.201.103","url":null,"abstract":"The key goal of this study is to innovate the pure and 0.05, 0.10 and 0.15 wt.% of Cudoped ZnO NPs through co-precipitation technique. PXRD pattern shows the hexagonal crystal structure with no any phase impurity were observed for all the synthesized samples. From UV-Vis DRS spectra, band gap was obtained as 3.18, 3.24, 3.29 and 3.33 eV respectively for undoped, Cu-doped ZnO NPs (0.05, 0.10 and 0.15 wt.%). From SEM analysis, the agglomeration of rod-like morphology for pure ZnO NPs, spherical-like morphology for Cu-doped ZnO NPs (0.05 wt.%) and flake-like morphology for Cu-doped ZnO NPs (0.10 wt.%) and flower-like morphology for Cu-doped ZnO NPs (0.15 wt.%). The photocatalytic performance of the synthesized NPs was studied by the dye degradation of Methylene Blue (MB) under UV irradiation. The result exposed that, 0.15 wt.% of Cu-doped ZnO NPs is found to have efficient degradation candidate materials.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"84 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139877041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15251/jor.2024.201.85
A. V. Balan, P. Gopinath, V. Radhika
XRD and SEM images of ZnO nanoparticles prepared by the precipitation method allow investigation of their morphology and morphological refinement. No contamination was observed in the XRD spectrum and SEM confirmed that the nanoparticles were wellcoordinated ZnO at 30 nm size. UV-Vis spectroscopy was used to tune the optical properties and they appeared not to be fixed at 3.34 eV. The band gap of semiconductor materials makes them competitive for solar cell applications. The O-rich stoichiometry measured by XPS may be a direct result of zinc deficiency. Therefore, ZnO nanoparticles were prepared to fabricate secretory solar cells (DSSCs). From the perspective of J-V, open circuit voltage (Voc), barrier thickness (Jsc), fill factor (FF) and efficiency (η) were not chosen as much as possible and the quality was calculated as 0.65V, 6.26mA. , 62.2% and 1.96% respectively at 100mW/cm2 .
{"title":"Enhanced photovoltaic performance of dye sensitized solar cell based on nanocomposites of zinc oxide photoanode","authors":"A. V. Balan, P. Gopinath, V. Radhika","doi":"10.15251/jor.2024.201.85","DOIUrl":"https://doi.org/10.15251/jor.2024.201.85","url":null,"abstract":"XRD and SEM images of ZnO nanoparticles prepared by the precipitation method allow investigation of their morphology and morphological refinement. No contamination was observed in the XRD spectrum and SEM confirmed that the nanoparticles were wellcoordinated ZnO at 30 nm size. UV-Vis spectroscopy was used to tune the optical properties and they appeared not to be fixed at 3.34 eV. The band gap of semiconductor materials makes them competitive for solar cell applications. The O-rich stoichiometry measured by XPS may be a direct result of zinc deficiency. Therefore, ZnO nanoparticles were prepared to fabricate secretory solar cells (DSSCs). From the perspective of J-V, open circuit voltage (Voc), barrier thickness (Jsc), fill factor (FF) and efficiency (η) were not chosen as much as possible and the quality was calculated as 0.65V, 6.26mA. , 62.2% and 1.96% respectively at 100mW/cm2 .","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"26 6","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139827647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.15251/jor.2023.196.643
T.V. Kumar, K. P. Kumar, G. Prathibha, N.H Kumar, B. H. C. Rao
Na+ ion-conducting solid electrolyte of sodium nitrate (NaNO3) and Sr(NO3)2 mixed crystals were grown by slow evaporation technique. XRD, FTIR, SEM characterizations and AC, DC conductivities were carried out on the pellets. Conductivity in these mixed solid electrolytes was noticed to increase with increase in m/o Sr(NO3)2 upto 14.68 followed by decrease. The conductivity in 14.68 m/o Sr(NO3)2 is more than one order of magnitude as compared to NaNO3 in the extrinsic region. Ionic transport in these mixed systems is explained.
