首页 > 最新文献

Protein Engineering Design & Selection最新文献

英文 中文
Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning. 通过蛋白质核心重新设计和深度突变扫描稳定 SARS-CoV-2 受体结合域。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzac002
Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.

稳定作为疫苗免疫原或诊断试剂的抗原蛋白是蛋白质工程和设计的一个严格案例,因为其外表面必须保持受体和抗原特异性抗体对多个不同表位的识别。这是一个挑战,因为提高稳定性的突变必须集中在蛋白质核心,而成功的计算稳定化算法通常会选择面向溶剂位置的突变。在本研究中,我们报告了利用深度突变扫描和计算设计(包括 FuncLib 算法)相结合的方法稳定 SARS-CoV-2 武汉胡-1 穗状病毒受体结合域的情况。我们最成功的设计编码了 I358F、Y365W、T430I 和 I513L 受体结合结构域突变,保持了受体 ACE2 和一组不同的抗受体结合结构域单克隆抗体的识别能力,使用热位移测定法比原始受体结合结构域的热稳定性高 1 到 2°C,对糜蛋白酶和热溶解酶的蛋白水解敏感性比原始受体结合结构域低。我们的方法可应用于各种蛋白质的计算稳定化,而无需详细了解活性位点或结合表位。我们设想,当存在多个或未知结合位点时,这种策略可能会特别强大。
{"title":"Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning.","authors":"Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead","doi":"10.1093/protein/gzac002","DOIUrl":"10.1093/protein/gzac002","url":null,"abstract":"<p><p>Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077414/pdf/gzac002.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multivalent antibody assembled from different building blocks using tag/catcher systems: a case study. 使用标签/捕集器系统从不同构建块组装的多价抗体:一个案例研究。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzac014
Christof Schindler, Christine Faust, Hanno Sjuts, Christian Lange, Jennifer Kühn, Werner Dittrich, Wulf Dirk Leuschner, Werner Schiebler, Joachim Hofmann, Ercole Rao, Thomas Langer

The field of therapeutic antibodies and, especially bi- or multispecific antibodies, is growing rapidly. Especially for treating cancers, multispecific antibodies are very promising, as there are multiple pathways involved and multispecific antibodies offer the possibility to interfere at two or more sites. Besides being used as therapeutic, multispecific antibodies can be helpful tools in basic research. However, the design and choice of the most appropriate multispecific antibody format are far from trivial. The generation of multispecific antibodies starts with the generation of antibodies directed against the desired targets and then combining the different antigen-binding sites in one molecule. This is a time-consuming and laborious approach since the most suitable geometry cannot be predicted. The SpyTag technology is based on a split-protein system, where a small peptide of said protein, the SpyTag, can bind to the remaining protein, the SpyCatcher. An irreversible isopeptide bond between the SpyTag and the SpyCatcher is formed. A related Tag-Catcher system is the SnoopTag-SnoopCatcher. These systems offer the opportunity to separately produce proteins fused to the tag-peptides and to the catcher-domains and assemble them in vitro. Our goal was to design and produce different antibody fragments, Fab domains and Fc-containing domains, with different tags and/or catchers as building blocks for the assembly of different multivalent antibodies. We have shown that large multivalent antibodies consisting of up to seven building blocks can be prepared. Binding experiments demonstrated that all binding sites in such a large molecule retained their accessibility to their corresponding antigens.

