Pub Date : 2024-07-30DOI: 10.1140/epjqt/s40507-024-00254-w
Pedro Neto Mendes, Gonçalo Lobato Teixeira, David Pinho, Rui Rocha, Paulo André, Manfred Niehus, Ricardo Faleiro, Davide Rusca, Emmanuel Zambrini Cruzeiro
Quantum key distribution is costly and, at the moment, offers low performance in space applications. Other more recent protocols could offer a potential practical solution to this problem. In this work, a preliminary optical payload design using commercial off-the-shelf elements for a quantum communication downlink in a 3U CubeSat is proposed. It is shown that this quantum state emitter allows the establishment of two types of quantum communication between the satellite and the ground station: quantum key distribution and quantum keyless private communication. Numerical simulations are provided that show the feasibility of the scheme for both protocols as well as their performance. For the simplified BB84, a maximum secret key rate of about 80 kHz and minimum QBER of slightly more than 0.07% is found, at the zenith, while for quantum private keyless communication, a 700 MHz private rate is achieved. This design serves as a platform for the implementation of novel quantum communication protocols that can improve the performance of quantum communications in space.
{"title":"Optical payload design for downlink quantum key distribution and keyless communication using CubeSats","authors":"Pedro Neto Mendes, Gonçalo Lobato Teixeira, David Pinho, Rui Rocha, Paulo André, Manfred Niehus, Ricardo Faleiro, Davide Rusca, Emmanuel Zambrini Cruzeiro","doi":"10.1140/epjqt/s40507-024-00254-w","DOIUrl":"10.1140/epjqt/s40507-024-00254-w","url":null,"abstract":"<div><p>Quantum key distribution is costly and, at the moment, offers low performance in space applications. Other more recent protocols could offer a potential practical solution to this problem. In this work, a preliminary optical payload design using commercial off-the-shelf elements for a quantum communication downlink in a 3U CubeSat is proposed. It is shown that this quantum state emitter allows the establishment of two types of quantum communication between the satellite and the ground station: quantum key distribution and quantum keyless private communication. Numerical simulations are provided that show the feasibility of the scheme for both protocols as well as their performance. For the simplified BB84, a maximum secret key rate of about 80 kHz and minimum QBER of slightly more than 0.07% is found, at the zenith, while for quantum private keyless communication, a 700 MHz private rate is achieved. This design serves as a platform for the implementation of novel quantum communication protocols that can improve the performance of quantum communications in space.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00254-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Estimating the overlap between two states is an important task with several applications in quantum information. However, the typical swap test circuit can only measure a sole pair of quantum states at a time. In this study, a recursive quantum circuit is designed to measure overlaps of n quantum states (left | {phi _{1} } right rangle ,left | {phi _{2} } right rangle ,ldotsleft | {phi _{n} }right rangle ) concurrently with (O(k2^{k})) controlled-swap(CSWAP) gates and (O(k)) ancillary qubits, where (k=left lceil {log n} right rceil ). All pairwise overlaps among input quantum states (|langle phi _{i}|phi _{j}rangle |^{2}) can be obtained in this circuit. Compared with existing scheme for measuring the overlap of multiple quantum states, the circuit provides higher precision and less consumption of ancillary qubits. In addition, some simulation experiments are performed on IBM quantum cloud platform to verify the superiority of this algorithm.
{"title":"Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states","authors":"Wen Liu, Yang-Zhi Li, Han-Wen Yin, Zhi-Rao Wang, Jiang Wu","doi":"10.1140/epjqt/s40507-024-00259-5","DOIUrl":"10.1140/epjqt/s40507-024-00259-5","url":null,"abstract":"<div><p>Estimating the overlap between two states is an important task with several applications in quantum information. However, the typical swap test circuit can only measure a sole pair of quantum states at a time. In this study, a recursive quantum circuit is designed to measure overlaps of <i>n</i> quantum states <span>(left | {phi _{1} } right rangle ,left | {phi _{2} } right rangle ,ldotsleft | {phi _{n} }right rangle )</span> concurrently with <span>(O(k2^{k}))</span> controlled-swap(CSWAP) gates and <span>(O(k))</span> ancillary qubits, where <span>(k=left lceil {log n} right rceil )</span>. All pairwise overlaps among input quantum states <span>(|langle phi _{i}|phi _{j}rangle |^{2})</span> can be obtained in this circuit. Compared with existing scheme for measuring the overlap of multiple quantum states, the circuit provides higher precision and less consumption of ancillary qubits. In addition, some simulation experiments are performed on IBM quantum cloud platform to verify the superiority of this algorithm.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00259-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1140/epjqt/s40507-024-00258-6
Jie Sun, Dunbo Cai, Songfeng Lu, Ling Qian, Runqing Zhang
In this paper, we further verify the validity of the quantum partial adiabatic search algorithm which was initialized in the previous related works by revisiting its quantum circuit model. The main results got here are as follows. When considering implementing quantum partial adiabatic evolution on a quantum circuit, a correction is given for the time slice estimation for the first stage during this approximation in the previous related works, new evidence is provided for a time complexity cost (O(sqrt{N}/M)) of quantum partial adiabatic algorithm is impossible, and the correct time complexity (O(sqrt{N/M})) of it is emphasized once more according to its circuit correspondence, in which N is the total number of elements in the search problem of which M of them are the marked ones. The findings exposed are hopeful for revisiting quantum partial adiabatic evolution and its connection with the quantum circuit model.
