Pub Date : 2023-02-23DOI: 10.1017/S1742170523000078
A. Assirelli, F. Fornasier, F. Caputo, L. Manici
Abstract Composting technologies have progressed parallel to the growing interest in recycling organic waste over recent decades, whilst in-field compost application requires technical improvement and more experience in order to optimize their effect according to the agro-environment and the type of crop which follow their incorporation into the soil. In response to compost application, biological soil features were assessed in field by adopting precision agricultural machinery and by limiting soil incorporation to a depth of 15 cm. A 2-year trial was carried out on two sites in the East Po valley (Northern Italy), an agricultural district which, in 2000, was classified as being on the verge of desertification, and where efforts to counteract soil organic matter decline have been underway for some decades. A green-waste compost produced in accordance with current national directives was applied in autumn 2019 and 2020 to two organic fields using precision farming machinery for compost spreading and conventional harrows for incorporation. Fields were divided into two large plots to compare the effect of compost treatment to an untreated control and were managed according to organic farming practices. Seven months after application, microbial biomass, assessed in terms of DNA, and 17 enzymatic activities were estimated by sampling root-explored soil at the vegetative stage of different seed crops for organic horticulture. A significant overall increase of biological soil activity was detected after the second application. The qualitative response varied slightly between the two sites: a higher impact of microbial biomass was observed in the site that was poorer in soil organic matter; whilst in the other, an increase of phosphatase activities contributed more to the general increase of biological activity. Findings show that, in those agricultural soils, an agronomic advantage from compost can be obtained only after repeated applications; furthermore, precision farming technologies facilitate compost application even in small, specialized farms such as those which hosted this trial.
{"title":"Locally available compost application in organic farms: 2-year effect on biological soil properties","authors":"A. Assirelli, F. Fornasier, F. Caputo, L. Manici","doi":"10.1017/S1742170523000078","DOIUrl":"https://doi.org/10.1017/S1742170523000078","url":null,"abstract":"Abstract Composting technologies have progressed parallel to the growing interest in recycling organic waste over recent decades, whilst in-field compost application requires technical improvement and more experience in order to optimize their effect according to the agro-environment and the type of crop which follow their incorporation into the soil. In response to compost application, biological soil features were assessed in field by adopting precision agricultural machinery and by limiting soil incorporation to a depth of 15 cm. A 2-year trial was carried out on two sites in the East Po valley (Northern Italy), an agricultural district which, in 2000, was classified as being on the verge of desertification, and where efforts to counteract soil organic matter decline have been underway for some decades. A green-waste compost produced in accordance with current national directives was applied in autumn 2019 and 2020 to two organic fields using precision farming machinery for compost spreading and conventional harrows for incorporation. Fields were divided into two large plots to compare the effect of compost treatment to an untreated control and were managed according to organic farming practices. Seven months after application, microbial biomass, assessed in terms of DNA, and 17 enzymatic activities were estimated by sampling root-explored soil at the vegetative stage of different seed crops for organic horticulture. A significant overall increase of biological soil activity was detected after the second application. The qualitative response varied slightly between the two sites: a higher impact of microbial biomass was observed in the site that was poorer in soil organic matter; whilst in the other, an increase of phosphatase activities contributed more to the general increase of biological activity. Findings show that, in those agricultural soils, an agronomic advantage from compost can be obtained only after repeated applications; furthermore, precision farming technologies facilitate compost application even in small, specialized farms such as those which hosted this trial.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45738240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.1017/S1742170523000091
M. N. Jiménez, J. Castro-Rodríguez, F. Navarro
Abstract The effects of the farming system (conventional-organic-abandoned) and soil management (native cover crop vs tillage) on vascular plant species were analyzed in sloping olive groves (>20%) in 20 different locations in Andalusia, SE Spain. The soil management techniques included Organic Tillage (OT), Organic Cover Crops (OC), Conventional Tillage (CT), Conventional Non-Tillage (CNT), Abandoned Cover Crops (AC) and Abandoned Woody (AW). Data for the vascular plant species were recorded through three line transects of 30 m with a bar perpendicularly touching every 1 m of the measuring tape. Environmental variables were also recorded at plot level to assess their influence. Dependent variables, such as species abundance, richness and diversity indexes were studied using univariate analysis (one-way ANOVA, Kruskal–Wallis test) while multivariate statistics (ANOSIM, SIMPER, DCA) were used for analyzing the data matrices. We found that the different combinations of farming system and soil management affect biological diversity in terms of individual abundance, plant cover, species richness and diversity, species and family composition. Life forms and species distribution patterns are also affected. The main environmental variables affecting the plant taxa were those related with soil and climate characteristics, slope, olive age and intensive land uses at landscape level, including the percentage of artificial surfaces. The lowest levels of biodiversity (e.g., species richness) were found in the tilled olive groves (CT = 8.1 sp. ± 2.2, OT = 10.0 sp. ± 5.4). Surprisingly, the organic tilled groves (OT) were very poor in species compared to those with native plant cover (OC = 27.9 sp. ± 3.0). The latter, however, showed similar species richness to the abandoned olive groves (AC = 21.2 sp. ± 3.7, AW = 27.2 sp. ± 3.0). Possible solutions for increasingly uncompetitive sloping olive groves include conversion to organic with native plant cover or abandonment for rewilding.
