首页 > 最新文献

Oceanography最新文献

英文 中文
EcoFOCI: A Generation of Ecosystem Studies in Alaskan Waters EcoFOCI:阿拉斯加水域生态系统研究的一代
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-15
H. Tabisola, J. Duffy‐Anderson, C. Mordy, P. Stabeno
{"title":"EcoFOCI: A Generation of Ecosystem Studies in Alaskan Waters","authors":"H. Tabisola, J. Duffy‐Anderson, C. Mordy, P. Stabeno","doi":"10.5670/oceanog.2021.supplement.02-15","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-15","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46704414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Emerging, Low-Cost Ocean Observing Technologies to Democratize Access to the Ocean 新兴的低成本海洋观测技术,实现海洋准入民主化
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-35
J. Butler, Camille Pagniello
{"title":"Emerging, Low-Cost Ocean Observing Technologies to Democratize Access to the Ocean","authors":"J. Butler, Camille Pagniello","doi":"10.5670/oceanog.2021.supplement.02-35","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-35","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46489494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change 多压力源观测和建模以建立对气候变化对沿海影响的理解和恢复能力
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-31
J. Newton, P. MacCready, S. Siedlecki, D. Manalang, J. Mickett, S. Alin, E. Schumacker, Jennifer Hagen, Stephanie K. Moore, A. Sutton, R. Carini
Multiple stressors are affecting the Pacific Northwest (PNW) coastal ocean, including harmful algal blooms (HABs), ocean acidification, marine heatwaves, and hypoxia (low oxygen). While these conditions or events are tied to seasonal cycles such as upwelling periods and multiyear cycles such as El Niño/La Niña, they are becoming increasingly frequent and intense. Additionally, they can have devastating impacts on ecosystem health and human wellbeing, shutting down fisheries, stifling the local economy, threatening food security, and inhibiting cultural practices. For example, increasing ocean acidification has affected shellfish growers’ capability to secure reliable product. In 2015, a HAB associated with a marine heatwave shut down crab fisheries from Alaska to Baja for commercial and tribal fishers (McCabe et al., 2016), a closure so impactful that the US Congress included the Fishery Disaster Relief Program for Tribal Fisheries in the Budget Act of 2018. And, an unpredicted hypoxia event in 2015 resulted in the Quinault Indian Nation pulling up crab pots with dead crab. Regional projections indicate increases in warming, ocean acidification, and hypoxia by the end of the century (Siedlecki et al., 2021), so solutions are needed. The challenge of multi-stressor impacts can be addressed by engaging a variety of partners to collect multi-variable observing and forecast data while increasing both scientific knowledge and application of data and information to real-world needs. The Northwest Association of Networked Ocean Observing Systems (NANOOS, http://www.nanoos. org/) helps sustain long-term observations and forecast models to help communities adapt to and plan for variable and changing ocean conditions, thus increasing resilience. NANOOS is the PNW regional coastal ocean observing system of the US Integrated Ocean Observing System (IOOS). It was recently designated a nexus organization for the UN Decade of Ocean Science for Sustainable Development because of its work to sustain and integrate ocean observations and modeling to produce publicly accessible regional data products that help diverse coastal communities ensure safety, build economic resilience, and increase understanding of the coastal ocean. NANOOS, in collaboration with regional partners, provides observations of temperature, salinity, oxygen, chlorophyll, carbon dioxide, pH, and HABs from buoy assets off the PNW coast (Figure 1). These observations also support several models such as LiveOcean, which provides 72-hour projections of ocean variables such as temperature, salinity, Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change