{"title":"Ionic transport study in [NaNO3]100-x:[Sr(NO3)2]x mixed solid electrolyte system","authors":"T.V. Kumar, K. P. Kumar, G. Prathibha, N.H Kumar, B. H. C. Rao","doi":"10.15251/jor.2023.196.643","DOIUrl":"https://doi.org/10.15251/jor.2023.196.643","url":null,"abstract":"Na+ ion-conducting solid electrolyte of sodium nitrate (NaNO3) and Sr(NO3)2 mixed crystals were grown by slow evaporation technique. XRD, FTIR, SEM characterizations and AC, DC conductivities were carried out on the pellets. Conductivity in these mixed solid electrolytes was noticed to increase with increase in m/o Sr(NO3)2 upto 14.68 followed by decrease. The conductivity in 14.68 m/o Sr(NO3)2 is more than one order of magnitude as compared to NaNO3 in the extrinsic region. Ionic transport in these mixed systems is explained.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"33 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139303288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.15251/jor.2023.196.631
H. H. Madani, M. R. Shayesteh, M. R. Moslemi
In this paper, a new structure of SiGe thin film solar cell using a carbon nanotubes (CNT) grating layer is proposed. CNT grating layer is used which reduces the reflection loss from the surface and maximizing optical absorption in the active layer of the cell. In order to reduce the carrier recombination in the back contact, a GaAs back-surface field (BSF) layer was used. The simulation results show that the efficiency of the proposed structure is 29.32%. Furthermore, we were able to increase the efficiency to 31.3% by optimizing the structural parameters including the depth and number of grating periods.
{"title":"Efficiency enhancement in SiGe thin film solar cell by a CNT grating structure","authors":"H. H. Madani, M. R. Shayesteh, M. R. Moslemi","doi":"10.15251/jor.2023.196.631","DOIUrl":"https://doi.org/10.15251/jor.2023.196.631","url":null,"abstract":"In this paper, a new structure of SiGe thin film solar cell using a carbon nanotubes (CNT) grating layer is proposed. CNT grating layer is used which reduces the reflection loss from the surface and maximizing optical absorption in the active layer of the cell. In order to reduce the carrier recombination in the back contact, a GaAs back-surface field (BSF) layer was used. The simulation results show that the efficiency of the proposed structure is 29.32%. Furthermore, we were able to increase the efficiency to 31.3% by optimizing the structural parameters including the depth and number of grating periods.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"40 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139304954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.15251/jor.2023.196.673
A. Neelaveni, N. Sivakumar
In this work, we manufacture NaVOPO4 with the addition of one additional Na ion to enhance the stability and electrochemical formulation utilizing three ways, including sol gel-assisted hydrothermal, pure sol-gel, and solid state reaction methods. The sol-gel aided hydrothermal approach is the most effective way to add more Na ions to the NaVOPO4 matrix out of the three. Due to the presence of carbon content in high temperatures, the alterations of oxygen environment (O (1 &2) sites around the Na and V cause NaVOPO4/ Na2V(PO4)2 (NVP). The traces with high intensity at 17.99o indicates the tetragonal phase of Na2V(PO4)2 in NaVOPO4 and it is concreted by Raman analysis by peak shifting from 884 to 866 cm–1 . The character in Na2V(PO4)2 influences the Na ion intercalation process and yields the specific capacity in a three-electrode system is 0.83mAh/g at the scan rate of 10mV/s.
