首页 > 最新文献

Journal of Theoretical Biology最新文献

英文 中文
A theoretical model for focal adhesion and cytoskeleton formation in non-motile cells 非运动细胞中病灶粘附和细胞骨架形成的理论模型。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.jtbi.2024.111965
Gordon R. McNicol , Matthew J. Dalby , Peter S. Stewart
To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM). The formation and maturation of these structures (connected by a positive feedback loop) is pivotal in non-motile cells, where SFs are generally of ventral type, interconnecting FAs and producing isometric tension. In this study we formulate a one-dimensional bio-chemo-mechanical continuum model to describe the coupled formation and maturation of ventral SFs and FAs. We use a set of reaction–diffusion–advection equations to describe three sets of biochemical events: the polymerisation of actin and subsequent bundling into activated SFs; the formation and maturation of cell–substrate adhesions; and the activation of signalling proteins in response to FA and SF formation. The evolution of these key proteins is coupled to a Kelvin–Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ this model to understand how cells respond to external and intracellular cues in vitro and are able to reproduce experimentally observed phenomena including non-uniform cell striation and cells forming weaker SFs and FAs on softer substrates.
细胞要发挥功能并存活下来,就必须能够通过机械传导来感知和响应局部环境。至关重要的是,机械和生化扰动会启动细胞信号级联,从而诱发生长、凋亡、增殖和分化等反应。这一过程的核心是构成细胞细胞骨架的肌动蛋白应力纤维(SF)和将细胞骨架与细胞外基质(ECM)结合在一起的病灶粘附(FA)。在非运动细胞中,这些结构(通过正反馈回路连接)的形成和成熟至关重要,其中 SF 通常为腹侧型,与 FA 相互连接并产生等距张力。在这项研究中,我们建立了一个一维生物化学-机械连续模型来描述腹侧 SFs 和 FAs 的耦合形成和成熟。我们使用一组反应-扩散-平流方程来描述三组生化事件:肌动蛋白的聚合和随后捆绑成活化的 SFs;细胞-基质粘附的形成和成熟;以及信号蛋白对 FA 和 SF 形成的激活反应。这些关键蛋白的进化与细胞胞质和 ECM 的开尔文-沃依格粘弹性描述相关联。我们利用这一模型来了解细胞如何在体外对外界和细胞内的线索做出反应,并能重现实验观察到的现象,包括细胞条纹不均匀以及细胞在较软的基质上形成较弱的 SF 和 FA。
{"title":"A theoretical model for focal adhesion and cytoskeleton formation in non-motile cells","authors":"Gordon R. McNicol ,&nbsp;Matthew J. Dalby ,&nbsp;Peter S. Stewart","doi":"10.1016/j.jtbi.2024.111965","DOIUrl":"10.1016/j.jtbi.2024.111965","url":null,"abstract":"<div><div>To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM). The formation and maturation of these structures (connected by a positive feedback loop) is pivotal in non-motile cells, where SFs are generally of ventral type, interconnecting FAs and producing isometric tension. In this study we formulate a one-dimensional bio-chemo-mechanical continuum model to describe the coupled formation and maturation of ventral SFs and FAs. We use a set of reaction–diffusion–advection equations to describe three sets of biochemical events: the polymerisation of actin and subsequent bundling into activated SFs; the formation and maturation of cell–substrate adhesions; and the activation of signalling proteins in response to FA and SF formation. The evolution of these key proteins is coupled to a Kelvin–Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ this model to understand how cells respond to external and intracellular cues <em>in vitro</em> and are able to reproduce experimentally observed phenomena including non-uniform cell striation and cells forming weaker SFs and FAs on softer substrates.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"596 ","pages":"Article 111965"},"PeriodicalIF":1.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating irregular symmetry breaking in gut cross sections using a novel energy-optimization approach in growth-elasticity 利用生长弹性中的新型能量优化方法模拟肠道截面的不规则对称破缺
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.jtbi.2024.111971
Min Wu
Growth-elasticity (also known as morphoelasticity) is a powerful model framework for understanding complex shape development in soft biological tissues. At each instant, by mapping how continuum building blocks have grown geometrically and how they respond elastically to the push-and-pull from their neighbors, the shape of the growing structure is determined from a state of mechanical equilibrium. As mechanical loads continue to be added to the system through growth, many interesting shapes, such as smooth wavy wrinkles, sharp creases, and deep folds, can form on the tissue surface from a relatively flatter geometry.
Previous numerical simulations of growth-elasticity have reproduced many interesting shapes resembling those observed in reality, such as the foldings on mammalian brains and guts. In the case of mammalian guts, it has been shown that wavy wrinkles, deep folds, and sharp creases on the interior organ surface can be simulated even under a simple assumption of isotropic uniform growth in the interior layer of the organ. Interestingly, the simulated patterns are all regular along the tube’s circumference, with either all smooth or all sharp indentations, whereas some undulation patterns in reality exhibit irregular patterns and a mixture of sharp creases and smooth indentations along the circumference. Can we simulate irregular indentation patterns without further complicating the growth patterning?
