Pub Date : 2024-01-03DOI: 10.1016/j.pbiomolbio.2024.01.001
Denis Noble
{"title":"Editorial for online collection — The gene: An appraisal","authors":"Denis Noble","doi":"10.1016/j.pbiomolbio.2024.01.001","DOIUrl":"10.1016/j.pbiomolbio.2024.01.001","url":null,"abstract":"","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pbiomolbio.2023.12.001
Olen R. Brown , David A. Hullender
Artificial Intelligence (AI), as an academic discipline, is traceable to the mid-1950s but it is currently exploding in applications with successes and concerns. AI can be defined as intelligence demonstrated by computers, with intelligence difficult to define but it must include concepts of ability to learn, reason, and generalize from a vast amount of information and, we propose, to infer meaning. The type of AI known as general AI, has strong, but unrealized potential both for assessing and also for solving major problems with the scientific theory of Darwinian evolution, including its modern variants and for origin of life studies. Specifically, AI should be applied first to evaluate the strengths and weaknesses of the assumptions and empirical information underpinning theories of the origin of life and probability of its evolution. AI should then be applied to assess the scientific validity of the theory of how abundant life came to be on earth.
{"title":"Darwinian evolution has become dogma; AI can rescue what is salvageable","authors":"Olen R. Brown , David A. Hullender","doi":"10.1016/j.pbiomolbio.2023.12.001","DOIUrl":"10.1016/j.pbiomolbio.2023.12.001","url":null,"abstract":"<div><p>Artificial Intelligence (AI), as an academic discipline, is traceable to the mid-1950s but it is currently exploding in applications with successes and concerns. AI can be defined as intelligence demonstrated by computers, with intelligence difficult to define but it must include concepts of ability to learn, reason, and generalize from a vast amount of information and, we propose, to infer meaning. The type of AI known as general AI, has strong, but unrealized potential both for assessing and also for solving major problems with the scientific theory of Darwinian evolution, including its modern variants and for origin of life studies. Specifically, AI should be applied first to evaluate the strengths and weaknesses of the assumptions and empirical information underpinning theories of the origin of life and probability of its evolution. AI should then be applied to assess the scientific validity of the theory of how abundant life came to be on earth.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pbiomolbio.2023.11.006
Mark William Johnson
One of the foundational principles of recent developments in evolutionary biology has been the acknowledgement of homeostasis as an organising principle of cellular development from unicellular origins. Fundamentally, this concerns the balance between the inside of a biological entity and its environment. Given that the organ of balance is the ear, and that the evolutionary provenance of the vestibular system can be traced back to fish, music provides a rich foundation for evolutionary biological inquiry.
This paper considers a specific dimensional relationship in sonic experience between noise, signal, redundancy and anticipation. Drawing on the physics of Bohm and more recent developments in Rowlands's nilpotent quantum mechanics, I argue that the relationship between these four parameters is not only that they represent aspects of sonic experience, but that they are dimensionally distinct, where noise can be considered to be scalar, a signal (or a note) is a vector (having magnitude and direction), redundancy is bi-vectorial (involving degrees of repetition of signals over time), and anticipation is tri-vectorial (involving reflexive consideration of different orders of redundancy).
In outlining the dimensional distinction between these variables, an analysis is presented which considers the relationship between the Shannon entropy of different dimensions in music. This shows that the entropy of noise has a particular bearing on the entropy of the other dimensions. This dimensional relation is also reflected in biological evidence, where Torday has shown there to be a direct correlation between the effect of gravitational “noise” on cellular communication, and by extension the evolution of consciousness.