多种压力因素正在影响太平洋西北海岸,包括有害藻华(HABs)、海洋酸化、海洋热浪和缺氧(低氧)。虽然这些条件或事件与季节性周期(如上升期)和多年周期(如El Niño/La Niña)有关,但它们正变得越来越频繁和强烈。此外,它们可能对生态系统健康和人类福祉产生破坏性影响,导致渔业关闭,扼杀当地经济,威胁粮食安全,并抑制文化习俗。例如,海洋酸化加剧影响了贝类养殖者获得可靠产品的能力。2015年,与海洋热浪相关的赤潮导致从阿拉斯加到巴哈的商业和部落渔民的螃蟹渔业关闭(McCabe等人,2016年),这一关闭的影响如此之大,以至于美国国会在2018年预算法中纳入了部落渔业渔业救灾计划。2015年,一场意想不到的缺氧事件导致奎诺特印第安人将蟹笼里的死蟹打捞出来。区域预估表明,到本世纪末,变暖、海洋酸化和缺氧将加剧(Siedlecki et al., 2021),因此需要解决方案。通过与各种合作伙伴合作,收集多变量观测和预测数据,同时增加科学知识,并将数据和信息应用于实际需求,可以解决多压力源影响的挑战。西北网络海洋观测系统协会(NANOOS, http://www.nanoos)。Org/)帮助维持长期观测和预测模型,以帮助社区适应和规划多变和不断变化的海洋条件,从而提高复原力。NANOOS是美国综合海洋观测系统(IOOS)的PNW区域沿海海洋观测系统。它最近被指定为联合国海洋科学促进可持续发展十年的联系组织,因为它致力于维持和整合海洋观测和建模,以生产可公开访问的区域数据产品,帮助不同的沿海社区确保安全,建立经济复原力,并增加对沿海海洋的了解。NANOOS与区域合作伙伴合作,提供PNW海岸浮标资产的温度、盐度、氧气、叶绿素、二氧化碳、pH值和有害藻华的观测数据(图1)。这些观测数据还支持LiveOcean等几个模型,该模型提供72小时海洋变量预测,如温度、盐度、多压力源观测和建模,以建立对气候变化对沿海影响的理解和恢复能力
{"title":"Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change","authors":"J. Newton, P. MacCready, S. Siedlecki, D. Manalang, J. Mickett, S. Alin, E. Schumacker, Jennifer Hagen, Stephanie K. Moore, A. Sutton, R. Carini","doi":"10.5670/oceanog.2021.supplement.02-31","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-31","url":null,"abstract":"Multiple stressors are affecting the Pacific Northwest (PNW) coastal ocean, including harmful algal blooms (HABs), ocean acidification, marine heatwaves, and hypoxia (low oxygen). While these conditions or events are tied to seasonal cycles such as upwelling periods and multiyear cycles such as El Niño/La Niña, they are becoming increasingly frequent and intense. Additionally, they can have devastating impacts on ecosystem health and human wellbeing, shutting down fisheries, stifling the local economy, threatening food security, and inhibiting cultural practices. For example, increasing ocean acidification has affected shellfish growers’ capability to secure reliable product. In 2015, a HAB associated with a marine heatwave shut down crab fisheries from Alaska to Baja for commercial and tribal fishers (McCabe et al., 2016), a closure so impactful that the US Congress included the Fishery Disaster Relief Program for Tribal Fisheries in the Budget Act of 2018. And, an unpredicted hypoxia event in 2015 resulted in the Quinault Indian Nation pulling up crab pots with dead crab. Regional projections indicate increases in warming, ocean acidification, and hypoxia by the end of the century (Siedlecki et al., 2021), so solutions are needed. The challenge of multi-stressor impacts can be addressed by engaging a variety of partners to collect multi-variable observing and forecast data while increasing both scientific knowledge and application of data and information to real-world needs. The Northwest Association of Networked Ocean Observing Systems (NANOOS, http://www.nanoos. org/) helps sustain long-term observations and forecast models to help communities adapt to and plan for variable and changing ocean conditions, thus increasing resilience. NANOOS is the PNW regional coastal ocean observing system of the US Integrated Ocean Observing System (IOOS). It was recently designated a nexus organization for the UN Decade of Ocean Science for Sustainable Development because