In this paper, we have discovered abundant shape solutions with irregular indentation patterns by developing a Rayleigh–Ritz finite-element method (FEM). In contrast to previous Galerkin FEMs, which solve the weak formulation of the mechanical-equilibrium equations, the new method formulates an optimization problem for the discretized energy functional, whose critical points are equivalent to solutions obtained by solving the mechanical-equilibrium equations. This new method is more robust than previous methods. Specifically, it does not require the initial guess to be near a solution to achieve convergence, and it allows control over the direction of numerical iterates across the energy landscape. This approach enables the capture of more solutions that cannot be easily reached by previous methods. In addition to the previously found regular smooth and non-smooth configurations, we have identified a new transitional irregular smooth shape, new shapes with a mixture of smooth and non-smooth surface indentations, and a variety of irregular patterns with different numbers of creases. Our numerical results demonstrate that growth-elasticity modeling can match more shape patterns observed in reality than previously thought.
生长弹性(又称形态弹性)是理解软生物组织复杂形状发展的一个强大模型框架。在每一瞬间,通过映射连续体构件的几何生长方式以及它们如何对其相邻构件的推拉作出弹性响应,生长结构的形状就能从机械平衡状态中确定下来。随着系统在生长过程中不断增加机械负荷,组织表面会从相对扁平的几何形状形成许多有趣的形状,如光滑的波浪形皱纹、尖锐的折痕和深深的褶皱。以前的生长弹性数值模拟再现了许多有趣的形状,与现实中观察到的形状相似,例如哺乳动物大脑和内脏上的褶皱。就哺乳动物的内脏而言,研究表明,即使在器官内层各向同性均匀生长的简单假设下,也能模拟出器官内表面的波浪形皱纹、深褶皱和尖锐折痕。有趣的是,模拟出的图案沿管子的圆周都是规则的,要么都是光滑的,要么都是尖锐的压痕,而现实中的一些起伏图案则表现为不规则的图案,并且沿圆周混合了尖锐的折痕和光滑的压痕。我们能否模拟不规则的压痕模式,而不使生长模式进一步复杂化呢?在本文中,我们通过开发 Rayleigh-Ritz 有限元方法(FEM),发现了大量具有不规则压痕模式的形状解决方案。与以往求解机械平衡方程弱表述的 Galerkin 有限元法相比,新方法为离散化能量函数提出了一个优化问题,其临界点等同于求解机械平衡方程得到的解。这种新方法比以前的方法更稳健。具体来说,它不要求初始猜测必须接近解才能实现收敛,而且可以控制整个能量景观的数值迭代方向。这种方法可以捕捉到更多以前的方法难以捕捉到的解。除了之前发现的规则光滑和非光滑配置外,我们还发现了一种新的过渡性不规则光滑形状、光滑和非光滑表面压痕混合的新形状,以及具有不同折痕数量的各种不规则图案。我们的数值结果表明,生长-弹性建模能够与现实中观察到的更多形状模式相匹配。
{"title":"Simulating irregular symmetry breaking in gut cross sections using a novel energy-optimization approach in growth-elasticity","authors":"Min Wu","doi":"10.1016/j.jtbi.2024.111971","DOIUrl":"10.1016/j.jtbi.2024.111971","url":null,"abstract":"<div><div>Growth-elasticity (also known as morphoelasticity) is a powerful model framework for understanding complex shape development in soft biological tissues. At each instant, by mapping how continuum building blocks have grown geometrically and how they respond elastically to the push-and-pull from their neighbors, the shape of the growing structure is determined from a state of mechanical equilibrium. As mechanical loads continue to be added to the system through growth, many interesting shapes, such as smooth wavy wrinkles, sharp creases, and deep folds, can form on the tissue surface from a relatively flatter geometry.</div><div>Previous numerical simulations of growth-elasticity have reproduced many interesting shapes resembling those observed in reality, such as the foldings on mammalian brains and guts. In the case of mammalian guts, it has been shown that wavy wrinkles, deep folds, and sharp creases on the interior organ surface can be simulated even under a simple assumption of isotropic uniform growth in the interior layer of the organ. Interestingly, the simulated patterns are all regular along the tube’s circumference, with either all smooth or all sharp indentations, whereas some undulation patterns in reality exhibit irregular patterns and a mixture of sharp creases and smooth indentations along the circumference. Can we simulate irregular indentation patterns without further complicating the growth patterning?</div><div>In this paper, we have discovered abundant shape solutions with irregular indentation patterns by developing a Rayleigh–Ritz finite-element method (FEM). In contrast to previous Galerkin FEMs, which solve the weak formulation of the mechanical-equilibrium equations, the new method formulates an optimization problem for the discretized energy functional, whose critical points are equivalent to solutions obtained by solving the mechanical-equilibrium equations. This new method is more robust than previous methods. Specifically, it does not require the initial guess to be near a solution to achieve convergence, and it allows control over the direction of numerical iterates across the energy landscape. This approach enables the capture of more solutions that cannot be easily reached by previous methods. In addition to the previously found regular smooth and non-smooth configurations, we have identified a new transitional irregular smooth shape, new shapes with a mixture of smooth and non-smooth surface indentations, and a variety of irregular patterns with different numbers of creases. Our numerical results demonstrate that growth-elasticity modeling can match more shape patterns observed in reality than previously thought.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111971"},"PeriodicalIF":1.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource budget model with Duffing oscillator for dynamics of synchronized biennial-bearing olives in the Levant 采用达芬振荡器的资源预算模型,用于研究阆中同步两年生橄榄的动态。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.jtbi.2024.111973
Eileen Joan Magero , Koichi Unami , Osama Mohawesh , Marie Sato