治疗性抗体领域,特别是双特异性或多特异性抗体,正在迅速发展。特别是在治疗癌症方面,多特异性抗体非常有前景,因为有多种途径参与其中,多特异性抗体提供了在两个或多个位点进行干扰的可能性。除了用于治疗之外,多特异性抗体还可以作为基础研究的有用工具。然而,设计和选择最合适的多特异性抗体格式远非微不足道。多特异性抗体的产生始于针对预期目标的抗体的产生,然后将不同的抗原结合位点结合在一个分子中。这是一种费时费力的方法,因为无法预测最合适的几何形状。SpyTag技术是基于一个分裂蛋白系统,其中一个小肽的蛋白质,SpyTag,可以结合到剩余的蛋白质,SpyCatcher。SpyTag和SpyCatcher之间形成了不可逆的异肽键。与之相关的标签捕捉系统是SnoopTag-SnoopCatcher。这些系统提供了分别产生与标签肽和捕获域融合的蛋白质并在体外组装它们的机会。我们的目标是设计和生产不同的抗体片段,Fab结构域和含fc结构域,使用不同的标签和/或捕获器作为组装不同多价抗体的构建块。我们已经证明,可以制备由多达七个构建块组成的大型多价抗体。结合实验表明,在这种大分子中,所有的结合位点都保持了对相应抗原的可及性。
{"title":"A multivalent antibody assembled from different building blocks using tag/catcher systems: a case study.","authors":"Christof Schindler,&nbsp;Christine Faust,&nbsp;Hanno Sjuts,&nbsp;Christian Lange,&nbsp;Jennifer Kühn,&nbsp;Werner Dittrich,&nbsp;Wulf Dirk Leuschner,&nbsp;Werner Schiebler,&nbsp;Joachim Hofmann,&nbsp;Ercole Rao,&nbsp;Thomas Langer","doi":"10.1093/protein/gzac014","DOIUrl":"https://doi.org/10.1093/protein/gzac014","url":null,"abstract":"<p><p>The field of therapeutic antibodies and, especially bi- or multispecific antibodies, is growing rapidly. Especially for treating cancers, multispecific antibodies are very promising, as there are multiple pathways involved and multispecific antibodies offer the possibility to interfere at two or more sites. Besides being used as therapeutic, multispecific antibodies can be helpful tools in basic research. However, the design and choice of the most appropriate multispecific antibody format are far from trivial. The generation of multispecific antibodies starts with the generation of antibodies directed against the desired targets and then combining the different antigen-binding sites in one molecule. This is a time-consuming and laborious approach since the most suitable geometry cannot be predicted. The SpyTag technology is based on a split-protein system, where a small peptide of said protein, the SpyTag, can bind to the remaining protein, the SpyCatcher. An irreversible isopeptide bond between the SpyTag and the SpyCatcher is formed. A related Tag-Catcher system is the SnoopTag-SnoopCatcher. These systems offer the opportunity to separately produce proteins fused to the tag-peptides and to the catcher-domains and assemble them in vitro. Our goal was to design and produce different antibody fragments, Fab domains and Fc-containing domains, with different tags and/or catchers as building blocks for the assembly of different multivalent antibodies. We have shown that large multivalent antibodies consisting of up to seven building blocks can be prepared. Binding experiments demonstrated that all binding sites in such a large molecule retained their accessibility to their corresponding antigens.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9226656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery. 基于结构工程的最小脯氨酸脱氢酶结构域抑制剂发现。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzac016
Alexandra N Bogner, Juan Ji, John J Tanner

Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Δ1-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity. Herein, we report the engineering of minimal PRODH domains for inhibitor discovery. The best designs contain one-third of the 1233-residue PutA from Sinorhizobium meliloti and include a linker that replaces the PutA α-domain. The minimal PRODHs exhibit near wild-type enzymatic activity and are susceptible to known inhibitors and inactivators. Crystal structures of minimal PRODHs inhibited by S-(-)-tetrahydro-2-furoic acid and 2-(furan-2-yl)acetic acid were determined at 1.23 and 1.72 Å resolution. Minimal PRODHs should be useful in chemical probe discovery.

脯氨酸脱氢酶(PRODH)可以催化fad依赖的l-脯氨酸氧化生成Δ1-pyrroline-5-carboxylate,由于其在癌细胞代谢中的重要性,因此是发现抑制剂的靶标。由于人类PRODH难以纯化,细菌双功能酶脯氨酸利用A (PutA)的PRODH结构域已被用于抑制剂的开发。由于多肽链长、构象灵活性和与PRODH活性无关的结构域的存在,这些系统具有局限性。在此,我们报道了用于抑制剂发现的最小PRODH结构域的工程。最好的设计包含了来自Sinorhizobium meliloti的1233个PutA残基的三分之一,并包含了一个取代PutA α-结构域的连接体。最小的PRODHs表现出接近野生型的酶活性,并且对已知的抑制剂和灭活剂敏感。在1.23和1.72 Å分辨率下测定了S-(-)-四氢-2-呋喃酸和2-(呋喃-2-基)乙酸抑制的最小PRODHs的晶体结构。最小PRODHs在化学探针发现中应该是有用的。
{"title":"Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.","authors":"Alexandra N Bogner, Juan Ji, John J Tanner","doi":"10.1093/protein/gzac016","DOIUrl":"10.1093/protein/gzac016","url":null,"abstract":"<p><p>Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Δ1-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity. Herein, we report the engineering of minimal PRODH domains for inhibitor discovery. The best designs contain one-third of the 1233-residue PutA from Sinorhizobium meliloti and include a linker that replaces the PutA α-domain. The minimal PRODHs exhibit near wild-type enzymatic activity and are susceptible to known inhibitors and inactivators. Crystal structures of minimal PRODHs inhibited by S-(-)-tetrahydro-2-furoic acid and 2-(furan-2-yl)acetic acid were determined at 1.23 and 1.72 Å resolution. Minimal PRODHs should be useful in chemical probe discovery.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10670094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species. 基于酵母表面展示的 ACE2 突变鉴定可调节多种哺乳动物的 SARS-CoV-2 穗状结合。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzab035
Pete Heinzelman, Jonathan C Greenhalgh, Philip A Romero