{"title":"Music, cells and the dimensionality of nature","authors":"Mark William Johnson","doi":"10.1016/j.pbiomolbio.2023.11.006","DOIUrl":"10.1016/j.pbiomolbio.2023.11.006","url":null,"abstract":"<div><p>One of the foundational principles of recent developments in evolutionary biology has been the acknowledgement of homeostasis as an organising principle of cellular development from unicellular origins. Fundamentally, this concerns the balance between the inside of a biological entity and its environment. Given that the organ of balance is the ear, and that the evolutionary provenance of the vestibular system can be traced back to fish, music provides a rich foundation for evolutionary biological inquiry.</p><p>This paper considers a specific dimensional relationship in sonic experience between noise, signal, redundancy and anticipation. Drawing on the physics of Bohm and more recent developments in Rowlands's nilpotent quantum mechanics, I argue that the relationship between these four parameters is not only that they represent aspects of sonic experience, but that they are dimensionally distinct, where noise can be considered to be scalar, a signal (or a note) is a vector (having magnitude and direction), redundancy is bi-vectorial (involving degrees of repetition of signals over time), and anticipation is tri-vectorial (involving reflexive consideration of different orders of redundancy).</p><p>In outlining the dimensional distinction between these variables, an analysis is presented which considers the relationship between the Shannon entropy of different dimensions in music. This shows that the entropy of noise has a particular bearing on the entropy of the other dimensions. This dimensional relation is also reflected in biological evidence, where Torday has shown there to be a direct correlation between the effect of gravitational “noise” on cellular communication, and by extension the evolution of consciousness.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723000998/pdfft?md5=e9bf1dc746203ee7b15e2a2924e24167&pid=1-s2.0-S0079610723000998-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pbiomolbio.2023.12.002
John S. Torday, Moshe Klein , Oded Maimon
The cell-cell signaling mechanisms that are the basis for all of physiology have been used to trace evolution back to the unicellular state, and beyond, to the “First Principles of Physiology”. And since our physiology derives from the Cosmos based on Symbiogenesis, it has been hypothesized that the cell behaves like a functional Mobius Strip, having no ‘inside or outside’ cell membrane surface - it is continuous with the Cosmos, its history being codified from Quantum Entanglement to Newtonian Mechanics, affording the cell consciousness and unconsciousness/subconsciousness as a continuum for the first time. Similarly, Klein and Maimon have concluded that their ‘Soft Logic’ mathematics also constitutes a Mobius Strip, using both a real number axis, combined with a zero axis, numerically representing cognition. This is congruent with the cell as ‘two-tiered’ consciousness, the first tier being the real-time interface between the cell membrane and its environment; the second tier constituting integrated physiology, referencing the consciousness of the Cosmos. Thus, there is coherence between physiology, consciousness and mathematics for the first time.
{"title":"The mobius strip, the cell, and soft logic mathematics","authors":"John S. Torday, Moshe Klein , Oded Maimon","doi":"10.1016/j.pbiomolbio.2023.12.002","DOIUrl":"10.1016/j.pbiomolbio.2023.12.002","url":null,"abstract":"<div><p>The cell-cell signaling mechanisms that are the basis for all of physiology have been used to trace evolution back to the unicellular state, and beyond, to the “First Principles of Physiology”. And since our physiology derives from the Cosmos based on Symbiogenesis, it has been hypothesized that the cell behaves like a functional Mobius Strip, having no ‘inside or outside’ cell membrane surface - it is continuous with the Cosmos, its history being codified from Quantum Entanglement to Newtonian Mechanics, affording the cell consciousness and unconsciousness/subconsciousness as a continuum for the first time. Similarly, Klein and Maimon have concluded that their ‘Soft Logic’ mathematics also constitutes a Mobius Strip, using both a real number axis, combined with a zero axis, numerically representing cognition. This is congruent with the cell as ‘two-tiered’ consciousness, the first tier being the real-time interface between the cell membrane and its environment; the second tier constituting integrated physiology, referencing the consciousness of the Cosmos. Thus, there is coherence between physiology, consciousness and mathematics for the first time.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139062465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pbiomolbio.2023.11.002
Keith Baverstock
{"title":"Corrigendum to “The gene: An appraisal” [Prog. Biophys. Mol. Biol. (2021) 46–62]","authors":"Keith Baverstock","doi":"10.1016/j.pbiomolbio.2023.11.002","DOIUrl":"10.1016/j.pbiomolbio.2023.11.002","url":null,"abstract":"","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723000949/pdfft?md5=477e2c2e5b3b7fcd2b2a5dcc31708a11&pid=1-s2.0-S0079610723000949-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138535420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pbiomolbio.2023.11.001
Keith Baverstock
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