We develop and analyze a temporally continuous spatially lumped resource budget model to explain the dynamics of synchronized biennial-bearing olives in the Levant, specifically focusing on Syria, the region’s foremost olive-producing country. The model is a time-continuous counterpart of the celebrated resource budget model. It consists of a Duffing oscillator coupled with a dynamical model of pollination with an external force propelling olive growth by photosynthesis. The reference data are obtained from statistical databases of international organizations and our own observation systems in Jordan, a country neighboring Syria, providing a wealth of information to refine the model structure. An intensive review of Syria’s modern history involving significant shifts in agricultural policy and social stability leads to a conclusion that the model should comprehend the anomaly of olive yield interacting with socio-political factors as an autonomous behavior. The conventional mathematical methodology analyzes the model’s characteristics, such as solutions’ non-negativity, boundedness, and stability. The system is stable during pollination off-season but may become unstable and unbounded during pollination on-season, which is a property that the time-discrete resource budget model cannot reproduce. A significant finding is that coupling individual fruit trees by anemophily is not essential in synchronization, overturning earlier studies in the literature. The values of model parameters that best fit the historical data of olive yield in Syria result in bounded chaos. With alternative parameter values, the model could exhibit periodic oscillation, instability, or blowing up, as clearly shown in bifurcation diagrams.
我们建立并分析了一个时间连续的空间块状资源预算模型,以解释黎凡特地区同步两年生橄榄的动态变化,特别侧重于该地区最重要的橄榄生产国叙利亚。该模型是著名资源预算模型的时间连续对应模型。它由一个达芬振荡器和一个授粉动力学模型组成,外力通过光合作用推动橄榄生长。参考数据来自国际组织的统计数据库和我们在叙利亚邻国约旦的观测系统,为完善模型结构提供了丰富的信息。对叙利亚现代历史的深入研究涉及到农业政策和社会稳定的重大转变,由此得出结论,模型应将橄榄产量与社会政治因素相互作用的反常现象理解为一种自主行为。传统数学方法分析了模型的特征,如解的非负性、有界性和稳定性。该系统在授粉淡季是稳定的,但在授粉旺季可能会变得不稳定和无约束,这是时间离散资源预算模型无法再现的特性。一个重要的发现是,单棵果树通过无花授粉耦合并不是同步的必要条件,这推翻了之前的文献研究。最适合叙利亚橄榄产量历史数据的模型参数值导致了有界混沌。在其他参数值的作用下,模型可能会表现出周期性振荡、不稳定性或炸毁,这在分岔图中可以清楚地看到。
{"title":"Resource budget model with Duffing oscillator for dynamics of synchronized biennial-bearing olives in the Levant","authors":"Eileen Joan Magero ,&nbsp;Koichi Unami ,&nbsp;Osama Mohawesh ,&nbsp;Marie Sato","doi":"10.1016/j.jtbi.2024.111973","DOIUrl":"10.1016/j.jtbi.2024.111973","url":null,"abstract":"<div><div>We develop and analyze a temporally continuous spatially lumped resource budget model to explain the dynamics of synchronized biennial-bearing olives in the Levant, specifically focusing on Syria, the region’s foremost olive-producing country. The model is a time-continuous counterpart of the celebrated resource budget model. It consists of a Duffing oscillator coupled with a dynamical model of pollination with an external force propelling olive growth by photosynthesis. The reference data are obtained from statistical databases of international organizations and our own observation systems in Jordan, a country neighboring Syria, providing a wealth of information to refine the model structure. An intensive review of Syria’s modern history involving significant shifts in agricultural policy and social stability leads to a conclusion that the model should comprehend the anomaly of olive yield interacting with socio-political factors as an autonomous behavior. The conventional mathematical methodology analyzes the model’s characteristics, such as solutions’ non-negativity, boundedness, and stability. The system is stable during pollination off-season but may become unstable and unbounded during pollination on-season, which is a property that the time-discrete resource budget model cannot reproduce. A significant finding is that coupling individual fruit trees by anemophily is not essential in synchronization, overturning earlier studies in the literature. The values of model parameters that best fit the historical data of olive yield in Syria result in bounded chaos. With alternative parameter values, the model could exhibit periodic oscillation, instability, or blowing up, as clearly shown in bifurcation diagrams.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111973"},"PeriodicalIF":1.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of 3D chaos game representation to quantify DNA sequence similarity with applications for hierarchical clustering 利用三维混沌博弈表示法量化 DNA 序列相似性,并将其应用于分层聚类。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.jtbi.2024.111972
Stephanie Young , Jérôme Gilles
A 3D chaos game is shown to be a useful way for encoding DNA sequences. Since matching subsequences in DNA converge in space in 3D chaos game encoding, a DNA sequence’s 3D chaos game representation can be used to compare DNA sequences without prior alignment and without truncating or padding any of the sequences. Two proposed methods inspired by shape-similarity comparison techniques show that this form of encoding can perform as well as alignment-based techniques for building phylogenetic trees. The first method uses the volume overlap of intersecting spheres and the second uses shape signatures by summarizing the coordinates, oriented angles, and oriented distances of the 3D chaos game trajectory. The methods are tested using: (1) the first exon of the beta-globin gene for 11 species, (2) mitochondrial DNA from four groups of primates, and (3) a set of synthetic DNA sequences. Simulations show that the proposed methods produce distances that reflect the number of mutation events; additionally, on average, distances resulting from deletion mutations are comparable to those produced by substitution mutations.