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with different mammalian angiotensin-converting enzyme II (ACE2) cell entry receptors elucidates determinants of virus transmission and facilitates development of vaccines for humans and animals. Yeast display-based directed evolution identified conserved ACE2 mutations that increase spike binding across multiple species. Gln42Leu increased ACE2-spike binding for human and four of four other mammalian ACE2s; Leu79Ile had an effect for human and three of three mammalian ACE2s. These residues are highly represented, 83% for Gln42 and 56% for Leu79, among mammalian ACE2s. The above findings can be important in protecting humans and animals from existing and future SARS-CoV-2 variants.

了解严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)如何与不同哺乳动物的血管紧张素转换酶 II(ACE2)细胞入口受体相互作用,有助于阐明病毒传播的决定因素,并促进人类和动物疫苗的开发。基于酵母展示的定向进化发现了可增加多个物种尖峰结合的 ACE2 保守突变。Gln42Leu 增加了人类和其他四种哺乳动物 ACE2 中四种的 ACE2 穗状结合;Leu79Ile 对人类和三种哺乳动物 ACE2 中三种有影响。这些残基在哺乳动物 ACE2 中的比例很高,Gln42 和 Leu79 分别占 83% 和 56%。上述发现对于保护人类和动物免受现有和未来的 SARS-CoV-2 变体的感染非常重要。
{"title":"Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species.","authors":"Pete Heinzelman, Jonathan C Greenhalgh, Philip A Romero","doi":"10.1093/protein/gzab035","DOIUrl":"10.1093/protein/gzab035","url":null,"abstract":"<p><p>Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with different mammalian angiotensin-converting enzyme II (ACE2) cell entry receptors elucidates determinants of virus transmission and facilitates development of vaccines for humans and animals. Yeast display-based directed evolution identified conserved ACE2 mutations that increase spike binding across multiple species. Gln42Leu increased ACE2-spike binding for human and four of four other mammalian ACE2s; Leu79Ile had an effect for human and three of three mammalian ACE2s. These residues are highly represented, 83% for Gln42 and 56% for Leu79, among mammalian ACE2s. The above findings can be important in protecting humans and animals from existing and future SARS-CoV-2 variants.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005050/pdf/gzab035.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10276456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-guided protein engineering of human cathepsin L for efficient collagenolytic activity. 结构导向的人组织蛋白酶L高效胶原溶解活性蛋白工程。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab005
Debi Choudhury, Sampa Biswas

Engineering precise substrate specificity of proteases advances the potential to use them in biotechnological and therapeutic applications. Collagen degradation, a physiological process mediated by collagenases, is an integral part of extracellular matrix remodeling and when uncontrolled, implicated in different pathological conditions. Lysosomal cathepsin-K cleaves triple helical collagen fiber, whereas cathepsin-L cannot do so. In this study, we have imparted collagenolytic property to cathepsin-L, by systematically engineering proline-specificity and glycosaminoglycans (GAG)-binding surface in the protease. The proline-specific mutant shows high specificity for prolyl-peptidic substrate but is incapable of cleaving collagen. Engineering a GAG-binding surface on the proline-specific mutant enabled it to degrade type-I collagen in the presence of chondroitin-4-sulfate (C4-S). We also present the crystal structures of proline-specific (1.4 Å) and collagen-specific (1.8 Å) mutants. Finally docking studies with prolyl-peptidic substrate (Ala-Gly-Pro-Arg-Ala) at the active site and a C4-S molecule at the GAG-binding site enable us to identify key structural features responsible for collagenolytic activity of cysteine cathepsins.

