首页 > 最新文献

Protein Engineering Design & Selection最新文献

英文 中文
A versatile assay platform for enzymatic poly(ethylene-terephthalate) degradation. 一个通用的酶促聚对苯二甲酸乙酯降解测定平台。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab022
Sebastian Weigert, Andreas Gagsteiger, Teresa Menzel, Birte Höcker

Accumulation of plastic and subsequent microplastic is a major environmental challenge. With the discovery of potent polyethylene terephthalate (PET)-degrading enzymes, a new perspective arose for environmental decomposition as well as technical recycling. To explore the enormous diversity of potential PET-degrading enzymes in nature and also to conveniently employ techniques like protein engineering and directed evolution, a fast and reliable assay platform is needed. In this study we present our versatile solution applying a PET coating on standard lab consumables such as polymerase chain reaction tubes, 96- and 384-well microtiter plates, yielding an adjustable crystallinity of the PET. Combining the reaction vessels with either ultra-high performance liquid chromatography (UHPLC) or fluorometric readout and additional enzyme quantification offers a range of advantages. Thereby, the platform can easily be adapted to diverse needs from detailed analysis with high precision to high-throughput (HT) applications including crude lysate analysis.

塑料和微塑料的累积是一个重大的环境挑战。随着高效聚对苯二甲酸乙二醇酯(PET)降解酶的发现,为环境分解和技术回收开辟了新的前景。为了探索自然界中潜在的pet降解酶的巨大多样性,并方便地应用蛋白质工程和定向进化等技术,需要一个快速可靠的检测平台。在这项研究中,我们提出了我们的通用解决方案,将PET涂层应用于标准实验室消耗品,如聚合酶链反应管,96孔和384孔微滴板,产生可调节的PET结晶度。将反应容器与超高性能液相色谱(UHPLC)或荧光读数和额外的酶定量相结合,提供了一系列优势。因此,该平台可以很容易地适应各种需求,从高精度的详细分析到高通量(HT)应用,包括粗裂解物分析。
{"title":"A versatile assay platform for enzymatic poly(ethylene-terephthalate) degradation.","authors":"Sebastian Weigert,&nbsp;Andreas Gagsteiger,&nbsp;Teresa Menzel,&nbsp;Birte Höcker","doi":"10.1093/protein/gzab022","DOIUrl":"https://doi.org/10.1093/protein/gzab022","url":null,"abstract":"<p><p>Accumulation of plastic and subsequent microplastic is a major environmental challenge. With the discovery of potent polyethylene terephthalate (PET)-degrading enzymes, a new perspective arose for environmental decomposition as well as technical recycling. To explore the enormous diversity of potential PET-degrading enzymes in nature and also to conveniently employ techniques like protein engineering and directed evolution, a fast and reliable assay platform is needed. In this study we present our versatile solution applying a PET coating on standard lab consumables such as polymerase chain reaction tubes, 96- and 384-well microtiter plates, yielding an adjustable crystallinity of the PET. Combining the reaction vessels with either ultra-high performance liquid chromatography (UHPLC) or fluorometric readout and additional enzyme quantification offers a range of advantages. Thereby, the platform can easily be adapted to diverse needs from detailed analysis with high precision to high-throughput (HT) applications including crude lysate analysis.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39338823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Rational engineering of an erythropoietin fusion protein to treat hypoxia. 合理设计促红细胞生成素融合蛋白治疗缺氧。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab025
Jungmin Lee, Andyna Vernet, Nathalie G Gruber, Kasia M Kready, Devin R Burrill, Jeffrey C Way, Pamela A Silver

Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10-14 M, allowing an estimate of the number of receptor-ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia.