三维混沌游戏是对 DNA 序列进行编码的有效方法。由于在三维混沌游戏编码中,DNA 中的匹配子序列在空间上趋同,DNA 序列的三维混沌游戏表示法可用于比较 DNA 序列,而无需事先进行比对,也无需截断或填充任何序列。受形状相似性比较技术启发而提出的两种方法表明,这种编码方式在构建系统发生树方面与基于比对的技术一样出色。第一种方法使用相交球体的体积重叠,第二种方法通过总结三维混沌游戏轨迹的坐标、定向角和定向距离来使用形状特征。对这些方法进行了测试:(1) 11 个物种的β-球蛋白基因的第一个外显子;(2) 四组灵长类动物的线粒体 DNA;(3) 一组合成 DNA 序列。模拟结果表明,所提出的方法产生的距离能够反映突变事件的数量;此外,平均而言,缺失突变产生的距离与置换突变产生的距离相当。
{"title":"Use of 3D chaos game representation to quantify DNA sequence similarity with applications for hierarchical clustering","authors":"Stephanie Young ,&nbsp;Jérôme Gilles","doi":"10.1016/j.jtbi.2024.111972","DOIUrl":"10.1016/j.jtbi.2024.111972","url":null,"abstract":"<div><div>A 3D chaos game is shown to be a useful way for encoding DNA sequences. Since matching subsequences in DNA converge in space in 3D chaos game encoding, a DNA sequence’s 3D chaos game representation can be used to compare DNA sequences without prior alignment and without truncating or padding any of the sequences. Two proposed methods inspired by shape-similarity comparison techniques show that this form of encoding can perform as well as alignment-based techniques for building phylogenetic trees. The first method uses the volume overlap of intersecting spheres and the second uses shape signatures by summarizing the coordinates, oriented angles, and oriented distances of the 3D chaos game trajectory. The methods are tested using: (1) the first exon of the beta-globin gene for 11 species, (2) mitochondrial DNA from four groups of primates, and (3) a set of synthetic DNA sequences. Simulations show that the proposed methods produce distances that reflect the number of mutation events; additionally, on average, distances resulting from deletion mutations are comparable to those produced by substitution mutations.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"596 ","pages":"Article 111972"},"PeriodicalIF":1.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical model of repressive response to collective action and protest waves 对集体行动和抗议浪潮作出镇压反应的数学模型。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.jtbi.2024.111970
V. Volpert
The intricate interplay between the state and society may foster opposition and prompt collective action as a mode of protest. When the state responds repressively to such collective action, it aims to undermine it escalating its costs. A mathematical model relating the repressive response to collective action, articulated through differential equations, facilitates a thorough analysis of their dynamic interaction. Modelling outcomes indicate that repressive regimes may exhibit sustained persistence, oscillatory patterns, or destabilization, potentially transitioning into alternative regimes. This modelling framework offers a means to discern the impact of diverse factors on the dynamics of repressive regimes and to provide modelling insight on the emergence of cycles of protest observed in different countries during certain periods of their history.
