Pub Date : 2024-09-28DOI: 10.1016/j.jtbi.2024.111955
Subrata Ghosh , Sourav Roy , Matjaž Perc , Dibakar Ghosh
Species frequently engage in both competitive and cooperative interactions, delicately balancing these dynamics to optimize their chances of survival and reproduction. While competition drives individuals to compete for limited resources, cooperation can emerge as a strategic response, mitigating risk and enhancing collective payoff. To bridge theoretical game approaches such as payoff, cooperation, and defections in ecological systems, we propose a two-species predator–prey model inspired by the principles and variations of the prisoner’s dilemma game. We comprehensively address and analytically verify all stable strategic states, exploring the role of payoff parameters both individually and collectively. Additionally, we investigate the effect of free space. Beyond ecological contexts, we present a model of rumor propagation within a social system to establish connections with the prisoner’s dilemma game. In both systems, our primary focus is to discuss strategies and enhance the cooperative factor within the system, given its crucial importance across diverse environments.
{"title":"The eco-evolutionary dynamics of two strategic species: From the predator-prey to the innocent-spreader rumor model","authors":"Subrata Ghosh , Sourav Roy , Matjaž Perc , Dibakar Ghosh","doi":"10.1016/j.jtbi.2024.111955","DOIUrl":"10.1016/j.jtbi.2024.111955","url":null,"abstract":"<div><div>Species frequently engage in both competitive and cooperative interactions, delicately balancing these dynamics to optimize their chances of survival and reproduction. While competition drives individuals to compete for limited resources, cooperation can emerge as a strategic response, mitigating risk and enhancing collective payoff. To bridge theoretical game approaches such as payoff, cooperation, and defections in ecological systems, we propose a two-species predator–prey model inspired by the principles and variations of the prisoner’s dilemma game. We comprehensively address and analytically verify all stable strategic states, exploring the role of payoff parameters both individually and collectively. Additionally, we investigate the effect of free space. Beyond ecological contexts, we present a model of rumor propagation within a social system to establish connections with the prisoner’s dilemma game. In both systems, our primary focus is to discuss strategies and enhance the cooperative factor within the system, given its crucial importance across diverse environments.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111955"},"PeriodicalIF":1.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.jtbi.2024.111954
Graham M. Donovan , Congping Lin , Imogen Sparkes , Peter Ashwin
The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin–myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.
{"title":"Emergence and stability of endoplasmic reticulum network streaming in plant cells","authors":"Graham M. Donovan , Congping Lin , Imogen Sparkes , Peter Ashwin","doi":"10.1016/j.jtbi.2024.111954","DOIUrl":"10.1016/j.jtbi.2024.111954","url":null,"abstract":"<div><div>The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin–myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111954"},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jtbi.2024.111952
Qin Yang , Yi Tang , Dehua Gao
Cooperation is a cornerstone of social harmony and group success. Environmental feedbacks that provide information about resource availability play a crucial role in encouraging cooperation. Previous work indicates that the impact of resource heterogeneity on cooperation depends on the incentive to act in self-interest presented by a situation, demonstrating its potential to both hinder and facilitate cooperation. However, little is known about the underlying evolutionary drivers behind this phenomenon. Leveraging agent-based modeling and game theory, we explore how differences in resource availability across environments influence the evolution of cooperation. Our results show that resource variation hinders cooperation when resources are slowly replenished but supports cooperation when resources are more readily available. Furthermore, simulations in different scenarios suggest that discerning the rate of natural selection acts on strategies under distinct evolutionary dynamics is instrumental in elucidating the intricate nexus between resource variability and cooperation. When evolutionary forces are strong, resource heterogeneity tends to work against cooperation, yet relaxed selection conditions enable it to facilitate cooperation. Inspired by these findings, we also propose a potential application in improving the performance of artificial intelligence systems through policy optimization in multi-agent reinforcement learning. These explorations promise a novel perspective in understanding the evolution of social organisms and the impact of different interactions on the function of natural systems.