促红细胞生成素增强氧传递和减少缺氧诱导的细胞死亡,但其促血栓活性是问题的使用促红细胞生成素治疗缺氧。我们构建了一种融合蛋白,刺激红细胞的产生和神经保护,而不触发血小板的产生,血小板是血栓形成的标志。该蛋白由抗糖蛋白A纳米体和促红细胞生成素突变体(L108A)组成。该突变降低了诱导红细胞生成和血栓形成的促红细胞生成素受体同型二聚体的激活,但维持了组织保护信号。纳米体元素与糖蛋白A的结合可在红细胞前体上激活同二聚体促红细胞生成素受体。在细胞增殖试验中,融合蛋白在10-14 M时具有活性,从而可以估计信号传递所需的受体-配体复合物的数量。该融合蛋白在体外和小鼠体内刺激红细胞增殖,并在体外显示出神经保护活性。我们的促红细胞生成素融合蛋白提出了一种治疗缺氧的新分子。
{"title":"Rational engineering of an erythropoietin fusion protein to treat hypoxia.","authors":"Jungmin Lee,&nbsp;Andyna Vernet,&nbsp;Nathalie G Gruber,&nbsp;Kasia M Kready,&nbsp;Devin R Burrill,&nbsp;Jeffrey C Way,&nbsp;Pamela A Silver","doi":"10.1093/protein/gzab025","DOIUrl":"https://doi.org/10.1093/protein/gzab025","url":null,"abstract":"<p><p>Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10-14 M, allowing an estimate of the number of receptor-ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39835737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-efficacy, high-manufacturability human VH domain antibody therapeutics from transgenic sources. 来自转基因来源的高效、高可制造性人VH结构域抗体疗法。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab012
Kasandra Bélanger, Jamshid Tanha

Interest in single-domain antibodies (sdAbs) stems from their unique structural/pronounced, hence therapeutically desirable, features. From the outset-as therapeutic modalities-human antibody heavy chain variable domains (VHs) attracted a particular attention compared with 'naturally-occurring' camelid and shark heavy-chain-only antibody variable domains (VHHs and VNARs, respectively) due to their perceived lack of immunogenicity. However, they have not quite lived up to their initial promise as the VH hits, primarily mined from synthetic VH phage display libraries, have too often been plagued with aggregation tendencies, low solubility and low affinity. Largely unexplored, synthetic camelized human VH display libraries appeared to have remediated the aggregation problem, but the low affinity of the VH hits still persisted, requiring undertaking additional, laborious affinity maturation steps to render VHs therapeutically feasible. A wholesome resolution has recently emerged with the development of non-canonical transgenic rodent antibody discovery platforms that appear to facilely and profusely generate high affinity, high solubility and aggregation-resistant human VHs.

对单域抗体(sabs)的兴趣源于其独特的结构/明显的,因此治疗上可取的特征。从一开始,作为治疗方式,人类抗体重链可变结构域(VHs)与“天然存在”的骆驼和鲨鱼重链抗体可变结构域(分别为VHs和VNARs)相比,由于缺乏免疫原性,引起了特别的关注。然而,他们并没有完全达到他们最初的承诺,因为VH命中,主要是从合成的VH噬菌体展示库中挖掘出来的,经常受到聚集倾向、低溶解度和低亲和力的困扰。在很大程度上,未经探索的合成骆驼化人类VH显示库似乎已经修复了聚集问题,但VH的低亲和力仍然存在,需要进行额外的,费力的亲和力成熟步骤,以使VH在治疗上可行。最近,随着非典型转基因啮齿动物抗体发现平台的发展,一个有益的解决方案出现了,这些平台似乎可以轻松和大量地产生高亲和力,高溶解度和抗聚集的人类VHs。
{"title":"High-efficacy, high-manufacturability human VH domain antibody therapeutics from transgenic sources.","authors":"Kasandra Bélanger,&nbsp;Jamshid Tanha","doi":"10.1093/protein/gzab012","DOIUrl":"https://doi.org/10.1093/protein/gzab012","url":null,"abstract":"<p><p>Interest in single-domain antibodies (sdAbs) stems from their unique structural/pronounced, hence therapeutically desirable, features. From the outset-as therapeutic modalities-human antibody heavy chain variable domains (VHs) attracted a particular attention compared with 'naturally-occurring' camelid and shark heavy-chain-only antibody variable domains (VHHs and VNARs, respectively) due to their perceived lack of immunogenicity. However, they have not quite lived up to their initial promise as the VH hits, primarily mined from synthetic VH phage display libraries, have too often been plagued with aggregation tendencies, low solubility and low affinity. Largely unexplored, synthetic camelized human VH display libraries appeared to have remediated the aggregation problem, but the low affinity of the VH hits still persisted, requiring undertaking additional, laborious affinity maturation steps to render VHs therapeutically feasible. A wholesome resolution has recently emerged with the development of non-canonical transgenic rodent antibody discovery platforms that appear to facilely and profusely generate high affinity, high solubility and aggregation-resistant human VHs.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38914156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent developments in engineering protein-protein interactions using phage display. 利用噬菌体展示技术工程蛋白-蛋白相互作用的最新进展。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab014
Chen T Liang, Olivia M A Roscow, Wei Zhang

Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.

靶向抑制失调蛋白-蛋白相互作用(PPIs)已成为人类疾病药物发现和开发的一个有前途的研究领域。然而,仍然存在许多限制,包括浅结合面和相互作用时的动态构象变化。一个特别具有挑战性的方面是由蛋白质家族之间固有的结构相似性引起的不良脱靶效应。为了解决这个问题,噬菌体展示已经被用于设计高特异性结合物的PPIs,提高了结合亲和力,大大减少了与密切相关蛋白的不良相互作用。虽然噬菌体展示的一般步骤是标准化的,但文库的设计是高度可变的,这取决于实验环境。在本文中,我们研究了基于结构的组合库设计的最新进展以及不同方法的优点和局限性。这里描述的策略可以用于探索其他蛋白质-蛋白质相互作用,并有助于设计新的文库或改进以前的文库。
{"title":"Recent developments in engineering protein-protein interactions using phage display.","authors":"Chen T Liang,&nbsp;Olivia M A Roscow,&nbsp;Wei Zhang","doi":"10.1093/protein/gzab014","DOIUrl":"https://doi.org/10.1093/protein/gzab014","url":null,"abstract":"<p><p>Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39085728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The evolution and engineering of enzyme activity through tuning conformational landscapes. 通过调整构象景观的酶活性的进化和工程。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab009
Adam M Damry, Colin J Jackson

Proteins are dynamic molecules whose structures consist of an ensemble of conformational states. Dynamics contribute to protein function and a link to protein evolution has begun to emerge. This increased appreciation for the evolutionary impact of conformational sampling has grown from our developing structural biology capabilities and the exploration of directed evolution approaches, which have allowed evolutionary trajectories to be mapped. Recent studies have provided empirical examples of how proteins can evolve via conformational landscape alterations. Moreover, minor conformational substates have been shown to be involved in the emergence of new enzyme functions as they can become enriched through evolution. The role of remote mutations in stabilizing new active site geometries has also granted insight into the molecular basis underpinning poorly understood epistatic effects that guide protein evolution. Finally, we discuss how the growth of our understanding of remote mutations is beginning to refine our approach to engineering enzymes.