国家与社会之间错综复杂的相互作用可能会助长反对意见,并促使集体行动成为一种抗议方式。当国家对这种集体行动做出镇压性反应时,其目的是破坏这种集体行动,使其成本上升。通过微分方程建立的镇压反应与集体行动相关的数学模型,有助于对两者的动态互动进行深入分析。建模结果表明,镇压性制度可能表现出持续性、振荡模式或不稳定性,有可能过渡到替代性制度。这一建模框架提供了一种方法,可用于辨别各种因素对镇压性政权动态的影响,并就不同国家在其特定历史时期出现的抗议周期提供建模见解。
{"title":"Mathematical model of repressive response to collective action and protest waves","authors":"V. Volpert","doi":"10.1016/j.jtbi.2024.111970","DOIUrl":"10.1016/j.jtbi.2024.111970","url":null,"abstract":"<div><div>The intricate interplay between the state and society may foster opposition and prompt collective action as a mode of protest. When the state responds repressively to such collective action, it aims to undermine it escalating its costs. A mathematical model relating the repressive response to collective action, articulated through differential equations, facilitates a thorough analysis of their dynamic interaction. Modelling outcomes indicate that repressive regimes may exhibit sustained persistence, oscillatory patterns, or destabilization, potentially transitioning into alternative regimes. This modelling framework offers a means to discern the impact of diverse factors on the dynamics of repressive regimes and to provide modelling insight on the emergence of cycles of protest observed in different countries during certain periods of their history.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111970"},"PeriodicalIF":1.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JTB Editorial for Professor Denise Kirschner 为 Denise Kirschner 教授撰写的 JTB 编辑文章。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.jtbi.2024.111976
Mark Chaplain (Journal of Theoretical Biology co-Chief Editor), Akira Sasaki (Journal of Theoretical Biology co-Chief Editor), Joshua Weitz (Journal of Theoretical Biology co-Chief Editor)
{"title":"JTB Editorial for Professor Denise Kirschner","authors":"Mark Chaplain (Journal of Theoretical Biology co-Chief Editor),&nbsp;Akira Sasaki (Journal of Theoretical Biology co-Chief Editor),&nbsp;Joshua Weitz (Journal of Theoretical Biology co-Chief Editor)","doi":"10.1016/j.jtbi.2024.111976","DOIUrl":"10.1016/j.jtbi.2024.111976","url":null,"abstract":"","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111976"},"PeriodicalIF":1.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic analysis of tumor growth inhibition models to Support trial design 肿瘤生长抑制模型的概率分析,支持试验设计。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.jtbi.2024.111969
Marcus Baaz , Tim Cardilin , Torbjörn Lundh , Mats Jirstrand
A large enough sample size of patients is required to statistically show that one treatment is better than another. However, too large a sample size is expensive and can also result in findings that are statistically significant, but not clinically relevant. How sample sizes should be chosen is a well-studied problem in classical statistics and analytical expressions can be derived from the appropriate test statistic. However, these expressions require information regarding the efficacy of the treatment, which may not be available, particularly for newly developed drugs. Tumor growth inhibition (TGI) models are frequently used to quantify the efficacy of newly developed anticancer drugs. In these models, the tumor growth dynamics are commonly described by a set of ordinary differential equations containing parameters that must be estimated using experimental data.
One widely used endpoint in clinical trials is the proportion of patients in different response categories determined using the Response Evaluation Criteria In Solid Tumors (RECIST) framework. From the TGI model, we derive analytical expressions for the probability of patient response to combination therapy. The probabilistic expressions are used together with classical statistics to derive a parametric model for the sample size required to achieve a certain significance level and test power when comparing two treatments.
Furthermore, the probabilistic expressions are used to generalize the Tumor Static Exposure concept to be more suitable for predicting clinical response. The derivatives of the probabilistic expressions are used to derive two additional expressions characterizing the exposure and its sensitivity. Finally, our results are illustrated using parameters obtained from calibrating the model to preclinical data.
要从统计学角度证明一种治疗方法优于另一种治疗方法,需要足够大的患者样本量。然而,样本量过大不仅成本高昂,还可能导致研究结果具有统计学意义,但与临床无关。如何选择样本量是经典统计学中一个经过深入研究的问题,可以从适当的检验统计量得出分析表达式。然而,这些表达式需要有关疗效的信息,而这些信息可能无法获得,尤其是新开发的药物。肿瘤生长抑制(TGI)模型常用于量化新开发抗癌药物的疗效。在这些模型中,肿瘤生长动态通常由一组常微分方程来描述,其中包含的参数必须使用实验数据来估算。临床试验中广泛使用的一个终点是根据实体瘤反应评估标准(RECIST)框架确定的不同反应类别患者的比例。根据 TGI 模型,我们推导出了患者对联合疗法产生反应的概率分析表达式。将概率表达式与经典统计学方法结合使用,可推导出参数模型,用于比较两种治疗方法时达到一定显著性水平和检验功率所需的样本量。此外,概率表达式还用于推广肿瘤静态暴露概念,使其更适用于预测临床反应。概率表达式的导数被用来推导出另外两个表达式,以表征暴露及其敏感性。最后,我们使用根据临床前数据校准模型所获得的参数对结果进行了说明。