{"title":"The effects of farming system and soil management on floristic diversity in sloping olive groves","authors":"M. N. Jiménez, J. Castro-Rodríguez, F. Navarro","doi":"10.1017/S1742170523000091","DOIUrl":"https://doi.org/10.1017/S1742170523000091","url":null,"abstract":"Abstract The effects of the farming system (conventional-organic-abandoned) and soil management (native cover crop vs tillage) on vascular plant species were analyzed in sloping olive groves (>20%) in 20 different locations in Andalusia, SE Spain. The soil management techniques included Organic Tillage (OT), Organic Cover Crops (OC), Conventional Tillage (CT), Conventional Non-Tillage (CNT), Abandoned Cover Crops (AC) and Abandoned Woody (AW). Data for the vascular plant species were recorded through three line transects of 30 m with a bar perpendicularly touching every 1 m of the measuring tape. Environmental variables were also recorded at plot level to assess their influence. Dependent variables, such as species abundance, richness and diversity indexes were studied using univariate analysis (one-way ANOVA, Kruskal–Wallis test) while multivariate statistics (ANOSIM, SIMPER, DCA) were used for analyzing the data matrices. We found that the different combinations of farming system and soil management affect biological diversity in terms of individual abundance, plant cover, species richness and diversity, species and family composition. Life forms and species distribution patterns are also affected. The main environmental variables affecting the plant taxa were those related with soil and climate characteristics, slope, olive age and intensive land uses at landscape level, including the percentage of artificial surfaces. The lowest levels of biodiversity (e.g., species richness) were found in the tilled olive groves (CT = 8.1 sp. ± 2.2, OT = 10.0 sp. ± 5.4). Surprisingly, the organic tilled groves (OT) were very poor in species compared to those with native plant cover (OC = 27.9 sp. ± 3.0). The latter, however, showed similar species richness to the abandoned olive groves (AC = 21.2 sp. ± 3.7, AW = 27.2 sp. ± 3.0). Possible solutions for increasingly uncompetitive sloping olive groves include conversion to organic with native plant cover or abandonment for rewilding.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43498359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-21DOI: 10.1017/S1742170523000042
Ram Adhikari, Tong Wang, Hailong Jin, J. Ulrich-Schad, H. Sieverding, D. Clay
Abstract While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices.
{"title":"Farmer perceived challenges toward conservation practice usage in the margins of the Corn Belt, USA","authors":"Ram Adhikari, Tong Wang, Hailong Jin, J. Ulrich-Schad, H. Sieverding, D. Clay","doi":"10.1017/S1742170523000042","DOIUrl":"https://doi.org/10.1017/S1742170523000042","url":null,"abstract":"Abstract While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42583824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.1017/S1742170523000066
A. Chaudhary, P. Timsina, E. Karki, A. Sharma, B. Suri, Ranjan Sharma, B. Brown
Abstract Conservation agriculture-based sustainable intensification (CASI) is gaining prominence as an agricultural pathway to poverty reduction and enhancement of sustainable food systems among government and development actors in the Eastern Gangetic Plains (EGP) of South Asia. Despite substantial investment in research and extension programs and a growing understanding of the agronomic, economic and labor-saving benefits of CASI, uptake remains limited. This study explores farmer experiences and perspectives to establish why farmers choose not to implement CASI systems despite a strong body of recent scientific evidence establishing the benefits of them doing so. Through thematic coding of semi-structured interviews, key constraints are identified, which establishes a narrative that current households' resources are insufficient to enable practice change, alongside limited supporting structures for resource supplementation. Such issues create a dependency on subsidies and outside support, a situation that is likely to impact any farming system change given the low-risk profiles of farmers and their limited resource base. This paper hence sets out broad implications for creating change in smallholder farming systems in order to promote the adoption of sustainable agricultural technologies in resource-poor smallholder contexts, especially with regard to breaking the profound poverty cycles that smallholder farmers find themselves in and which are unlikely to be broken by the current set of technologies promoted to them.