{"title":"Agent-based evolutionary game dynamics uncover the dual role of resource heterogeneity in the evolution of cooperation","authors":"Qin Yang , Yi Tang , Dehua Gao","doi":"10.1016/j.jtbi.2024.111952","DOIUrl":"10.1016/j.jtbi.2024.111952","url":null,"abstract":"<div><div>Cooperation is a cornerstone of social harmony and group success. Environmental feedbacks that provide information about resource availability play a crucial role in encouraging cooperation. Previous work indicates that the impact of resource heterogeneity on cooperation depends on the incentive to act in self-interest presented by a situation, demonstrating its potential to both hinder and facilitate cooperation. However, little is known about the underlying evolutionary drivers behind this phenomenon. Leveraging agent-based modeling and game theory, we explore how differences in resource availability across environments influence the evolution of cooperation. Our results show that resource variation hinders cooperation when resources are slowly replenished but supports cooperation when resources are more readily available. Furthermore, simulations in different scenarios suggest that discerning the rate of natural selection acts on strategies under distinct evolutionary dynamics is instrumental in elucidating the intricate nexus between resource variability and cooperation. When evolutionary forces are strong, resource heterogeneity tends to work against cooperation, yet relaxed selection conditions enable it to facilitate cooperation. Inspired by these findings, we also propose a potential application in improving the performance of artificial intelligence systems through policy optimization in multi-agent reinforcement learning. These explorations promise a novel perspective in understanding the evolution of social organisms and the impact of different interactions on the function of natural systems.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111952"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.jtbi.2024.111951
Hannah G. Anderson , Gregory P. Takacs , Jeffrey K. Harrison , Libin Rong , Tracy L. Stepien
The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.
{"title":"Optimal control of combination immunotherapy for a virtual murine cohort in a glioblastoma-immune dynamics model","authors":"Hannah G. Anderson , Gregory P. Takacs , Jeffrey K. Harrison , Libin Rong , Tracy L. Stepien","doi":"10.1016/j.jtbi.2024.111951","DOIUrl":"10.1016/j.jtbi.2024.111951","url":null,"abstract":"<div><div>The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111951"},"PeriodicalIF":1.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.jtbi.2024.111944
Takuyo Aita , Naoto Nemoto
As one of methods for in vitro selection, a flow reactor type washing/selection system seems to be effective, where a ligand library is composed of “genotype–phenotype linking molecules”. In this system, high affinity ligands are selected by their respective “residual ratio” given by , where is the dissociation rate constant and is the washing time. In this paper, we mathematically considered the following possibility. When the washing/selection dynamics obeys the residual ratio deterministically and mole fraction measurement for sampled sequences by next-generation sequencing (NGS) is performed ideally, the “relative value” of for each of high-ranking sequences can be estimated simultaneously. In addition to these, when the residual ratio for the whole ligand population is measured correctly, the “absolute value” for each sequence can be estimated. We deduced formulas to present the relative and absolute estimates, and mathematically analyzed the effect of fluctuations in the number of NGS reads on the estimates in details. These were confirmed by numerical simulations.
{"title":"Mathematical consideration of massive estimation of dissociation rate constant for genotype–phenotype linking molecules bound to targets through washing/selection and next-generation sequencing","authors":"Takuyo Aita , Naoto Nemoto","doi":"10.1016/j.jtbi.2024.111944","DOIUrl":"10.1016/j.jtbi.2024.111944","url":null,"abstract":"<div><div>As one of methods for <em>in vitro</em> selection, a flow reactor type washing/selection system seems to be effective, where a ligand library is composed of “genotype–phenotype linking molecules”. In this system, high affinity ligands are selected by their respective “residual ratio” given by <span><math><mrow><mo>exp</mo><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>off</mi></mrow></msub><mo>×</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>off</mi></mrow></msub></math></span> is the dissociation rate constant and <span><math><mi>t</mi></math></span> is the washing time. In this paper, we mathematically considered the following possibility. When the washing/selection dynamics obeys the residual ratio <span><math><mrow><mo>exp</mo><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>off</mi></mrow></msub><mo>×</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> deterministically and mole fraction measurement for sampled sequences by next-generation sequencing (NGS) is performed ideally, the “relative value” of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>off</mi></mrow></msub></math></span> for each of high-ranking sequences can be estimated simultaneously. In addition to these, when the residual ratio for the whole ligand population is measured correctly, the “absolute value” for each sequence can be estimated. We deduced formulas to present the relative and absolute estimates, and mathematically analyzed the effect of fluctuations in the number of NGS reads on the estimates in details. These were confirmed by numerical simulations.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111944"},"PeriodicalIF":1.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.jtbi.2024.111949
Megan E. Bishop, Maria R. Servedio, Brian A. Lerch
Fear is a taxonomically widespread behavioral response that functions to keep individuals out of danger. Empirical research has demonstrated that a diverse set of strategies are used in order to acquire a fear response across animals. Animals often use a mixed strategy: fear is acquired both innately and through learning. Despite the ubiquity of the fear response, and its established importance for shaping predator–prey interactions, little is known about why different fear acquisition strategies evolve or why mixed strategies appear common. Here, we model the evolution of fear acquisition (learning versus innate) under predation. We assume a tradeoff where individuals that learn fear are at higher risk from predators initially, but eventually obtain a lower risk as they survive predation attempts. We find that frequent predator encounters, predators that are not very dangerous, and effective learning favor the evolution of learned fear. Only pure strategies of fear acquisition evolve unless individuals suffer from either a cost to fear or, especially, a cost to learning, either of which can lead to the evolution of mixed strategies. Our results thus shed light onto the evolution of mixed fear acquisition strategies and open the door to further research on the evolution of fear acquisition.