{"title":"Probabilistic analysis of tumor growth inhibition models to Support trial design","authors":"Marcus Baaz ,&nbsp;Tim Cardilin ,&nbsp;Torbjörn Lundh ,&nbsp;Mats Jirstrand","doi":"10.1016/j.jtbi.2024.111969","DOIUrl":"10.1016/j.jtbi.2024.111969","url":null,"abstract":"<div><div>A large enough sample size of patients is required to statistically show that one treatment is better than another. However, too large a sample size is expensive and can also result in findings that are statistically significant, but not clinically relevant. How sample sizes should be chosen is a well-studied problem in classical statistics and analytical expressions can be derived from the appropriate test statistic. However, these expressions require information regarding the efficacy of the treatment, which may not be available, particularly for newly developed drugs. Tumor growth inhibition (TGI) models are frequently used to quantify the efficacy of newly developed anticancer drugs. In these models, the tumor growth dynamics are commonly described by a set of ordinary differential equations containing parameters that must be estimated using experimental data.</div><div>One widely used endpoint in clinical trials is the proportion of patients in different response categories determined using the Response Evaluation Criteria In Solid Tumors (RECIST) framework. From the TGI model, we derive analytical expressions for the probability of patient response to combination therapy. The probabilistic expressions are used together with classical statistics to derive a parametric model for the sample size required to achieve a certain significance level and test power when comparing two treatments.</div><div>Furthermore, the probabilistic expressions are used to generalize the Tumor Static Exposure concept to be more suitable for predicting clinical response. The derivatives of the probabilistic expressions are used to derive two additional expressions characterizing the exposure and its sensitivity. Finally, our results are illustrated using parameters obtained from calibrating the model to preclinical data.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111969"},"PeriodicalIF":1.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bulk-surface mechanobiochemical modelling approach for single cell migration in two-space dimensions 二维空间中单细胞迁移的体表机械生物化学建模方法。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.jtbi.2024.111966
David Hernandez-Aristizabal , Diego-Alexander Garzon-Alvarado , Carlos-Alberto Duque-Daza , Anotida Madzvamuse
In this work, we present a mechanobiochemical model for two-dimensional cell migration which couples mechanical properties of the cell cytosol with biochemical processes taking place near or on the cell plasma membrane. The modelling approach is based on a recently developed mathematical formalism of evolving bulk-surface partial differential equations of reaction–diffusion type. We solve these equations using finite element methods within a moving-mesh framework derived from the weak formulation of the evolving bulk-surface PDEs. In the present work, the cell cytosol interior (bulk) dynamics are coupled to the cell membrane (surface) dynamics through non-homogeneous Dirichlet boundary conditions. The modelling approach exhibits both directed cell migration in response to chemical cues as well as spontaneous migration in the absence of such cues. As a by-product, the approach shows fundamental characteristics associated with single cell migration such as: (i) cytosolic and membrane polarisation, (ii) actin dependent protrusions, and (iii) continuous shape deformation of the cell during migration.
Cell migration is an ubiquitous process in life that is mainly triggered by the dynamics of the actin cytoskeleton and therefore is driven by both mechanical and biochemical processes. It is a multistep process essential for mammalian organisms and is closely linked to a vast diversity of processes; from embryonic development to cancer invasion. Experimental, theoretical and computational studies have been key to elucidate the mechanisms underlying cell migration. On one hand, rapid advances in experimental techniques allow for detailed experimental measurements of cell migration pathways, while, on the other, computational approaches allow for the modelling, analysis and understanding of such observations. The bulk-surface mechanobiochemical modelling approach presented in this work, set premises to study single cell migration through complex non-isotropic environments in two- and three-space dimensions.
在这项研究中,我们提出了一种二维细胞迁移的机械生物化学模型,该模型将细胞胞体的机械特性与发生在细胞质膜附近或细胞质膜上的生化过程结合起来。建模方法基于最近开发的反应-扩散型体表偏微分方程演化数学形式。我们使用有限元方法,在由不断演化的体表偏微分方程的弱公式推导出的移动网格框架内求解这些方程。在本研究中,细胞胞体内部(体)动力学与细胞膜(表面)动力学通过非均质 Dirichlet 边界条件耦合在一起。这种建模方法既显示了细胞在化学线索作用下的定向迁移,也显示了细胞在无化学线索作用下的自发迁移。作为副产品,该方法显示了与单细胞迁移相关的基本特征,例如(i) 细胞质和细胞膜极化,(ii) 依靠肌动蛋白的突起,以及 (iii) 迁移过程中细胞形状的持续变形。细胞迁移是生命中无处不在的过程,主要由肌动蛋白细胞骨架的动态触发,因此由机械和生化过程共同驱动。它是哺乳动物生物体必不可少的一个多步骤过程,与从胚胎发育到癌症侵袭等多种过程密切相关。实验、理论和计算研究是阐明细胞迁移机制的关键。一方面,实验技术的飞速发展使我们能够对细胞迁移途径进行详细的实验测量;另一方面,计算方法使我们能够对这些观察结果进行建模、分析和理解。本研究提出的体表机械生物化学建模方法,为研究单细胞在二维和三维复杂的非各向同性环境中的迁移提供了前提条件。