{"title":"Contextual realities and poverty traps: why South Asian smallholder farmers negatively evaluate conservation agriculture","authors":"A. Chaudhary, P. Timsina, E. Karki, A. Sharma, B. Suri, Ranjan Sharma, B. Brown","doi":"10.1017/S1742170523000066","DOIUrl":"https://doi.org/10.1017/S1742170523000066","url":null,"abstract":"Abstract Conservation agriculture-based sustainable intensification (CASI) is gaining prominence as an agricultural pathway to poverty reduction and enhancement of sustainable food systems among government and development actors in the Eastern Gangetic Plains (EGP) of South Asia. Despite substantial investment in research and extension programs and a growing understanding of the agronomic, economic and labor-saving benefits of CASI, uptake remains limited. This study explores farmer experiences and perspectives to establish why farmers choose not to implement CASI systems despite a strong body of recent scientific evidence establishing the benefits of them doing so. Through thematic coding of semi-structured interviews, key constraints are identified, which establishes a narrative that current households' resources are insufficient to enable practice change, alongside limited supporting structures for resource supplementation. Such issues create a dependency on subsidies and outside support, a situation that is likely to impact any farming system change given the low-risk profiles of farmers and their limited resource base. This paper hence sets out broad implications for creating change in smallholder farming systems in order to promote the adoption of sustainable agricultural technologies in resource-poor smallholder contexts, especially with regard to breaking the profound poverty cycles that smallholder farmers find themselves in and which are unlikely to be broken by the current set of technologies promoted to them.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46649415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.1017/S174217052300008X
A. R. Abaajeh, Caroline Elliott Kingston, M. Harty
Abstract The world is experiencing a global push toward smart agriculture to help feed the burgeoning population by increasing food security while reducing the carbon footprint of food production. The guidelines for healthy eating have increased globally from five to seven servings of vegetables a day and this had led to the quest for a sustainable form of vegetable production that will reduce the carbon footprint and still provide consumers with the required nutrients. Microgreens contain more nutrients than some mature vegetables and can be cultivated on vertical farms, offering a different approach with the potential to resolve environmental and health challenges. Microgreens are young plantlets grown from the seeds of edible leafy vegetables and are usually eaten raw. They contain high levels of bioactive compounds and can be processed into oils to create valuable cosmetic products. Microgreens have become well-known to chefs and are gaining popularity in upmarket grocery outlets. Consequently, growing microgreens are presenting huge market opportunities worldwide. Their nutritional benefits, easy production methods and short production cycle are some of the reasons they are attractive to growers. The most important factors affecting the growth of microgreens are micro and macro-climates. One challenge to producing microgreens is that the growing environment is ideal for microbial organisms to thrive. As such, microgreens are prone to foodborne pathogens such as E. coli, Listeria and Salmonella. Consequently, the microgreens industry is facing various setbacks including product recalls from Salmonella and Listeria food poisoning outbreaks. In addition, the short shelf-life of microgreens is a serious challenge for getting microgreens to market, this is driving studies in several post-harvest treatments. This review examines the nutrient content and health benefits of microgreens and factors affecting microgreens' growth: temperature, humidity, photoperiod, fertilization, etc. and post-harvest treatments, all of which can potentially impact microbial growth, the phytochemical content and the physical appearance of microgreens bound for the market.