在这项工作中,我们利用溶胶凝胶辅助水热法、纯溶胶凝胶法和固态反应法等三种方法,在制造 NaVOPO4 时添加了一个额外的 Na 离子,以增强其稳定性和电化学配方。在这三种方法中,溶胶凝胶辅助水热法是在 NaVOPO4 基体中添加更多 Na 离子的最有效方法。由于高温下碳含量的存在,Na 和 V 周围的氧环境(O (1 & 2) 位点)发生了变化,导致 NaVOPO4/ Na2V(PO4)2 (NVP)。17.99o 处的高强度迹线表明 NaVOPO4 中的 Na2V(PO4)2 为四方相,拉曼分析通过峰值从 884 cm-1 移动到 866 cm-1 证实了这一点。Na2V(PO4)2 中的特性影响了 Na 离子的插层过程,在扫描速率为 10mV/s 的三电极系统中产生的比容量为 0.83mAh/g。
{"title":"A study of the efficient approach to introduce two Na ions into a NaVOPO4 matrix and an analysis of the electrochemical performance of NaVOPO4/Na2V(PO4)2","authors":"A. Neelaveni, N. Sivakumar","doi":"10.15251/jor.2023.196.673","DOIUrl":"https://doi.org/10.15251/jor.2023.196.673","url":null,"abstract":"In this work, we manufacture NaVOPO4 with the addition of one additional Na ion to enhance the stability and electrochemical formulation utilizing three ways, including sol gel-assisted hydrothermal, pure sol-gel, and solid state reaction methods. The sol-gel aided hydrothermal approach is the most effective way to add more Na ions to the NaVOPO4 matrix out of the three. Due to the presence of carbon content in high temperatures, the alterations of oxygen environment (O (1 &2) sites around the Na and V cause NaVOPO4/ Na2V(PO4)2 (NVP). The traces with high intensity at 17.99o indicates the tetragonal phase of Na2V(PO4)2 in NaVOPO4 and it is concreted by Raman analysis by peak shifting from 884 to 866 cm–1 . The character in Na2V(PO4)2 influences the Na ion intercalation process and yields the specific capacity in a three-electrode system is 0.83mAh/g at the scan rate of 10mV/s.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"47 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139296119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.15251/jor.2023.196.653
N. U. Rehman, A. Hussain, S. M. Ali, J. Ahmad, S. A. Buzdar, K. Mahmood, Z. A. Shah, S. D. Ali, M. A. Shar
In the present study we have successfully synthesized undoped and Cd doped SnO2 nanoparticles using the Sol-gel method with different concentrations of Cd solutions, and Seebeck coefficient and electrical conductivity have been reported at various temperatures. The structural, morphological, thermoelectric and electrical properties of undoped and doped samples were by XRD, scanning electron microscopy, Raman spectroscopy, Seebeck effect and two point probe electrical measurement. XRD show the rutile tetragonal structure and the enhanced particle size in the range of 18.12 nm to 25.08 nm, and Raman active mode at 479cm-1 , 632cm-1 and 775cm-1 were measured by Raman spectroscopy. Morphology of the nanoparticles by using Scanning electron microscopy have revealed the random spherical shape and cluster formation of these nanoparticles. The maximum value of seebeck coefficient, electrical conductivity and power factor for 6% doped SnO2 samples were found to be -297.92μV/°C, 33.33Ω-1 m-1 and 0.129117 x 106 Wm-1 /°C2 , respectively. These results reveal that the Cd doped tin dioxide (SnO2) nanoparticles can be used as a good candidate for thermoelectric applications.
