Traditional agriculture has a notable shift towards inland aquaculture driven by geo-environmental hazards and socio-economic choices. This shift is crucial for ensuring economic resiliency and food security. Therefore, the present study examines the transformation of agricultural land to inland aquaculture among the three community development (C.D.) blocks Egra-II, Patashpur-I, and Moyna of Purba Medinipur district in West Bengal, India, from 1990 to 2020. The expansion of aquacultural land and future prediction for 2030 has been executed using Landsat data and the Markov chain model. The results exhibit that the cultivated area (29.3 km2) has been converted into inland aquaculture for Moyna followed by Egra-II (20.61 km2) and Patashpur-I (15. 04 km2) during the period of 1990–2020. Thus, the rapid agricultural land transformation into inland aquaculture has been discussed from the perspective of push factors of geo-environmental hazards such as riverine floods, stagnation of water and riverbank migration, and pull factors of socio-economic drivers such as higher benefit–cost ratio from the inland aquaculture compared to conventional agriculture and role of microfinance and self-help groups. The field survey grounds that the per capita income of the study villages (e.g., Dakshin Chanra Chak, Gokulpur, Dubda) having positive transformation are found to record an escalating income portfolio (INR 2500–3000 in 2000 to 5000–7000 in 2022-23; 1 USD = INR 82.24 on 31 July 2023) while the villages (e.g., Dobandi, Kulrakhi, Nayapara) having negative transformation are found to register a relatively stable income profile (INR 2500–3000 in 2000 to 4000–5000 in 2022-23). An increasing trend of per capita income is found to induce a higher level of food security in the positive transformation area. Therefore, the present study would be useful to address the food security and future challenges due to the land transformation.