of its work to sustain and integrate ocean observations and modeling to produce publicly accessible regional data products that help diverse coastal communities ensure safety, build economic resilience, and increase understanding of the coastal ocean. NANOOS, in collaboration with regional partners, provides observations of temperature, salinity, oxygen, chlorophyll, carbon dioxide, pH, and HABs from buoy assets off the PNW coast (Figure 1). These observations also support several models such as LiveOcean, which provides 72-hour projections of ocean variables such as temperature, salinity, Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45918307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of the Impact of Ocean Acidification on Marine Calcifiers 海洋酸化对海洋钙化物影响的量化
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-19
K. Kimoto
{"title":"Quantification of the Impact of Ocean Acidification on Marine Calcifiers","authors":"K. Kimoto","doi":"10.5670/oceanog.2021.supplement.02-19","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-19","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45075358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards 海洋观测前沿:记录生态系统,了解环境变化,预测危害
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02
E. Kappel
{"title":"Frontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards","authors":"E. Kappel","doi":"10.5670/oceanog.2021.supplement.02","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44790169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Putting Training into Practice: An Alumni Network Global Monitoring Program 将培训付诸实践:校友网络全球监控计划
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-08
L. Krug, S. Sarker, Samiul Huda, A. González-Silvera, A. Edward, Carla Berghoff, Christian Naranjo, Edem Mahu, Jorge López-Calderón, Luís Escudero, M. Tapia, M. Noernberg, Mohamed Ahmed, Nandini Menon, Stella Betancur
{"title":"Putting Training into Practice: An Alumni Network Global Monitoring Program","authors":"L. Krug, S. Sarker, Samiul Huda, A. González-Silvera, A. Edward, Carla Berghoff, Christian Naranjo, Edem Mahu, Jorge López-Calderón, Luís Escudero, M. Tapia, M. Noernberg, Mohamed Ahmed, Nandini Menon, Stella Betancur","doi":"10.5670/oceanog.2021.supplement.02-08","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-08","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41988733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tide Gauges: From Single Hazard to Multi-Hazard Warning Systems 潮汐计:从单一危险到多危险警报系统
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-29
A. Hibbert, Liz Bradshaw, Jeff Pugh, S. Williams, P. Woodworth
FIGURE 1. An example of a visual “tide gauge” engraved on a harbor wall, showing tide level markings at the entrance to Canning Half-Tide Dock, Liverpool, relative to the Old Dock Sill datum, a reference datum defined around 1715 in terms of the sill of Liverpool’s first dock. Photo credit: Philip Woodworth, National Oceanography Centre As the name suggests, tide gauges were originally devised for the singular purpose of monitoring tidal fluctuations in sea level in order to aid safe navigation and port operations. Early tide gauges, such as that used by the famous dockmaster William Hutchinson at Liverpool in the late eighteenth century, consisted of little more than graduated markers on sea walls or posts, against which the sea surface could be measured by eye (Figure 1). These were used to record and then forecast the times and heights of high and low water each day; printed in local tide tables, they provided rudimentary information on