蛋白质是动态分子,其结构是由一系列构象态组成的。动力学有助于蛋白质的功能,并且与蛋白质进化的联系已经开始出现。对构象取样的进化影响的日益重视,来自于我们不断发展的结构生物学能力和对定向进化方法的探索,这使得进化轨迹得以绘制。最近的研究提供了蛋白质如何通过构象景观改变而进化的经验例子。此外,次要构象亚态已被证明与新酶功能的出现有关,因为它们可以通过进化而变得丰富。远程突变在稳定新活性位点几何形状中的作用,也使人们对指导蛋白质进化的上位效应的分子基础有了深入的了解。最后,我们讨论了我们对远程突变的理解的增长如何开始改进我们的工程酶方法。
{"title":"The evolution and engineering of enzyme activity through tuning conformational landscapes.","authors":"Adam M Damry,&nbsp;Colin J Jackson","doi":"10.1093/protein/gzab009","DOIUrl":"https://doi.org/10.1093/protein/gzab009","url":null,"abstract":"<p><p>Proteins are dynamic molecules whose structures consist of an ensemble of conformational states. Dynamics contribute to protein function and a link to protein evolution has begun to emerge. This increased appreciation for the evolutionary impact of conformational sampling has grown from our developing structural biology capabilities and the exploration of directed evolution approaches, which have allowed evolutionary trajectories to be mapped. Recent studies have provided empirical examples of how proteins can evolve via conformational landscape alterations. Moreover, minor conformational substates have been shown to be involved in the emergence of new enzyme functions as they can become enriched through evolution. The role of remote mutations in stabilizing new active site geometries has also granted insight into the molecular basis underpinning poorly understood epistatic effects that guide protein evolution. Finally, we discuss how the growth of our understanding of remote mutations is beginning to refine our approach to engineering enzymes.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38911037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Improvement of Moloney murine leukemia virus reverse transcriptase thermostability by introducing a disulfide bridge in the ribonuclease H region. 在核糖核酸酶H区引入二硫桥改善Moloney小鼠白血病病毒逆转录酶的热稳定性。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab006
Yutaro Narukawa, Mako Kandabashi, Tongyang Li, Misato Baba, Haruka Hara, Kenji Kojima, Kei Iida, Takayoshi Hiyama, Sho Yokoe, Tomomi Yamazaki, Teisuke Takita, Kiyoshi Yasukawa

Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) is widely used in research and clinical diagnosis. Improvement of MMLV RT thermostability has been an important topic of research for increasing the efficiency of cDNA synthesis. In this study, we attempted to increase MMLV RT thermostability by introducing a disulfide bridge in its RNase H region using site-directed mutagenesis. Five variants were designed, focusing on the distance between the two residues to be mutated into cysteine. The variants were expressed in Escherichia coli and purified. A551C/T662C was determined to be the most thermostable variant.

Moloney小鼠白血病病毒(MMLV)逆转录酶(RT)广泛应用于研究和临床诊断。提高MMLV RT的热稳定性已成为提高cDNA合成效率的重要研究课题。在这项研究中,我们试图通过在其RNase H区引入二硫桥,使用定点诱变来提高MMLV RT的热稳定性。设计了五个变体,重点是两个残基之间的距离,以突变成半胱氨酸。这些变异体在大肠杆菌中表达并纯化。A551C/T662C被确定为最耐热的改型。
{"title":"Improvement of Moloney murine leukemia virus reverse transcriptase thermostability by introducing a disulfide bridge in the ribonuclease H region.","authors":"Yutaro Narukawa,&nbsp;Mako Kandabashi,&nbsp;Tongyang Li,&nbsp;Misato Baba,&nbsp;Haruka Hara,&nbsp;Kenji Kojima,&nbsp;Kei Iida,&nbsp;Takayoshi Hiyama,&nbsp;Sho Yokoe,&nbsp;Tomomi Yamazaki,&nbsp;Teisuke Takita,&nbsp;Kiyoshi Yasukawa","doi":"10.1093/protein/gzab006","DOIUrl":"https://doi.org/10.1093/protein/gzab006","url":null,"abstract":"<p><p>Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) is widely used in research and clinical diagnosis. Improvement of MMLV RT thermostability has been an important topic of research for increasing the efficiency of cDNA synthesis. In this study, we attempted to increase MMLV RT thermostability by introducing a disulfide bridge in its RNase H region using site-directed mutagenesis. Five variants were designed, focusing on the distance between the two residues to be mutated into cysteine. The variants were expressed in Escherichia coli and purified. A551C/T662C was determined to be the most thermostable variant.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25566738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evolution of β-lactamases and enzyme promiscuity. β-内酰胺酶的进化与酶的混杂性。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab013
Christopher Fröhlich, John Z Chen, Sevan Gholipour, Ayse N Erdogan, Nobuhiko Tokuriki