{"title":"The evolution of fear-acquisition strategies under predation","authors":"Megan E. Bishop, Maria R. Servedio, Brian A. Lerch","doi":"10.1016/j.jtbi.2024.111949","DOIUrl":"10.1016/j.jtbi.2024.111949","url":null,"abstract":"<div><div>Fear is a taxonomically widespread behavioral response that functions to keep individuals out of danger. Empirical research has demonstrated that a diverse set of strategies are used in order to acquire a fear response across animals. Animals often use a mixed strategy: fear is acquired both innately and through learning. Despite the ubiquity of the fear response, and its established importance for shaping predator–prey interactions, little is known about why different fear acquisition strategies evolve or why mixed strategies appear common. Here, we model the evolution of fear acquisition (learning versus innate) under predation. We assume a tradeoff where individuals that learn fear are at higher risk from predators initially, but eventually obtain a lower risk as they survive predation attempts. We find that frequent predator encounters, predators that are not very dangerous, and effective learning favor the evolution of learned fear. Only pure strategies of fear acquisition evolve unless individuals suffer from either a cost to fear or, especially, a cost to learning, either of which can lead to the evolution of mixed strategies. Our results thus shed light onto the evolution of mixed fear acquisition strategies and open the door to further research on the evolution of fear acquisition.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111949"},"PeriodicalIF":1.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.jtbi.2024.111947
Bryce Morsky , Joshua B. Plotkin , Erol Akçay
Previous research has shown how indirect reciprocity can promote cooperation through evolutionary game theoretic models. Most work in this field assumes a separation of time-scales: individuals’ reputations equilibrate at a fast time scale for given frequencies of strategies while the strategies change slowly according to the replicator dynamics. Much of the previous research has focused on the behaviour and stability of equilibria for the replicator dynamics. Here we focus on the underlying reputational dynamics that occur on a fast time scale. We describe reputational dynamics as systems of differential equations and conduct stability analyses on their equilibria. We prove that reputations converge to a unique equilibrium under a solitary observer model for each of the five standard norms and whether assessments are public or private. These results confirm a crucial but previously understudied assumption underlying the theory of indirect reciprocity for the most studied set of norms.
{"title":"Convergence of reputations under indirect reciprocity","authors":"Bryce Morsky , Joshua B. Plotkin , Erol Akçay","doi":"10.1016/j.jtbi.2024.111947","DOIUrl":"10.1016/j.jtbi.2024.111947","url":null,"abstract":"<div><div>Previous research has shown how indirect reciprocity can promote cooperation through evolutionary game theoretic models. Most work in this field assumes a separation of time-scales: individuals’ reputations equilibrate at a fast time scale for given frequencies of strategies while the strategies change slowly according to the replicator dynamics. Much of the previous research has focused on the behaviour and stability of equilibria for the replicator dynamics. Here we focus on the underlying reputational dynamics that occur on a fast time scale. We describe reputational dynamics as systems of differential equations and conduct stability analyses on their equilibria. We prove that reputations converge to a unique equilibrium under a solitary observer model for each of the five standard norms and whether assessments are public or private. These results confirm a crucial but previously understudied assumption underlying the theory of indirect reciprocity for the most studied set of norms.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111947"},"PeriodicalIF":1.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.jtbi.2024.111948
Guangjing Qian , Dan Wu , Lai Zhang , Susanne Kortsch
Climate warming and pharmaceutical contaminants have profound impacts on population dynamics and ecological community structure, yet the consequences of their interactive effects remain poorly understood. Here, we explore how climate warming interacts with pharmaceutical-induced boldness change to affect aquatic ecosystems, built on an empirically well-informed food-chain model, consisting of a size-structured fish consumer, a zooplankton prey, and a fish predator. Climate warming is characterized by both daily mean temperature (DMT) and diurnal temperature range (DTR) in our model. Results show that DMT and high levels of species’ boldness are the primary drivers of community instability. However, their interactive effects can lead to diverse outcomes: from predator collapse to coexistence with seasonality-driven cycles and coexistence with population interaction-driven cycles. The interactive effects are significantly modulated by daily temperature variability, where moderate DTR counteracts the destabilizing interactive effects by increasing consumer reproduction, while large temperature variability considerably reduces consumer biomass, destabilizing the community at high mean temperatures. Our analyses disentangle the respective roles of DMT, DTR and boldness in mediating the response of aquatic ecosystems to the impacts from pharmaceutical contaminants in the context of climate warming. The interactive effects of the environmental stressors reported here underscore the pressing need for studies aimed at quantifying the cumulative impacts of multiple environmental stressors on aquatic ecosystems.