工程精确的蛋白酶底物特异性提高了它们在生物技术和治疗应用中的潜力。胶原降解是一个由胶原酶介导的生理过程,是细胞外基质重塑的一个组成部分,当不受控制时,涉及不同的病理条件。溶酶体组织蛋白酶- k可切割三螺旋胶原纤维,而组织蛋白酶- l则不能。在这项研究中,我们通过系统地设计蛋白酶的脯氨酸特异性和糖胺聚糖(GAG)结合表面,赋予了组织蛋白酶- l胶原溶解特性。脯氨酸特异性突变体对脯氨酸肽底物具有高特异性,但不能切割胶原。在脯氨酸特异性突变体上设计gag结合表面,使其能够在硫酸软骨素(C4-S)存在的情况下降解i型胶原。我们还介绍了脯氨酸特异性(1.4 Å)和胶原特异性(1.8 Å)突变体的晶体结构。最后,与活性位点的脯氨酸肽底物(Ala-Gly-Pro-Arg-Ala)和gag结合位点的C4-S分子的对接研究使我们能够确定半胱氨酸组织蛋白酶的胶原溶解活性的关键结构特征。
{"title":"Structure-guided protein engineering of human cathepsin L for efficient collagenolytic activity.","authors":"Debi Choudhury,&nbsp;Sampa Biswas","doi":"10.1093/protein/gzab005","DOIUrl":"https://doi.org/10.1093/protein/gzab005","url":null,"abstract":"<p><p>Engineering precise substrate specificity of proteases advances the potential to use them in biotechnological and therapeutic applications. Collagen degradation, a physiological process mediated by collagenases, is an integral part of extracellular matrix remodeling and when uncontrolled, implicated in different pathological conditions. Lysosomal cathepsin-K cleaves triple helical collagen fiber, whereas cathepsin-L cannot do so. In this study, we have imparted collagenolytic property to cathepsin-L, by systematically engineering proline-specificity and glycosaminoglycans (GAG)-binding surface in the protease. The proline-specific mutant shows high specificity for prolyl-peptidic substrate but is incapable of cleaving collagen. Engineering a GAG-binding surface on the proline-specific mutant enabled it to degrade type-I collagen in the presence of chondroitin-4-sulfate (C4-S). We also present the crystal structures of proline-specific (1.4 Å) and collagen-specific (1.8 Å) mutants. Finally docking studies with prolyl-peptidic substrate (Ala-Gly-Pro-Arg-Ala) at the active site and a C4-S molecule at the GAG-binding site enable us to identify key structural features responsible for collagenolytic activity of cysteine cathepsins.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25566737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability. 人类DNA连接酶IV的半胚突变导致DNA结合效率、疏水性和热稳定性受损。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab001
Eswar Reddy Maddi, Sathees C Raghavan, Ramanathan Natesh

Studies have shown that Lig4 syndrome mutations in DNA ligase IV (LigIV) are compromised in its function with residual level of double strand break ligation activity in vivo. It was speculated that Lig4 syndrome mutations adversely affect protein folding and stability. Though there are crystal structures of LigIV, there are no reports of crystal structures of Lig4 syndrome mutants and their biophysical characterization to date. Here, we have examined the conformational states, thermal stability, hydrophobicity and DNA binding efficiency of human DNA LigIV wild type and its hypomorphic mutants by far-UV circular dichroism, tyrosine and tryptophan fluorescence, and 1-anilino-8-naphthalene-sulfonate binding, dynamic light scattering, size exclusion chromatography, multi-angle light scattering and electrophoretic mobility shift assay. We show here that LigIV hypomorphic mutants have reduced DNA-binding efficiency, a shift in secondary structure content from the helical to random coil, marginal reduction in their thermal stability and increased hydrophobicity as compared to the wild-type LigIV.