β-Lactamases represent one of the most prevalent resistance mechanisms against β-lactam antibiotics. Beyond their clinical importance, they have also become key models in enzymology and evolutionary biochemistry. A global understanding of their evolution and sequence and functional diversity can therefore aid a wide set of different disciplines. Interestingly, β-lactamases have evolved multiple times from distinct evolutionary origins, with ancestries that reach back billions of years. It is therefore no surprise that these enzymes exhibit diverse structural features and enzymatic mechanisms. In this review, we provide a bird's eye view on the evolution of β-lactamases within the two enzyme superfamilies-i.e. the penicillin-binding protein-like and metallo-β-lactamase superfamily-through phylogenetics. We further discuss potential evolutionary origins of each β-lactamase class by highlighting signs of evolutionary connections in protein functions between β-lactamases and other enzymes, especially cases of enzyme promiscuity.

β-内酰胺酶是对β-内酰胺类抗生素最普遍的耐药机制之一。除了它们的临床重要性,它们也成为酶学和进化生物化学的关键模型。因此,对它们的进化、序列和功能多样性的全面了解可以帮助广泛的不同学科。有趣的是,β-内酰胺酶从不同的进化起源进化了多次,祖先可以追溯到数十亿年前。因此,这些酶表现出不同的结构特征和酶促机制也就不足为奇了。在这篇综述中,我们提供了两个酶超家族中β-内酰胺酶的进化鸟瞰视图。青霉素结合蛋白样和金属β-内酰胺酶超家族的系统发育分析。通过强调β-内酰胺酶与其他酶之间蛋白质功能的进化联系,特别是酶混杂的情况,我们进一步讨论了每种β-内酰胺酶的潜在进化起源。
{"title":"Evolution of β-lactamases and enzyme promiscuity.","authors":"Christopher Fröhlich,&nbsp;John Z Chen,&nbsp;Sevan Gholipour,&nbsp;Ayse N Erdogan,&nbsp;Nobuhiko Tokuriki","doi":"10.1093/protein/gzab013","DOIUrl":"https://doi.org/10.1093/protein/gzab013","url":null,"abstract":"<p><p>β-Lactamases represent one of the most prevalent resistance mechanisms against β-lactam antibiotics. Beyond their clinical importance, they have also become key models in enzymology and evolutionary biochemistry. A global understanding of their evolution and sequence and functional diversity can therefore aid a wide set of different disciplines. Interestingly, β-lactamases have evolved multiple times from distinct evolutionary origins, with ancestries that reach back billions of years. It is therefore no surprise that these enzymes exhibit diverse structural features and enzymatic mechanisms. In this review, we provide a bird's eye view on the evolution of β-lactamases within the two enzyme superfamilies-i.e. the penicillin-binding protein-like and metallo-β-lactamase superfamily-through phylogenetics. We further discuss potential evolutionary origins of each β-lactamase class by highlighting signs of evolutionary connections in protein functions between β-lactamases and other enzymes, especially cases of enzyme promiscuity.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39071130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Substitution of distal and active site residues reduces product inhibition of E1 from Acidothermus Cellulolyticus. 远端和活性位点残基的取代降低了酸热菌降解纤维素的产物E1的抑制作用。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab031
Samantha R Summers, Sarah Alamdari, Casey J Kraft, Roman Brunecky, Jim Pfaendtner, Joel L Kaar