{"title":"Support of Cd doping in SnO2 nanoparticles to enhance its thermoelectric parameters","authors":"N. U. Rehman, A. Hussain, S. M. Ali, J. Ahmad, S. A. Buzdar, K. Mahmood, Z. A. Shah, S. D. Ali, M. A. Shar","doi":"10.15251/jor.2023.196.653","DOIUrl":"https://doi.org/10.15251/jor.2023.196.653","url":null,"abstract":"In the present study we have successfully synthesized undoped and Cd doped SnO2 nanoparticles using the Sol-gel method with different concentrations of Cd solutions, and Seebeck coefficient and electrical conductivity have been reported at various temperatures. The structural, morphological, thermoelectric and electrical properties of undoped and doped samples were by XRD, scanning electron microscopy, Raman spectroscopy, Seebeck effect and two point probe electrical measurement. XRD show the rutile tetragonal structure and the enhanced particle size in the range of 18.12 nm to 25.08 nm, and Raman active mode at 479cm-1 , 632cm-1 and 775cm-1 were measured by Raman spectroscopy. Morphology of the nanoparticles by using Scanning electron microscopy have revealed the random spherical shape and cluster formation of these nanoparticles. The maximum value of seebeck coefficient, electrical conductivity and power factor for 6% doped SnO2 samples were found to be -297.92μV/°C, 33.33Ω-1 m-1 and 0.129117 x 106 Wm-1 /°C2 , respectively. These results reveal that the Cd doped tin dioxide (SnO2) nanoparticles can be used as a good candidate for thermoelectric applications.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139295543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.15251/jor.2023.196.681
N. A. M. Sinin, A. R. M. Rais, K. Sopian, M. A. Ibrahim
Screen printing dopant is a new technique to create emitter regions on solar cells. On top of the emitter region, there will be screen-printed metallic contacts that are commonly used silver as front contact. Both processes are performed in separate procedure which requires two different diffusion process involving a high-temperature process. Silver makes good ohmic contact on both light and heavily doped. A solution is proposed by applying a single step of screen printing and annealing process of Ag and phosphorus acid. Simultaneous annealing of Al, Ag, Ag/P screen-printed pastes form diodes with and without heavily doped phosphorous layers under Ag contacts on n-type and p-type silicon wafers by annealing at a constant temperature of 900℃ while varying annealing time from 10-40 seconds at a 10-second interval. The cross-section image of 5% and 10% of Ag/P was measured by using FESEM with EDX report has identified the presence of phosphorus in the Ag/P paste. Dark IV shows an ohmic contact for both p- and n-type. The ability to form the Ag/P paste in the screen-printing process makes it amenable to use as a self-dopant paste process in solar cells.
丝网印刷掺杂剂是一种在太阳能电池上制造发射极区域的新技术。在发射区的顶部,会有丝网印刷的金属触点,通常使用银作为前触点。这两种工艺都是单独进行的,需要两种不同的高温扩散工艺。无论是轻掺杂还是重掺杂,银都能产生良好的欧姆接触。我们提出了一种解决方案,即采用银和磷酸的丝网印刷和退火工艺的单一步骤。通过在 900℃ 恒温下退火,同时以 10 秒为间隔改变退火时间(10-40 秒),将铝、银、银/磷丝网印刷浆料同时退火,在 n 型和 p 型硅晶片上形成了在银触点下具有和不具有重掺磷层的二极管。通过使用 FESEM 和 EDX 报告测量 5%和 10%的 Ag/P 的横截面图像,确定了 Ag/P 浆料中磷的存在。暗 IV 显示 p 型和 n 型都有欧姆接触。在丝网印刷工艺中形成 Ag/P 浆料的能力使其适合用作太阳能电池中的自掺杂浆料工艺。
{"title":"The concentration factor on the mixture of Ag paste and H3PO4 solution as a dopant paste for contact formation in silicon solar cells","authors":"N. A. M. Sinin, A. R. M. Rais, K. Sopian, M. A. Ibrahim","doi":"10.15251/jor.2023.196.681","DOIUrl":"https://doi.org/10.15251/jor.2023.196.681","url":null,"abstract":"Screen printing dopant is a new technique to create emitter regions on solar cells. On top of the emitter region, there will be screen-printed metallic contacts that are commonly used silver as front contact. Both processes are performed in separate procedure which requires two different diffusion process involving a high-temperature process. Silver makes good ohmic contact on both light and heavily doped. A solution is proposed by applying a single step of screen printing and annealing process of Ag and phosphorus acid. Simultaneous annealing of Al, Ag, Ag/P screen-printed pastes form diodes with and without heavily doped phosphorous layers under Ag contacts on n-type and p-type silicon wafers by annealing at a constant temperature of 900℃ while varying annealing time from 10-40 seconds at a 10-second interval. The cross-section image of 5% and 10% of Ag/P was measured by using FESEM with EDX report has identified the presence of phosphorus in the Ag/P paste. Dark IV shows an ohmic contact for both p- and n-type. The ability to form the Ag/P paste in the screen-printing process makes it amenable to use as a self-dopant paste process in solar cells.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"83 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139296115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}