{"title":"The Gene: An appraisal","authors":"Keith Baverstock","doi":"10.1016/j.pbiomolbio.2023.11.001","DOIUrl":"10.1016/j.pbiomolbio.2023.11.001","url":null,"abstract":"<div><p>The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. <em>coli</em> bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723000937/pdfft?md5=1b14a0bb50066ac712260a331c02e355&pid=1-s2.0-S0079610723000937-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-03DOI: 10.1016/j.pbiomolbio.2023.11.008
Dan Cohen PhD Psychology
Family Constellations are an emerging therapeutic approach for working with local and non-local consciousness. First developed by German psychoanalyst Bert Hellinger, and now practiced by thousands of licensed and un-licensed facilitators globally, Family Constellations are a transpersonal and systemically oriented therapeutic process. Their aim is to address a focus client's emotional, behavioral, relational, or somatic issues by uncovering and resolving transgenerational entanglements within their family system. The author expands on the proposal of symbiogenesis as a mediator of local and non-local consciousness to query whether applying the Observer Effect to inherited trauma may influence epigenetic marks. An expanded perspective on consciousness, life, death, and quantum fields may provide a more comprehensive framework to address therapeutic interventions for common emotional and behavioral disorders. Innovative features of Family Constellations are its phenomenological orientation, reference to family system entanglements, and potential for symptom relief through cellular mediation of ancestral memory. Family Constellations utilize techniques called representative perception and tuning-in to identify and release ancestral traumas. These are akin to remote viewing and mediumship. While the scientific basis for Family Constellations is speculative, the text references research on the quantum theory of consciousness, mediumship and remote viewing as potential supporting evidence. Four case studies are presented.
{"title":"Family Constellation therapy: A nascent approach for working with non-local consciousness in a therapeutic container","authors":"Dan Cohen PhD Psychology","doi":"10.1016/j.pbiomolbio.2023.11.008","DOIUrl":"10.1016/j.pbiomolbio.2023.11.008","url":null,"abstract":"<div><p>Family Constellations are an emerging therapeutic approach for working with local and non-local consciousness. First developed by German psychoanalyst Bert Hellinger, and now practiced by thousands of licensed and un-licensed facilitators globally, Family Constellations are a transpersonal and systemically oriented therapeutic process. Their aim is to address a focus client's emotional, behavioral, relational, or somatic issues by uncovering and resolving transgenerational entanglements within their family system. The author expands on the proposal of symbiogenesis as a mediator of local and non-local consciousness to query whether applying the Observer Effect to inherited trauma may influence epigenetic marks. An expanded perspective on consciousness, life, death, and quantum fields may provide a more comprehensive framework to address therapeutic interventions for common emotional and behavioral disorders. Innovative features of Family Constellations are its phenomenological orientation, reference to family system entanglements, and potential for symptom relief through cellular mediation of ancestral memory. Family Constellations utilize techniques called representative perception and tuning-in to identify and release ancestral traumas. These are akin to remote viewing and mediumship. While the scientific basis for Family Constellations is speculative, the text references research on the quantum theory of consciousness, mediumship and remote viewing as potential supporting evidence. Four case studies are presented.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723001013/pdfft?md5=5a1f88a8c252602818059feb356d3c4f&pid=1-s2.0-S0079610723001013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since ancient times, Tuberculosis (TB) has been a severe invasive illness that has been prevalent for thousands of years and is also known as “consumption” or phthisis. TB is the most common chronic lung bacterial illness in the world, killing over 2 million people each year, caused by Mycobacterium tuberculosis (MTB). As per the reports of WHO, in spite of technology advancements, the average rate of decline in global TB infections from 2000-2018 was only 1.6% per year, and the worldwide reduction in TB deaths was only 11%. In addition, COVID-19 pandemic has reversed years of global progress in tackling TB with fewer diagnosed cases. The majority of undiagnosed patients of TB are found in low- and middle-income countries where the GeneXpert MTB/RIF assay and sputum smear microscopy have been approved by the WHO as reference procedures for quickly detecting TB. Biosensors, like other cutting-edge technologies, have piqued researchers' interest since they offer a quick and accurate way to identify MTB. Modern integrated technologies allow for the rapid, low-cost, and highly precise detection of analytes in extremely little amounts of sample by biosensors. Here in this review, we outlined the severity of tuberculosis (TB) and the most recent developments in the biosensors sector, as well as their various kinds and benefits for TB detection. The review also emphasizes how widespread TB is and how it needs accurate diagnosis and effective treatment.