Cellulases are largely afflicted by inhibition from their reaction products, especially at high-substrate loading, which represents a major challenge for biomass processing. This challenge was overcome for endoglucanase 1 (E1) from Acidothermus cellulolyticus by identifying a large conformational change involving distal residues upon binding cellobiose. Having introduced alanine substitutions at each of these residues, we identified several mutations that reduced cellobiose inhibition of E1, including W212A, W213A, Q247A, W249A and F250A. One of the mutations (W212A) resulted in a 47-fold decrease in binding affinity of cellobiose as well as a 5-fold increase in the kcat. The mutation further increased E1 activity on Avicel and dilute-acid treated corn stover and enhanced its productivity at high-substrate loadings. These findings were corroborated by funnel metadynamics, which showed that the W212A substitution led to reduced affinity for cellobiose in the +1 and +2 binding sites due to rearrangement of key cellobiose-binding residues.
纤维素酶在很大程度上受到其反应产物的抑制,特别是在高底物负荷下,这是生物质加工的一个主要挑战。酸热菌溶纤维素酶的内切葡聚糖酶1 (E1)通过识别结合纤维素二糖时远端残基的大构象变化,克服了这一挑战。在这些残基上引入丙氨酸取代后,我们发现了几个降低纤维二糖对E1抑制的突变,包括W212A、W213A、Q247A、W249A和F250A。其中一个突变(W212A)导致纤维素二糖结合亲和力降低47倍,而kcat增加5倍。该突变进一步提高了Avicel和稀酸处理玉米秸秆上E1的活性,并提高了其在高底物负荷下的产量。这些发现得到了漏斗元动力学的证实,表明W212A取代导致+1和+2结合位点对纤维二糖的亲和力降低,这是由于关键纤维二糖结合残基的重排。
{"title":"Substitution of distal and active site residues reduces product inhibition of E1 from Acidothermus Cellulolyticus.","authors":"Samantha R Summers,&nbsp;Sarah Alamdari,&nbsp;Casey J Kraft,&nbsp;Roman Brunecky,&nbsp;Jim Pfaendtner,&nbsp;Joel L Kaar","doi":"10.1093/protein/gzab031","DOIUrl":"https://doi.org/10.1093/protein/gzab031","url":null,"abstract":"Cellulases are largely afflicted by inhibition from their reaction products, especially at high-substrate loading, which represents a major challenge for biomass processing. This challenge was overcome for endoglucanase 1 (E1) from Acidothermus cellulolyticus by identifying a large conformational change involving distal residues upon binding cellobiose. Having introduced alanine substitutions at each of these residues, we identified several mutations that reduced cellobiose inhibition of E1, including W212A, W213A, Q247A, W249A and F250A. One of the mutations (W212A) resulted in a 47-fold decrease in binding affinity of cellobiose as well as a 5-fold increase in the kcat. The mutation further increased E1 activity on Avicel and dilute-acid treated corn stover and enhanced its productivity at high-substrate loadings. These findings were corroborated by funnel metadynamics, which showed that the W212A substitution led to reduced affinity for cellobiose in the +1 and +2 binding sites due to rearrangement of key cellobiose-binding residues.","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39624356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development. 利用噬菌体展示文库筛选抗HER2酪氨酸激酶纳米体用于HER2阳性乳腺癌治疗开发
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab030
Thomanai Lamtha, Lueacha Tabtimmai, Kunan Bangphoomi, Duangnapa Kiriwan, Aijaz A Malik, Wanpen Chaicumpa, Paul M P van Bergen En Henegouwen, Kiattawee Choowongkomon

Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.

人表皮生长因子受体2 (HER2)蛋白在约30%的浸润性乳腺癌和高比例的非浸润性原位导管癌中存在过表达。靶向癌症治疗以单克隆抗体和激酶抑制剂为基础,反映了癌症治疗的新时代。然而,常规抗体的大尺寸(150 kDa)阻碍了在体内向肿瘤细胞的递送。此外,目前的抗her2药物存在许多缺点,包括耐药和不良反应。纳米小体(15 kDa),单域抗体(sdAb)片段,可以克服这些限制。本研究利用噬菌体展示技术制备了靶向her2 -酪氨酸激酶(HER2-TK)结构域的重组sdAb。选择3个特异性抗her2 - tk单克隆抗体进行进一步表征。Hallmark VHH残基鉴定和氨基酸序列分析表明,克隆4号和22号为VH抗体,克隆17号为VH抗体(纳米体)。VHH17的半最大抑制浓度明显高于其他克隆的HER2激酶抑制活性。与这些结果一致的是,对接结果中也出现了基于模位分析预测的HER2-TK激活环的若干电荷和极性残基,并通过VHH17的CDR1、CDR2和CDR3环相互作用。此外,细胞可穿透的VHH17 (R9 VHH17)显示出细胞可穿透性,并显著降低her2阳性癌细胞的活力。因此,vh17可作为治疗her2阳性乳腺癌的有效药物。
{"title":"Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development.","authors":"Thomanai Lamtha,&nbsp;Lueacha Tabtimmai,&nbsp;Kunan Bangphoomi,&nbsp;Duangnapa Kiriwan,&nbsp;Aijaz A Malik,&nbsp;Wanpen Chaicumpa,&nbsp;Paul M P van Bergen En Henegouwen,&nbsp;Kiattawee Choowongkomon","doi":"10.1093/protein/gzab030","DOIUrl":"https://doi.org/10.1093/protein/gzab030","url":null,"abstract":"<p><p>Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39814974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Molecular flexibility in computational protein design: an algorithmic perspective. 计算蛋白设计中的分子灵活性:一个算法的视角。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab011
Younes Bouchiba, Juan Cortés, Thomas Schiex, Sophie Barbe

Computational protein design (CPD) is a powerful technique for engineering new proteins, with both great fundamental implications and diverse practical interests. However, the approximations usually made for computational efficiency, using a single fixed backbone and a discrete set of side chain rotamers, tend to produce rigid and hyper-stable folds that may lack functionality. These approximations contrast with the demonstrated importance of molecular flexibility and motions in a wide range of protein functions. The integration of backbone flexibility and multiple conformational states in CPD, in order to relieve the inaccuracies resulting from these simplifications and to improve design reliability, are attracting increased attention. However, the greatly increased search space that needs to be explored in these extensions defines extremely challenging computational problems. In this review, we outline the principles of CPD and discuss recent effort in algorithmic developments for incorporating molecular flexibility in the design process.

计算蛋白设计(Computational protein design, CPD)是一种强大的蛋白质工程技术,具有重要的基础意义和广泛的应用价值。然而,通常为了计算效率而进行的近似,使用单个固定主干和一组离散的侧链转子,往往会产生刚性和超稳定的折叠,可能缺乏功能。这些近似与已证明的分子柔韧性和运动在广泛的蛋白质功能中的重要性形成对比。在CPD中集成骨干柔韧性和多种构象状态,以减轻这些简化带来的不准确性,提高设计的可靠性,正受到越来越多的关注。然而,在这些扩展中需要探索的大大增加的搜索空间定义了极具挑战性的计算问题。在这篇综述中,我们概述了CPD的原理,并讨论了在设计过程中结合分子灵活性的算法发展的最新努力。
{"title":"Molecular flexibility in computational protein design: an algorithmic perspective.","authors":"Younes Bouchiba,&nbsp;Juan Cortés,&nbsp;Thomas Schiex,&nbsp;Sophie Barbe","doi":"10.1093/protein/gzab011","DOIUrl":"https://doi.org/10.1093/protein/gzab011","url":null,"abstract":"<p><p>Computational protein design (CPD) is a powerful technique for engineering new proteins, with both great fundamental implications and diverse practical interests. However, the approximations usually made for computational efficiency, using a single fixed backbone and a discrete set of side chain rotamers, tend to produce rigid and hyper-stable folds that may lack functionality. These approximations contrast with the demonstrated importance of molecular flexibility and motions in a wide range of protein functions. The integration of backbone flexibility and multiple conformational states in CPD, in order to relieve the inaccuracies resulting from these simplifications and to improve design reliability, are attracting increased attention. However, the greatly increased search space that needs to be explored in these extensions defines extremely challenging computational problems. In this review, we outline the principles of CPD and discuss recent effort in algorithmic developments for incorporating molecular flexibility in the design process.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38958995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Protein Engineering Design & Selection
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1