{"title":"Environmental factors influencing the growth and pathogenicity of microgreens bound for the market: a review","authors":"A. R. Abaajeh, Caroline Elliott Kingston, M. Harty","doi":"10.1017/S174217052300008X","DOIUrl":"https://doi.org/10.1017/S174217052300008X","url":null,"abstract":"Abstract The world is experiencing a global push toward smart agriculture to help feed the burgeoning population by increasing food security while reducing the carbon footprint of food production. The guidelines for healthy eating have increased globally from five to seven servings of vegetables a day and this had led to the quest for a sustainable form of vegetable production that will reduce the carbon footprint and still provide consumers with the required nutrients. Microgreens contain more nutrients than some mature vegetables and can be cultivated on vertical farms, offering a different approach with the potential to resolve environmental and health challenges. Microgreens are young plantlets grown from the seeds of edible leafy vegetables and are usually eaten raw. They contain high levels of bioactive compounds and can be processed into oils to create valuable cosmetic products. Microgreens have become well-known to chefs and are gaining popularity in upmarket grocery outlets. Consequently, growing microgreens are presenting huge market opportunities worldwide. Their nutritional benefits, easy production methods and short production cycle are some of the reasons they are attractive to growers. The most important factors affecting the growth of microgreens are micro and macro-climates. One challenge to producing microgreens is that the growing environment is ideal for microbial organisms to thrive. As such, microgreens are prone to foodborne pathogens such as E. coli, Listeria and Salmonella. Consequently, the microgreens industry is facing various setbacks including product recalls from Salmonella and Listeria food poisoning outbreaks. In addition, the short shelf-life of microgreens is a serious challenge for getting microgreens to market, this is driving studies in several post-harvest treatments. This review examines the nutrient content and health benefits of microgreens and factors affecting microgreens' growth: temperature, humidity, photoperiod, fertilization, etc. and post-harvest treatments, all of which can potentially impact microbial growth, the phytochemical content and the physical appearance of microgreens bound for the market.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48281717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-17DOI: 10.1017/S1742170523000030
Vu Thi Hong Van, Yoon Heo, N. K. Doanh
Abstract This study aims to analyze the influence of neighborhood effects (NE) on tea farmers' intention to convert from traditional to organic farming in the mountainous areas of northern Vietnam. It differs from previous studies in two aspects. First, we combine the theory of planned behavior and the theory of herd behavior to explain farmers' intention to convert from traditional to organic farming, focusing on the impact of the NE. Secondly, to measure NE, we use a combination of questionnaires and methods of measuring herd behavior by McCartney and Shah. Using the generalized structural equation modeling and data collected from 263 tea farmers in Thai Nguyen, we found that NE has a positive and direct significant effect on farmers' intention to convert to organic tea production in the case where neighbors both live nearby and have a close relationship with the subject. In addition, it indirectly impacts farmers' conversion intention through attitude, subjective norms and perceived behavior control. To encourage tea farmers to convert to organic farming, policymakers and extension workers should take advantage of the NE to increase farmers' confidence about the benefits and the possibility of successful organic farming.
{"title":"‘They convert, I also convert’: the neighborhood effects and tea farmers' intention to convert to organic farming","authors":"Vu Thi Hong Van, Yoon Heo, N. K. Doanh","doi":"10.1017/S1742170523000030","DOIUrl":"https://doi.org/10.1017/S1742170523000030","url":null,"abstract":"Abstract This study aims to analyze the influence of neighborhood effects (NE) on tea farmers' intention to convert from traditional to organic farming in the mountainous areas of northern Vietnam. It differs from previous studies in two aspects. First, we combine the theory of planned behavior and the theory of herd behavior to explain farmers' intention to convert from traditional to organic farming, focusing on the impact of the NE. Secondly, to measure NE, we use a combination of questionnaires and methods of measuring herd behavior by McCartney and Shah. Using the generalized structural equation modeling and data collected from 263 tea farmers in Thai Nguyen, we found that NE has a positive and direct significant effect on farmers' intention to convert to organic tea production in the case where neighbors both live nearby and have a close relationship with the subject. In addition, it indirectly impacts farmers' conversion intention through attitude, subjective norms and perceived behavior control. To encourage tea farmers to convert to organic farming, policymakers and extension workers should take advantage of the NE to increase farmers' confidence about the benefits and the possibility of successful organic farming.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49563205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.1017/S1742170523000029
G. DiGiacomo, Miriam F Gieske, J. Grossman, K. Jacobsen, H. Peterson, C. Rivard
Abstract High-tunnel (HT) systems have been shown to effectively improve yields, fruit quality and profitability. In order to maximize returns on investment, HTs are frequently planted successively with both winter and summer cash crops and may include >2 crop cycles per year in some climates. The intense cultivation strategies used in HT systems necessitate increased tillage and nutrient demands posing challenges for soil health, environmental quality and long-term economic sustainability, particularly among organic growers. Seasonal rotations that incorporate fertility-building cover crops, such as legumes and other green manures, have the potential to build soil organic matter, improve crop yield and reduce applications of animal manure and/or compost. The economic impact of cover crop use in HT production systems poses important implications for organic growers. In this study, we present three partial budget analyses to quantify the economic benefits from a leguminous winter cover crop–tomato cash crop rotation in HTs across three regions. Data used in the economic analysis come from multi-year organic HT field trials in Kansas (2016–2019), Kentucky (2016–2019) and Minnesota (2016–2020). Direct financial benefits from hairy vetch (Vicia villosa) cover crop N credits were observed but not sufficient to offset the direct and indirect costs of the cover crop practice. A winter cover crop used in organic HT vegetable systems results in negative financial benefits to producers even with conservation incentive payments. These results highlight challenges for organic growers who are required under the USDA National Organic Program to incorporate soil building practices as part of their rotation schedule. The findings will also be of interest to policy makers as they refine cost-share offerings and programming to incentivize cover crop adoption as a conservation strategy.