研究表明,DNA连接酶IV (LigIV)的Lig4综合征突变在体内双链断裂连接活性的残余水平下功能受损。推测Lig4综合征突变对蛋白质折叠和稳定性有不利影响。虽然有LigIV的晶体结构,但迄今为止还没有关于Lig4综合征突变体的晶体结构及其生物物理表征的报道。本文采用远紫外圆二色性、酪氨酸和色氨酸荧光、1-苯胺-8-萘磺酸盐结合、动态光散射、尺寸排除色谱、多角度光散射和电泳迁移率转移等方法检测了人DNA liiv野生型及其半胚突变体的构象状态、热稳定性、疏水性和DNA结合效率。我们在这里表明,与野生型LigIV相比,LigIV亚形态突变体的dna结合效率降低,二级结构含量从螺旋形转变为随机螺旋形,热稳定性略有下降,疏水性增加。
{"title":"Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability.","authors":"Eswar Reddy Maddi,&nbsp;Sathees C Raghavan,&nbsp;Ramanathan Natesh","doi":"10.1093/protein/gzab001","DOIUrl":"https://doi.org/10.1093/protein/gzab001","url":null,"abstract":"<p><p>Studies have shown that Lig4 syndrome mutations in DNA ligase IV (LigIV) are compromised in its function with residual level of double strand break ligation activity in vivo. It was speculated that Lig4 syndrome mutations adversely affect protein folding and stability. Though there are crystal structures of LigIV, there are no reports of crystal structures of Lig4 syndrome mutants and their biophysical characterization to date. Here, we have examined the conformational states, thermal stability, hydrophobicity and DNA binding efficiency of human DNA LigIV wild type and its hypomorphic mutants by far-UV circular dichroism, tyrosine and tryptophan fluorescence, and 1-anilino-8-naphthalene-sulfonate binding, dynamic light scattering, size exclusion chromatography, multi-angle light scattering and electrophoretic mobility shift assay. We show here that LigIV hypomorphic mutants have reduced DNA-binding efficiency, a shift in secondary structure content from the helical to random coil, marginal reduction in their thermal stability and increased hydrophobicity as compared to the wild-type LigIV.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25373436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis. 人造金属蛋白的设计与工程:从从头金属配位到催化。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab003
Andreas S Klein, Cathleen Zeymer

Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.

金属蛋白对维持生命至关重要。自然进化优化了它们复杂的结构、调节和催化功能,这是蛋白质或金属离子无法单独完成的。为了理解这种协同作用和自然系统背后复杂的设计原则,通过在天然或完全设计的人造蛋白质支架中安装全新的金属位点,从下到上设计了更简单的模拟。这篇综述的重点是与该方法相关的主要挑战。我们讨论了蛋白质如何配备结合位点,为选择的金属辅助因子提供最佳的配位环境,金属辅助因子可以是单个金属离子或复杂的多核簇。此外,我们还重点介绍了最近研究中人造金属蛋白的新功能,包括电子转移和催化。在此背景下,金属酶的开发强调了从头蛋白质设计和定向进化的强大结合。
{"title":"Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.","authors":"Andreas S Klein,&nbsp;Cathleen Zeymer","doi":"10.1093/protein/gzab003","DOIUrl":"https://doi.org/10.1093/protein/gzab003","url":null,"abstract":"<p><p>Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25407260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Improved thermostability of proteinase K and recognizing the synergistic effect of Rosetta and FoldX approaches. 改善蛋白酶K的热稳定性,并认识到Rosetta和FoldX方法的协同效应。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab024
Yang Zhao, Daixi Li, Xue Bai, Manjie Luo, Yan Feng, Yilei Zhao, Fuqiang Ma, Guang-Yu Yang

Proteinase K (PRK) is a proteolytic enzyme that has been widely used in industrial applications. However, poor stability has severely limited the uses of PRK. In this work, we used two structure-guided rational design methods, Rosetta and FoldX, to modify PRK thermostability. Fifty-two single amino acid conversion mutants were constructed based on software predictions of residues that could affect protein stability. Experimental characterization revealed that 46% (21 mutants) exhibited enhanced thermostability. The top four variants, D260V, T4Y, S216Q, and S219Q, showed improved half-lives at 69°C by 12.4-, 2.6-, 2.3-, and 2.2-fold that of the parent enzyme, respectively. We also found that selecting mutations predicted by both methods could increase the predictive accuracy over that of either method alone, with 73% of the shared predicted mutations resulting in higher thermostability. In addition to providing promising new variants of PRK in industrial applications, our findings also show that combining these programs may synergistically improve their predictive accuracy.