variations in the tide. Within 50 years, automatic (or “self-registering”) stilling well and float systems were developed, consisting of a float housed in a large vertical tube, with an opening to the sea. The float would rise and fall with the sea surface and, by means of a pen connected to the float via a pulley system, its movements were captured on a paper chart fixed to a clock-driven chart recorder. This, for the first time, produced a continuous sea level trace, allowing other phenomena such as seiches, storm surges, and tsunamis to be clearly identified. Very high frequency variations in sea level, such as wave action, remained unsampled due to the damping effect of the stilling wells. Through continued operation of these gauges over many decades, evidence of longer-term hazards emerged from their records, such as climate change-related sea level rise (SLR), a topic that is now considered in the important regular assessments of the Intergovernmental Panel on Climate Change (IPCC). Over the past few decades, a transition to radar, acoustic, or pressure-based tide gauges, together with advances in data-logging capacity, has enabled high frequency sampling (~1 Hz) that is also necessary for monitoring wave action; in addition, the co-location of Global Navigation Satellite System (GNSS) receivers with tide gauges has allowed scientists to infer the contributions of vertical land motion to rates of SLR. As a result, modern tide gauge networks are better equipped to monitor a wide range of sea level phenomena and are, therefore, viewed as multi-hazard warning systems. Of course, robust warning systems demand a comprehensive network of monitoring stations together with coordinated and timely notifications of impending hazards. Sadly, the impetus for such developments has often been provided by natural disasters. The UK Tide Gauge Network (UKTGN), for example, was formed primarily for the purposes of storm surge monitoring and forecasting following the 1953 North Sea storm surge that led to the loss of ~2,400
图1。一个刻在港口墙上的视觉“验潮器”的例子,显示了利物浦坎宁半潮码头入口处相对于老码头底面的水位标记,老码头底面的基准是1715年左右根据利物浦第一个码头的底面定义的参考基准。图片来源:Philip Woodworth,国家海洋学中心顾名思义,潮汐计最初是为了监测海平面的潮汐波动,以帮助安全航行和港口运营而设计的。早期的验潮仪,如18世纪末利物浦著名码头船长威廉·哈钦森使用的验潮器,只由海堤或海柱上的刻度标记组成,可以用肉眼测量海面(图1)。这些被用来记录并预测每天高水位和低水位的时间和高度;它们印在当地的潮汐表上,提供了潮汐变化的基本信息。在50年内,自动(或“自动登记”)消力井和浮子系统被开发出来,由一个装在一个大型垂直管中的浮子组成,该浮子通向大海。浮子会随着海面升降,通过滑轮系统连接到浮子上的笔,它的运动被记录在固定在时钟驱动的海图记录器上的纸质海图上。这首次产生了连续的海平面轨迹,使其他现象,如地震、风暴潮和海啸能够被清楚地识别出来。由于消力井的阻尼作用,海平面的非常高的频率变化,如波浪作用,仍然没有得到采样。通过几十年来这些测量仪的持续运行,从它们的记录中出现了长期危害的证据,例如与气候变化相关的海平面上升,政府间气候变化专门委员会(IPCC)的重要定期评估现在正在考虑这一主题。在过去的几十年里,向雷达、声学或基于压力的潮汐计的转变,加上数据记录能力的进步,实现了高频采样(~1Hz),这也是监测波浪作用所必需的;此外,全球导航卫星系统(GNSS)接收器与潮汐计的共同定位使科学家能够推断垂直陆地运动对SLR速率的贡献。因此,现代验潮网络能够更好地监测各种海平面现象,因此被视为多危险警报系统。当然,健全的预警系统需要一个全面的监测站网络,以及对即将发生的危险进行协调和及时的通知。令人遗憾的是,自然灾害往往为这种发展提供了动力。例如,英国验潮网(UKTGN)的成立主要是为了监测和预测1953年北海风暴潮后的风暴潮,该风暴潮导致约2400人丧生。最近,2004年毁灭性的苏门答腊海啸激发了国际合作,通过政府间海洋学委员会,在印度洋、加勒比海和地中海等高风险地区建立和加强危险警报潮汐测量网络,并升级为现代近实时数据传输方法,如国际海事卫星组织宽带全球区域网络系统。BGAN系统最初是为从英国南大西洋潮汐测量网络的远程站点检索数据而定制的,该网络的建立主要是为了监测南大西洋和南大洋环极海洋运输的变化。然而,该网络现在也是偏远的西南大西洋海啸探测的主要手段(图2),那里目前没有协调的国际预警系统。这就引出了潮汐计在灾害预警中的作用的一个重要问题:虽然一些潮汐计只是作为操作工具与数值模型一起嵌入专门的海啸和/或风暴潮预警系统中,但如果没有数据收集后的一些科学评估,它们永远无法真正实现多灾害状态。规划者和土木工程师要求的海防设计水平只能通过全面的风险评估得出,使用质量控制的观测数据来估计组合式验潮器:从单一危险到多危险警报系统