{"title":"Economic trade-offs: analysis of hairy vetch (Vicia villosa) cover crop use in organic tomato (Solanum lycopersicum L.) high tunnel systems across multiple regions","authors":"G. DiGiacomo, Miriam F Gieske, J. Grossman, K. Jacobsen, H. Peterson, C. Rivard","doi":"10.1017/S1742170523000029","DOIUrl":"https://doi.org/10.1017/S1742170523000029","url":null,"abstract":"Abstract High-tunnel (HT) systems have been shown to effectively improve yields, fruit quality and profitability. In order to maximize returns on investment, HTs are frequently planted successively with both winter and summer cash crops and may include >2 crop cycles per year in some climates. The intense cultivation strategies used in HT systems necessitate increased tillage and nutrient demands posing challenges for soil health, environmental quality and long-term economic sustainability, particularly among organic growers. Seasonal rotations that incorporate fertility-building cover crops, such as legumes and other green manures, have the potential to build soil organic matter, improve crop yield and reduce applications of animal manure and/or compost. The economic impact of cover crop use in HT production systems poses important implications for organic growers. In this study, we present three partial budget analyses to quantify the economic benefits from a leguminous winter cover crop–tomato cash crop rotation in HTs across three regions. Data used in the economic analysis come from multi-year organic HT field trials in Kansas (2016–2019), Kentucky (2016–2019) and Minnesota (2016–2020). Direct financial benefits from hairy vetch (Vicia villosa) cover crop N credits were observed but not sufficient to offset the direct and indirect costs of the cover crop practice. A winter cover crop used in organic HT vegetable systems results in negative financial benefits to producers even with conservation incentive payments. These results highlight challenges for organic growers who are required under the USDA National Organic Program to incorporate soil building practices as part of their rotation schedule. The findings will also be of interest to policy makers as they refine cost-share offerings and programming to incentivize cover crop adoption as a conservation strategy.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42594550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.1017/S1742170522000424
Boima M. Bernard, Yanping Song, Mulinga Narcisse, Sehresh Hena, Xin Wang
Abstract Earlier research largely ignored the effects of climate change on the growth of agricultural total factor productivity (TFP) in Africa. This study shows how climate inputs impact TFP growth in addition to other productivity growth indicators and metrics, as well as how they can impact overall input efficiency as productivity drivers. We use a panel of 42 African nations from 1999 to 2019 and a nonparametric data envelopment analysis-Malmquist technique. The non-parametric analysis revealed that the average growth rate of the non-climate-induced TFP estimates was 1.9%, while the average growth rate of the climate-induced TFP estimates was 2.4%. Accounting for temperature and precipitation separately, TFP grew by 2.3% on average. This growth rate (2.3%) is slightly less than the combined effect of temperature and precipitation (2.4%) but higher than the typical TFP growth rate (1.9%) that ignores climate variables, indicating that TFP growth in African agriculture risks being underestimated when climate inputs are ignored. We also find the distribution of the climate effects to vary across regions. In northern Africa, for example, the temperature-induced TFP growth rates were negative due to rising temperature in the region. Evidence from the decomposed TFP estimates indicates that climate variables also influence productivity determinants. However, technology improvement is fundamental to mitigating the effects of extreme weather inputs on TFP growth in Africa's agriculture. As a result, a few policy suggestions are provided to help policymakers deal with the effects of climate change on TFP growth in Africa's agriculture and ensure food security. The study advocated for a reevaluation of the climate–agriculture effect in order to fully comprehend the role of climate factors and their contributions to agricultural TFP growth in Africa.