蛋白酶K (PRK)是一种广泛应用于工业的蛋白水解酶。然而,稳定性差严重限制了核dprk的使用。在这项工作中,我们使用了两种结构导向的合理设计方法,Rosetta和FoldX来修饰PRK的热稳定性。基于软件预测可能影响蛋白质稳定性的残基,构建了52个单氨基酸转化突变体。实验表征显示46%(21个突变体)表现出增强的热稳定性。D260V、T4Y、S216Q和S219Q在69°C时的半衰期分别比亲本酶提高了12.4倍、2.6倍、2.3倍和2.2倍。我们还发现,选择两种方法预测的突变比单独使用任何一种方法都能提高预测精度,73%的共享预测突变导致更高的热稳定性。除了在工业应用中提供有希望的PRK新变体外,我们的研究结果还表明,将这些程序结合起来可能会协同提高它们的预测准确性。
{"title":"Improved thermostability of proteinase K and recognizing the synergistic effect of Rosetta and FoldX approaches.","authors":"Yang Zhao,&nbsp;Daixi Li,&nbsp;Xue Bai,&nbsp;Manjie Luo,&nbsp;Yan Feng,&nbsp;Yilei Zhao,&nbsp;Fuqiang Ma,&nbsp;Guang-Yu Yang","doi":"10.1093/protein/gzab024","DOIUrl":"https://doi.org/10.1093/protein/gzab024","url":null,"abstract":"<p><p>Proteinase K (PRK) is a proteolytic enzyme that has been widely used in industrial applications. However, poor stability has severely limited the uses of PRK. In this work, we used two structure-guided rational design methods, Rosetta and FoldX, to modify PRK thermostability. Fifty-two single amino acid conversion mutants were constructed based on software predictions of residues that could affect protein stability. Experimental characterization revealed that 46% (21 mutants) exhibited enhanced thermostability. The top four variants, D260V, T4Y, S216Q, and S219Q, showed improved half-lives at 69°C by 12.4-, 2.6-, 2.3-, and 2.2-fold that of the parent enzyme, respectively. We also found that selecting mutations predicted by both methods could increase the predictive accuracy over that of either method alone, with 73% of the shared predicted mutations resulting in higher thermostability. In addition to providing promising new variants of PRK in industrial applications, our findings also show that combining these programs may synergistically improve their predictive accuracy.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39535240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Breakthroughs in computational design methods open up new frontiers for de novo protein engineering. 计算设计方法的突破为从头开始的蛋白质工程开辟了新的领域。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab007
Ben A Meinen, Christopher D Bahl

Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.

蛋白质催化生物体中的大多数化学反应,利用这种能力一直是蛋白质工程领域的焦点。计算蛋白质设计的目的是在计算机上创造新的蛋白质和功能,这样做可以加速过程,降低成本,实现更复杂的工程目标。由于计算蛋白质设计方法的几个里程碑式的进步,最近看起来不可能的挑战现在已经触手可及。在这里,我们总结了这些新方法,特别强调在过去5年中发生的蛋白质设计进展。
{"title":"Breakthroughs in computational design methods open up new frontiers for de novo protein engineering.","authors":"Ben A Meinen,&nbsp;Christopher D Bahl","doi":"10.1093/protein/gzab007","DOIUrl":"https://doi.org/10.1093/protein/gzab007","url":null,"abstract":"<p><p>Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38896767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Linking thermodynamics and measurements of protein stability. 把热力学和蛋白质稳定性的测量联系起来。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab002
Kresten Lindorff-Larsen, Kaare Teilum

We review the background, theory and general equations for the analysis of equilibrium protein unfolding experiments, focusing on denaturant and heat-induced unfolding. The primary focus is on the thermodynamics of reversible folding/unfolding transitions and the experimental methods that are available for extracting thermodynamic parameters. We highlight the importance of modelling both how the folding equilibrium depends on a perturbing variable such as temperature or denaturant concentration, and the importance of modelling the baselines in the experimental observables.

本文综述了平衡蛋白展开实验分析的背景、理论和一般方程,重点介绍了变性和热致展开。主要重点是可逆折叠/展开转变的热力学和可用于提取热力学参数的实验方法。我们强调了对折叠平衡如何依赖于诸如温度或变性剂浓度等扰动变量的建模的重要性,以及在实验观测中对基线进行建模的重要性。
{"title":"Linking thermodynamics and measurements of protein stability.","authors":"Kresten Lindorff-Larsen,&nbsp;Kaare Teilum","doi":"10.1093/protein/gzab002","DOIUrl":"https://doi.org/10.1093/protein/gzab002","url":null,"abstract":"<p><p>We review the background, theory and general equations for the analysis of equilibrium protein unfolding experiments, focusing on denaturant and heat-induced unfolding. The primary focus is on the thermodynamics of reversible folding/unfolding transitions and the experimental methods that are available for extracting thermodynamic parameters. We highlight the importance of modelling both how the folding equilibrium depends on a perturbing variable such as temperature or denaturant concentration, and the importance of modelling the baselines in the experimental observables.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25482572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Protein Engineering Design & Selection
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1