{"title":"Tide Gauges: From Single Hazard to Multi-Hazard Warning Systems","authors":"A. Hibbert, Liz Bradshaw, Jeff Pugh, S. Williams, P. Woodworth","doi":"10.5670/oceanog.2021.supplement.02-29","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-29","url":null,"abstract":"FIGURE 1. An example of a visual “tide gauge” engraved on a harbor wall, showing tide level markings at the entrance to Canning Half-Tide Dock, Liverpool, relative to the Old Dock Sill datum, a reference datum defined around 1715 in terms of the sill of Liverpool’s first dock. Photo credit: Philip Woodworth, National Oceanography Centre As the name suggests, tide gauges were originally devised for the singular purpose of monitoring tidal fluctuations in sea level in order to aid safe navigation and port operations. Early tide gauges, such as that used by the famous dockmaster William Hutchinson at Liverpool in the late eighteenth century, consisted of little more than graduated markers on sea walls or posts, against which the sea surface could be measured by eye (Figure 1). These were used to record and then forecast the times and heights of high and low water each day; printed in local tide tables, they provided rudimentary information on variations in the tide. Within 50 years, automatic (or “self-registering”) stilling well and float systems were developed, consisting of a float housed in a large vertical tube, with an opening to the sea. The float would rise and fall with the sea surface and, by means of a pen connected to the float via a pulley system, its movements were captured on a paper chart fixed to a clock-driven chart recorder. This, for the first time, produced a continuous sea level trace, allowing other phenomena such as seiches, storm surges, and tsunamis to be clearly identified. Very high frequency variations in sea level, such as wave action, remained unsampled due to the damping effect of the stilling wells. Through continued operation of these gauges over many decades, evidence of longer-term hazards emerged from their records, such as climate change-related sea level rise (SLR), a topic that is now considered in the important regular assessments of the Intergovernmental Panel on Climate Change (IPCC). Over the past few decades, a transition to radar, acoustic, or pressure-based tide gauges, together with advances in data-logging capacity, has enabled high frequency sampling (~1 Hz) that is also necessary for monitoring wave action; in addition, the co-location of Global Navigation Satellite System (GNSS) receivers with tide gauges has allowed scientists to infer the contributions of vertical land motion to rates of SLR. As a result, modern tide gauge networks are better equipped to monitor a wide range of sea level phenomena and are, therefore, viewed as multi-hazard warning systems. Of course, robust warning systems demand a comprehensive network of monitoring stations together with coordinated and timely notifications of impending hazards. Sadly, the impetus for such developments has often been provided by natural disasters. The UK Tide Gauge Network (UKTGN), for example, was formed primarily for the purposes of storm surge monitoring and forecasting following the 1953 North Sea storm surge that led to the loss of ~2,400 ","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49402495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Technological, Scientific, and Sociological Revolution of Global Subsurface Ocean Observing 全球海底海洋观测的技术、科学和社会学革命
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-02
D. Roemmich, L. Talley, N. Zilberman, E. Osborne, Kenneth S. Johnson, L. Barbero, H. Bittig, N. Briggs, A. Fassbender, Gregory Johnson, Brian King, E. McDonagh, S. Purkey, S. Riser, T. Suga, Y. Takeshita, V. Thierry, S. Wijffels