{"title":"A nonparametric analysis of climate change nexus on agricultural productivity in Africa: implications on food security","authors":"Boima M. Bernard, Yanping Song, Mulinga Narcisse, Sehresh Hena, Xin Wang","doi":"10.1017/S1742170522000424","DOIUrl":"https://doi.org/10.1017/S1742170522000424","url":null,"abstract":"Abstract Earlier research largely ignored the effects of climate change on the growth of agricultural total factor productivity (TFP) in Africa. This study shows how climate inputs impact TFP growth in addition to other productivity growth indicators and metrics, as well as how they can impact overall input efficiency as productivity drivers. We use a panel of 42 African nations from 1999 to 2019 and a nonparametric data envelopment analysis-Malmquist technique. The non-parametric analysis revealed that the average growth rate of the non-climate-induced TFP estimates was 1.9%, while the average growth rate of the climate-induced TFP estimates was 2.4%. Accounting for temperature and precipitation separately, TFP grew by 2.3% on average. This growth rate (2.3%) is slightly less than the combined effect of temperature and precipitation (2.4%) but higher than the typical TFP growth rate (1.9%) that ignores climate variables, indicating that TFP growth in African agriculture risks being underestimated when climate inputs are ignored. We also find the distribution of the climate effects to vary across regions. In northern Africa, for example, the temperature-induced TFP growth rates were negative due to rising temperature in the region. Evidence from the decomposed TFP estimates indicates that climate variables also influence productivity determinants. However, technology improvement is fundamental to mitigating the effects of extreme weather inputs on TFP growth in Africa's agriculture. As a result, a few policy suggestions are provided to help policymakers deal with the effects of climate change on TFP growth in Africa's agriculture and ensure food security. The study advocated for a reevaluation of the climate–agriculture effect in order to fully comprehend the role of climate factors and their contributions to agricultural TFP growth in Africa.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45733593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-31DOI: 10.1017/S1742170523000017
Marina Briones-Rizo, M. Pérez-Corona, S. Medina-Villar
Abstract Invasive species control management involves a large amount of plant material. The present work evaluated the allelopathic potential of the invasive species Ulex europaeus L. (Fabaceae) or ‘Gorse’ and its possible use as a bioherbicide, taking advantage of the extracted plant material after control measures, particularly needed in invaded areas. Specifically, we investigated the efficacy of dried plant material from U. europaeus in the control of the adventitious plants, Lolium multiflorum Lam. and Lolium rigidum Gaud., using the Avena sativa L. crop as a case study. We only used vegetative plant parts because it is essential to avoid the dispersion of U. europaeus with its use, especially in invaded areas. A greenhouse pot experiment was conducted, using activated carbon (AC). The target species (L. multiflorum, L. rigidum and A. sativa) were subjected to a mixture of organic substrate with U. europaeus mulch applied pre-emergence and a subsequent application of aqueous extracts from the mulch. Emergence, height and biomass of the target species were determined. After 2 months, we also tested a possible legacy effect of the substrate on the germination of the target species. We noticed a negative effect of U. europaeus mulch on the emergence of L. rigidum, which can be attributable to the allelopathic compounds released from U. europaeus mulch because the effect was non-significant in presence of AC. Conversely, no effect on L. multiflorum or A. sativa was produced by mulch treatments. Nevertheless, the combination of U. europaeus mulch and its extracts demonstrated a phytotoxic effect on the biomass of the crop species A. sativa, and a fertilizing effect on the weeds L. multiflorum and L. rigidum, which is why this use is discouraged. With our results we cannot recommend the use of U. europaeus as a bioherbicide in oat crops, but this study emphasizes the capability of U. europaeus to structure plant communities through the chemic- and bio-properties of its tissues that modifies the soil environment.