{"title":"A bulk-surface mechanobiochemical modelling approach for single cell migration in two-space dimensions","authors":"David Hernandez-Aristizabal ,&nbsp;Diego-Alexander Garzon-Alvarado ,&nbsp;Carlos-Alberto Duque-Daza ,&nbsp;Anotida Madzvamuse","doi":"10.1016/j.jtbi.2024.111966","DOIUrl":"10.1016/j.jtbi.2024.111966","url":null,"abstract":"<div><div>In this work, we present a mechanobiochemical model for two-dimensional cell migration which couples mechanical properties of the cell cytosol with biochemical processes taking place near or on the cell plasma membrane. The modelling approach is based on a recently developed mathematical formalism of evolving bulk-surface partial differential equations of reaction–diffusion type. We solve these equations using finite element methods within a moving-mesh framework derived from the weak formulation of the evolving bulk-surface PDEs. In the present work, the cell cytosol interior (bulk) dynamics are coupled to the cell membrane (surface) dynamics through non-homogeneous Dirichlet boundary conditions. The modelling approach exhibits both directed cell migration in response to chemical cues as well as spontaneous migration in the absence of such cues. As a by-product, the approach shows fundamental characteristics associated with single cell migration such as: (i) cytosolic and membrane polarisation, (ii) actin dependent protrusions, and (iii) continuous shape deformation of the cell during migration.</div><div>Cell migration is an ubiquitous process in life that is mainly triggered by the dynamics of the actin cytoskeleton and therefore is driven by both mechanical and biochemical processes. It is a multistep process essential for mammalian organisms and is closely linked to a vast diversity of processes; from embryonic development to cancer invasion. Experimental, theoretical and computational studies have been key to elucidate the mechanisms underlying cell migration. On one hand, rapid advances in experimental techniques allow for detailed experimental measurements of cell migration pathways, while, on the other, computational approaches allow for the modelling, analysis and understanding of such observations. The bulk-surface mechanobiochemical modelling approach presented in this work, set premises to study single cell migration through complex non-isotropic environments in two- and three-space dimensions.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111966"},"PeriodicalIF":1.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian parameter inference for epithelial mechanics 上皮力学的贝叶斯参数推断。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-10 DOI: 10.1016/j.jtbi.2024.111960
Xin Yan , Goshi Ogita , Shuji Ishihara , Kaoru Sugimura
Cell-based mechanical models, such as the Cell Vertex Model (CVM), have proven useful for studying the mechanical control of epithelial tissue dynamics. We recently developed a statistical method called image-based parameter inference for formulating CVM model functions and estimating their parameters from image data of epithelial tissues. In this study, we employed Bayesian statistics to improve the utility and flexibility of image-based parameter inference. Tests on synthetic data confirmed that both our non-hierarchical and hierarchical Bayesian models provide accurate estimates of model parameters. By applying this method to Drosophila wings, we demonstrated that the reliability of parameter estimation is closely linked to the mechanical anisotropies present in the tissue. Moreover, we revealed that the cortical elasticity term is dispensable for explaining force-shape correlations in vivo. We anticipate that the flexibility of the Bayesian statistical framework will facilitate the integration of various types of information, thereby contributing to the quantitative dissection of the mechanical control of tissue dynamics.
基于细胞的机械模型,如细胞顶点模型(CVM),已被证明有助于研究上皮组织动态的机械控制。我们最近开发了一种称为基于图像的参数推断的统计方法,用于制定 CVM 模型函数,并从上皮组织的图像数据中估计其参数。在这项研究中,我们采用了贝叶斯统计方法来提高基于图像的参数推断的实用性和灵活性。对合成数据的测试证实,我们的非分层贝叶斯模型和分层贝叶斯模型都能准确估计模型参数。通过将这种方法应用于果蝇翅膀,我们证明了参数估计的可靠性与组织中存在的机械各向异性密切相关。此外,我们还揭示了皮层弹性项对于解释体内力-形状相关性是不可或缺的。我们预计贝叶斯统计框架的灵活性将有助于整合各种类型的信息,从而为定量分析组织动力学的机械控制做出贡献。
{"title":"Bayesian parameter inference for epithelial mechanics","authors":"Xin Yan ,&nbsp;Goshi Ogita ,&nbsp;Shuji Ishihara ,&nbsp;Kaoru Sugimura","doi":"10.1016/j.jtbi.2024.111960","DOIUrl":"10.1016/j.jtbi.2024.111960","url":null,"abstract":"<div><div>Cell-based mechanical models, such as the Cell Vertex Model (CVM), have proven useful for studying the mechanical control of epithelial tissue dynamics. We recently developed a statistical method called image-based parameter inference for formulating CVM model functions and estimating their parameters from image data of epithelial tissues. In this study, we employed Bayesian statistics to improve the utility and flexibility of image-based parameter inference. Tests on synthetic data confirmed that both our non-hierarchical and hierarchical Bayesian models provide accurate estimates of model parameters. By applying this method to <em>Drosophila</em> wings, we demonstrated that the reliability of parameter estimation is closely linked to the mechanical anisotropies present in the tissue. Moreover, we revealed that the cortical elasticity term is dispensable for explaining force-shape correlations <em>in vivo</em>. We anticipate that the flexibility of the Bayesian statistical framework will facilitate the integration of various types of information, thereby contributing to the quantitative dissection of the mechanical control of tissue dynamics.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111960"},"PeriodicalIF":1.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Choice of landscape discretisation method affects the inferred rate of spread in wildlife disease spread models 景观离散化方法的选择会影响野生动物疾病传播模型的推断传播速度。