{"title":"The Technological, Scientific, and Sociological Revolution of Global Subsurface Ocean Observing","authors":"D. Roemmich, L. Talley, N. Zilberman, E. Osborne, Kenneth S. Johnson, L. Barbero, H. Bittig, N. Briggs, A. Fassbender, Gregory Johnson, Brian King, E. McDonagh, S. Purkey, S. Riser, T. Suga, Y. Takeshita, V. Thierry, S. Wijffels","doi":"10.5670/oceanog.2021.supplement.02-02","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-02","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41641337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Uncrewed Ocean Gliders and Saildrones Support Hurricane Forecasting and Research 无人驾驶的海洋滑翔机和帆船无人机支持飓风预报和研究
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-28
T. Miles, Dongxiao Zhang, G. Foltz, Jun Zhang, C. Meinig, F. Bringas, J. Trinanes, M. Le Hénaff, Maria Aristizabal Vargas, S. Coakley, Catherine Edwards, D. Gong, R. Todd, M. Oliver, Douglas Wilson, K. Whilden, B. Kirkpatrick, P. Chardón-Maldonado, J. Morell, D. Hernandez, G. Kuska, Cheyenne D. Stienbarger, K. Bailey, Chidong Zhang, S. Glenn, G. Goñi
By Travis N. Miles, Dongxiao Zhang, Gregory R. Foltz, Jun A. Zhang, Christian Meinig, Francis Bringas, Joaquin Triñanes, Matthieu Le Hénaff, Maria F. Aristizabal Vargas, Sam Coakley, Catherine R. Edwards, Donglai Gong, Robert E. Todd, Matthew J. Oliver, W. Douglas Wilson, Kerri Whilden, Barbara Kirkpatrick, Patricia Chardon-Maldonado, Julio M. Morell, Debra Hernandez, Gerhard Kuska, Cheyenne D. Stienbarger, Kathleen Bailey, Chidong Zhang, Scott M. Glenn, and Gustavo J. Goni
作者:Travis N.Miles、张东晓、Gregory R.Foltz、Jun A.Zhang、Christian Meinig、Francis Bringas、Joaquin Triñanes、Matthieu Le Hénaff、Maria F.Aristizabal Vargas、Sam Coakley、Catherine R.Edwards、Donglai Gong、Robert E.Todd、Matthew J.Oliver、W.Douglas Wilson、Kerri Whilden、Barbara Kirkpatrick、Patricia Chardon Maldonado、Julio M.Morell、Debra Hernandez、Gerhard Kuska、Cheyenne D。Stienbarger、Kathleen Bailey、Chidong Zhang、Scott M.Glenn和Gustavo J.Goni
{"title":"Uncrewed Ocean Gliders and Saildrones Support Hurricane Forecasting and Research","authors":"T. Miles, Dongxiao Zhang, G. Foltz, Jun Zhang, C. Meinig, F. Bringas, J. Trinanes, M. Le Hénaff, Maria Aristizabal Vargas, S. Coakley, Catherine Edwards, D. Gong, R. Todd, M. Oliver, Douglas Wilson, K. Whilden, B. Kirkpatrick, P. Chardón-Maldonado, J. Morell, D. Hernandez, G. Kuska, Cheyenne D. Stienbarger, K. Bailey, Chidong Zhang, S. Glenn, G. Goñi","doi":"10.5670/oceanog.2021.supplement.02-28","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-28","url":null,"abstract":"By Travis N. Miles, Dongxiao Zhang, Gregory R. Foltz, Jun A. Zhang, Christian Meinig, Francis Bringas, Joaquin Triñanes, Matthieu Le Hénaff, Maria F. Aristizabal Vargas, Sam Coakley, Catherine R. Edwards, Donglai Gong, Robert E. Todd, Matthew J. Oliver, W. Douglas Wilson, Kerri Whilden, Barbara Kirkpatrick, Patricia Chardon-Maldonado, Julio M. Morell, Debra Hernandez, Gerhard Kuska, Cheyenne D. Stienbarger, Kathleen Bailey, Chidong Zhang, Scott M. Glenn, and Gustavo J. Goni","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46308263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Ocean Observing in the North Atlantic Subtropical Gyre 北大西洋副热带Gyre的海洋观测
IF 2.8 4区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-14
N. Bates, Rodney C. Johnson
{"title":"Ocean Observing in the North Atlantic Subtropical Gyre","authors":"N. Bates, Rodney C. Johnson","doi":"10.5670/oceanog.2021.supplement.02-14","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-14","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45062758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Oceanography
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1