{"title":"Temperature variability regulates the interactive effects of warming and pharmaceutical on aquatic ecosystem dynamics","authors":"Guangjing Qian , Dan Wu , Lai Zhang , Susanne Kortsch","doi":"10.1016/j.jtbi.2024.111948","DOIUrl":"10.1016/j.jtbi.2024.111948","url":null,"abstract":"<div><div>Climate warming and pharmaceutical contaminants have profound impacts on population dynamics and ecological community structure, yet the consequences of their interactive effects remain poorly understood. Here, we explore how climate warming interacts with pharmaceutical-induced boldness change to affect aquatic ecosystems, built on an empirically well-informed food-chain model, consisting of a size-structured fish consumer, a zooplankton prey, and a fish predator. Climate warming is characterized by both daily mean temperature (DMT) and diurnal temperature range (DTR) in our model. Results show that DMT and high levels of species’ boldness are the primary drivers of community instability. However, their interactive effects can lead to diverse outcomes: from predator collapse to coexistence with seasonality-driven cycles and coexistence with population interaction-driven cycles. The interactive effects are significantly modulated by daily temperature variability, where moderate DTR counteracts the destabilizing interactive effects by increasing consumer reproduction, while large temperature variability considerably reduces consumer biomass<em>,</em> destabilizing the community at high mean temperatures. Our analyses disentangle the respective roles of DMT, DTR and boldness in mediating the response of aquatic ecosystems to the impacts from pharmaceutical contaminants in the context of climate warming. The interactive effects of the environmental stressors reported here underscore the pressing need for studies aimed at quantifying the cumulative impacts of multiple environmental stressors on aquatic ecosystems.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111948"},"PeriodicalIF":1.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.jtbi.2024.111942
Daniel Franco , Juan Perán , Juan Segura
Understanding the effect of dispersal on fragmented populations has drawn the attention of ecologists and managers in recent years, and great efforts have been made to understand the impact of dispersal on the total population size. All previous numerical and theoretical findings determined that the possible response scenarios of the overall population size to increasing dispersal are monotonic or hump-shaped, which has become a common assumption in ecology. Against this, we show in this paper that many other response scenarios are possible by using a simple two-patch discrete-time model. This fact evidences the interplay of local dynamics and dispersal and has significant consequences from a management perspective that will be discussed.
{"title":"New insights into the combined effect of dispersal and local dynamics in a two-patch population model","authors":"Daniel Franco , Juan Perán , Juan Segura","doi":"10.1016/j.jtbi.2024.111942","DOIUrl":"10.1016/j.jtbi.2024.111942","url":null,"abstract":"<div><div>Understanding the effect of dispersal on fragmented populations has drawn the attention of ecologists and managers in recent years, and great efforts have been made to understand the impact of dispersal on the total population size. All previous numerical and theoretical findings determined that the possible response scenarios of the overall population size to increasing dispersal are monotonic or hump-shaped, which has become a common assumption in ecology. Against this, we show in this paper that many other response scenarios are possible by using a simple two-patch discrete-time model. This fact evidences the interplay of local dynamics and dispersal and has significant consequences from a management perspective that will be discussed.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111942"},"PeriodicalIF":1.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1016/j.jtbi.2024.111945
Lukas Eigentler , Mattia Sensi
Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.
{"title":"Delayed loss of stability of periodic travelling waves: Insights from the analysis of essential spectra","authors":"Lukas Eigentler , Mattia Sensi","doi":"10.1016/j.jtbi.2024.111945","DOIUrl":"10.1016/j.jtbi.2024.111945","url":null,"abstract":"<div><div>Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111945"},"PeriodicalIF":1.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324002303/pdfft?md5=3013d4efdcdbd16448a87c3fd0061653&pid=1-s2.0-S0022519324002303-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}