{"title":"An insight to the recent advancements in detection of Mycobacterium tuberculosis using biosensors: A systematic review","authors":"Mansi Chaturvedi , Monika Patel , Archana Tiwari , Neeraj Dwivedi , D.P. Mondal , Avanish Kumar Srivastava , Chetna Dhand","doi":"10.1016/j.pbiomolbio.2023.10.003","DOIUrl":"10.1016/j.pbiomolbio.2023.10.003","url":null,"abstract":"<div><p>Since ancient times, Tuberculosis (TB) has been a severe invasive illness that has been prevalent for thousands of years and is also known as “consumption” or phthisis. TB is the most common chronic lung bacterial illness in the world, killing over 2 million people each year, caused by <span><em>Mycobacterium tuberculosis</em></span> (MTB). As per the reports of WHO, in spite of technology advancements, the average rate of decline in global TB infections from 2000-2018 was only 1.6% per year, and the worldwide reduction in TB deaths was only 11%. In addition, COVID-19 pandemic has reversed years of global progress in tackling TB with fewer diagnosed cases. The majority of undiagnosed patients of TB are found in low- and middle-income countries where the GeneXpert MTB/RIF assay and sputum smear microscopy have been approved by the WHO as reference procedures for quickly detecting TB. Biosensors, like other cutting-edge technologies, have piqued researchers' interest since they offer a quick and accurate way to identify MTB. Modern integrated technologies allow for the rapid, low-cost, and highly precise detection of analytes in extremely little amounts of sample by biosensors. Here in this review, we outlined the severity of tuberculosis (TB) and the most recent developments in the biosensors sector, as well as their various kinds and benefits for TB detection. The review also emphasizes how widespread TB is and how it needs accurate diagnosis and effective treatment.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1016/j.pbiomolbio.2023.11.005
Runze Liu , Zhang-He Zhen , Wenjun Li , Baosheng Ge , Song Qin
Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.
{"title":"How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions","authors":"Runze Liu , Zhang-He Zhen , Wenjun Li , Baosheng Ge , Song Qin","doi":"10.1016/j.pbiomolbio.2023.11.005","DOIUrl":"10.1016/j.pbiomolbio.2023.11.005","url":null,"abstract":"<div><p>Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria<span><span>, red algae, and certain </span>cryptomonads<span>, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin<span> to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.</span></span></span></p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1016/j.pbiomolbio.2023.11.007
Himani Amin , Sayma Zahid , Chloe Hall , Amanda K. Chaplin
The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.
{"title":"Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery","authors":"Himani Amin , Sayma Zahid , Chloe Hall , Amanda K. Chaplin","doi":"10.1016/j.pbiomolbio.2023.11.007","DOIUrl":"10.1016/j.pbiomolbio.2023.11.007","url":null,"abstract":"<div><p>The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723001001/pdfft?md5=82993d4cb25614e14dc6c19e75a17d9e&pid=1-s2.0-S0079610723001001-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}