IF 1.9 4区 数学 Q2 BIOLOGY Pub Date : 2024-10-09 DOI: 10.1016/j.jtbi.2024.111963
Mossa Merhi Reimert, Maya Katrin Gussmann, Anette Ella Boklund, Matt Denwood
Disease modelling at the livestock-wildlife interface is an important topic for which discrete-space models are used for the wildlife component. One prominent example is African Swine Fever, where wild boar play an influential role as reservoirs of disease spillover into domestic pig farms. In this paper, we present a simulation study that demonstrates the impact of seemingly arbitrary choices of landscape discretisation method on the inferred rate of spread within the model. We use an ordinary differential equation model to implement a simplified model of disease transmission between discrete groups of wild boar with spillover into domestic pig farms contained within a homogeneous landscape. We examine a range of scenarios whereby the landscape is discretised into wild boar patches of varying size and shape, and compare the rate of spread between domestic pig farms placed at fixed points on the landscape. Our results demonstrate a non-monotonic relationship between patch size and rate of spread, which is particularly unstable and unpredictable for square and triangular shaped patches. Discretisation of the landscape into hexagons appears to produce a more stable relationship between patch size and rate of spread for the three types of transmission kernel we investigated. Although the rate of disease spread does converge to a stable value, this occurs at patch sizes that are much smaller than would be used in practice for wild boar. We conclude that outputs of disease models containing a wildlife component should not be considered to be robust to arbitrary choices for patch size and placement, but rather as a source of uncertainty to be examined using sensitivity analysis. Furthermore, we strongly recommend the use of hexagons rather than squares or right triangles for landscape discretisation.
家畜与野生动物交界处的疾病建模是一个重要课题,其中野生动物部分采用离散空间模型。其中一个突出的例子是非洲猪瘟,野猪作为疫病传播源对国内养猪场的影响很大。在本文中,我们介绍了一项模拟研究,展示了看似任意选择的景观离散化方法对模型内推断传播速度的影响。我们使用常微分方程模型来实现离散野猪群之间的疾病传播简化模型,并将其外溢到包含在同质景观中的家猪场。我们研究了将地貌离散为大小和形状各异的野猪斑块的一系列方案,并比较了位于地貌上固定点的家猪场之间的传播速度。我们的研究结果表明,斑块大小与扩散速度之间存在非单调关系,尤其是正方形和三角形斑块的扩散速度不稳定,难以预测。对于我们研究的三种传播内核,将地形离散化为六边形似乎能在斑块大小和传播速度之间产生更稳定的关系。虽然疾病传播率确实趋近于一个稳定值,但这是在斑块大小远小于野猪实际使用的情况下发生的。我们的结论是,包含野生动物成分的疾病模型的输出结果不应被视为对任意选择的斑块大小和位置具有稳健性,而应被视为不确定性的来源,并使用敏感性分析进行研究。此外,我们强烈建议使用六边形而不是正方形或直角三角形进行景观离散化。
{"title":"Choice of landscape discretisation method affects the inferred rate of spread in wildlife disease spread models","authors":"Mossa Merhi Reimert,&nbsp;Maya Katrin Gussmann,&nbsp;Anette Ella Boklund,&nbsp;Matt Denwood","doi":"10.1016/j.jtbi.2024.111963","DOIUrl":"10.1016/j.jtbi.2024.111963","url":null,"abstract":"<div><div>Disease modelling at the livestock-wildlife interface is an important topic for which discrete-space models are used for the wildlife component. One prominent example is African Swine Fever, where wild boar play an influential role as reservoirs of disease spillover into domestic pig farms. In this paper, we present a simulation study that demonstrates the impact of seemingly arbitrary choices of landscape discretisation method on the inferred rate of spread within the model. We use an ordinary differential equation model to implement a simplified model of disease transmission between discrete groups of wild boar with spillover into domestic pig farms contained within a homogeneous landscape. We examine a range of scenarios whereby the landscape is discretised into wild boar patches of varying size and shape, and compare the rate of spread between domestic pig farms placed at fixed points on the landscape. Our results demonstrate a non-monotonic relationship between patch size and rate of spread, which is particularly unstable and unpredictable for square and triangular shaped patches. Discretisation of the landscape into hexagons appears to produce a more stable relationship between patch size and rate of spread for the three types of transmission kernel we investigated. Although the rate of disease spread does converge to a stable value, this occurs at patch sizes that are much smaller than would be used in practice for wild boar. We conclude that outputs of disease models containing a wildlife component should not be considered to be robust to arbitrary choices for patch size and placement, but rather as a source of uncertainty to be examined using sensitivity analysis. Furthermore, we strongly recommend the use of hexagons rather than squares or right triangles for landscape discretisation.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"596 ","pages":"Article 111963"},"PeriodicalIF":1.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Theoretical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1