{"title":"The other way around: the utility of a plant invader","authors":"Marina Briones-Rizo, M. Pérez-Corona, S. Medina-Villar","doi":"10.1017/S1742170523000017","DOIUrl":"https://doi.org/10.1017/S1742170523000017","url":null,"abstract":"Abstract Invasive species control management involves a large amount of plant material. The present work evaluated the allelopathic potential of the invasive species Ulex europaeus L. (Fabaceae) or ‘Gorse’ and its possible use as a bioherbicide, taking advantage of the extracted plant material after control measures, particularly needed in invaded areas. Specifically, we investigated the efficacy of dried plant material from U. europaeus in the control of the adventitious plants, Lolium multiflorum Lam. and Lolium rigidum Gaud., using the Avena sativa L. crop as a case study. We only used vegetative plant parts because it is essential to avoid the dispersion of U. europaeus with its use, especially in invaded areas. A greenhouse pot experiment was conducted, using activated carbon (AC). The target species (L. multiflorum, L. rigidum and A. sativa) were subjected to a mixture of organic substrate with U. europaeus mulch applied pre-emergence and a subsequent application of aqueous extracts from the mulch. Emergence, height and biomass of the target species were determined. After 2 months, we also tested a possible legacy effect of the substrate on the germination of the target species. We noticed a negative effect of U. europaeus mulch on the emergence of L. rigidum, which can be attributable to the allelopathic compounds released from U. europaeus mulch because the effect was non-significant in presence of AC. Conversely, no effect on L. multiflorum or A. sativa was produced by mulch treatments. Nevertheless, the combination of U. europaeus mulch and its extracts demonstrated a phytotoxic effect on the biomass of the crop species A. sativa, and a fertilizing effect on the weeds L. multiflorum and L. rigidum, which is why this use is discouraged. With our results we cannot recommend the use of U. europaeus as a bioherbicide in oat crops, but this study emphasizes the capability of U. europaeus to structure plant communities through the chemic- and bio-properties of its tissues that modifies the soil environment.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48182173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1017/s1742170523000327
Benjamin Dube, Jon D. Erickson
Abstract Anthropogenic nutrient loading from land use, especially agriculture, is a major threat to waterbodies worldwide. Efforts to govern nutrient pollution are increasingly based on simulation modeling for research, evaluation, and regulation. This study develops a novel approach to simulate nutrient losses from agriculture applied to the Lake Champlain basin in the US state of Vermont. The Vermont Phosphorus-Index—a farm-based empirical model regularly used for site evaluation—is scaled up to the basin level with high-resolution geographic data and probabilistic estimation of unknown parameters and management practices. Results are comparable with analyses using more data and computationally intensive tools. Important insights into basin-wide management include: (1) nutrient-management planning can significantly reduce P losses in a livestock-agriculture-dominated watershed by re-distributing manure applications from areas of high loss to low loss; (2) hotspot identification from geographic data alone may be deeply complicated by high underlying heterogeneity of soil phosphorus; and (3) probabilistic modeling using simple, field-scale models is a potentially useful complement to complex watershed process models. Findings suggest that currently available best-management practices will likely be insufficient to reach reduction targets in the most impaired sub-watersheds. Reductions of agricultural land use and herd size, particularly in intensive dairy operations, may be necessary.
{"title":"Probabilistic simulation of phosphorus loss using the Vermont P-index: a bottom-up field to watershed approach","authors":"Benjamin Dube, Jon D. Erickson","doi":"10.1017/s1742170523000327","DOIUrl":"https://doi.org/10.1017/s1742170523000327","url":null,"abstract":"Abstract Anthropogenic nutrient loading from land use, especially agriculture, is a major threat to waterbodies worldwide. Efforts to govern nutrient pollution are increasingly based on simulation modeling for research, evaluation, and regulation. This study develops a novel approach to simulate nutrient losses from agriculture applied to the Lake Champlain basin in the US state of Vermont. The Vermont Phosphorus-Index—a farm-based empirical model regularly used for site evaluation—is scaled up to the basin level with high-resolution geographic data and probabilistic estimation of unknown parameters and management practices. Results are comparable with analyses using more data and computationally intensive tools. Important insights into basin-wide management include: (1) nutrient-management planning can significantly reduce P losses in a livestock-agriculture-dominated watershed by re-distributing manure applications from areas of high loss to low loss; (2) hotspot identification from geographic data alone may be deeply complicated by high underlying heterogeneity of soil phosphorus; and (3) probabilistic modeling using simple, field-scale models is a potentially useful complement to complex watershed process models. Findings suggest that currently available best-management practices will likely be insufficient to reach reduction targets in the most impaired sub-watersheds. Reductions of agricultural land use and herd size, particularly in intensive dairy operations, may be necessary.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135401881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}