在本文中,我们通过重新审视量子电路模型,进一步验证了之前相关研究中初始化的量子部分绝热搜索算法的有效性。主要结果如下。当考虑在量子电路上实现量子偏绝热演化时,对之前相关工作中这种近似过程中第一阶段的时间片估计进行了修正,为量子偏绝热算法的时间复杂度成本$O(sqrt{N}/M)$是不可能的提供了新的证据、并根据其电路对应关系再次强调了其正确的时间复杂度 $O(sqrt{N/M})$,其中 N 是搜索问题中元素的总数,其中 M 是标记的元素。这些发现对重新审视量子偏绝热演化及其与量子电路模型的联系充满希望。
{"title":"On validity of quantum partial adiabatic search","authors":"Jie Sun, Dunbo Cai, Songfeng Lu, Ling Qian, Runqing Zhang","doi":"10.1140/epjqt/s40507-024-00258-6","DOIUrl":"10.1140/epjqt/s40507-024-00258-6","url":null,"abstract":"<div><p>In this paper, we further verify the validity of the quantum partial adiabatic search algorithm which was initialized in the previous related works by revisiting its quantum circuit model. The main results got here are as follows. When considering implementing quantum partial adiabatic evolution on a quantum circuit, a correction is given for the time slice estimation for the first stage during this approximation in the previous related works, new evidence is provided for a time complexity cost <span>(O(sqrt{N}/M))</span> of quantum partial adiabatic algorithm is impossible, and the correct time complexity <span>(O(sqrt{N/M}))</span> of it is emphasized once more according to its circuit correspondence, in which <i>N</i> is the total number of elements in the search problem of which <i>M</i> of them are the marked ones. The findings exposed are hopeful for revisiting quantum partial adiabatic evolution and its connection with the quantum circuit model.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00258-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1140/epjqt/s40507-024-00256-8
Simone Cantori, Andrea Mari, David Vitali, Sebastiano Pilati
We investigate the potential of combining the computational power of noisy quantum computers and of classical scalable convolutional neural networks (CNNs). The goal is to accurately predict exact expectation values of parameterized quantum circuits representing the Trotter-decomposed dynamics of quantum Ising models. By incorporating (simulated) noisy expectation values alongside circuit structure information, our CNNs effectively capture the underlying relationships between circuit architecture and output behaviour, enabling, via transfer learning, also predictions for circuits with more qubits than those included in the training set. Notably, thanks to the quantum information, our CNNs succeed even when supervised learning based only on classical descriptors fails. Furthermore, they outperform a popular error mitigation scheme, namely, zero-noise extrapolation, demonstrating that the synergy between quantum and classical computational tools leads to higher accuracy compared with quantum-only or classical-only approaches. By tuning the noise strength, we explore the crossover from a computationally powerful classical CNN assisted by quantum noisy data, towards rather precise quantum computations, further error-mitigated via classical deep learning.
{"title":"Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation","authors":"Simone Cantori, Andrea Mari, David Vitali, Sebastiano Pilati","doi":"10.1140/epjqt/s40507-024-00256-8","DOIUrl":"10.1140/epjqt/s40507-024-00256-8","url":null,"abstract":"<div><p>We investigate the potential of combining the computational power of noisy quantum computers and of classical scalable convolutional neural networks (CNNs). The goal is to accurately predict exact expectation values of parameterized quantum circuits representing the Trotter-decomposed dynamics of quantum Ising models. By incorporating (simulated) noisy expectation values alongside circuit structure information, our CNNs effectively capture the underlying relationships between circuit architecture and output behaviour, enabling, via transfer learning, also predictions for circuits with more qubits than those included in the training set. Notably, thanks to the quantum information, our CNNs succeed even when supervised learning based only on classical descriptors fails. Furthermore, they outperform a popular error mitigation scheme, namely, zero-noise extrapolation, demonstrating that the synergy between quantum and classical computational tools leads to higher accuracy compared with quantum-only or classical-only approaches. By tuning the noise strength, we explore the crossover from a computationally powerful classical CNN assisted by quantum noisy data, towards rather precise quantum computations, further error-mitigated via classical deep learning.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00256-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Variational Quantum Algorithms (VQAs) have made great success in the Noisy Intermediate-Scale Quantum (NISQ) era due to their relative resilience to noise and high flexibility relative to quantum resources. Quantum Architecture Search (QAS) aims to enhance the performance of VQAs by refining the structure of the adopted Parameterized Quantum Circuit (PQC). QAS is garnering increased attention owing to its automation, reduced reliance on expert experience, and its ability to achieve better performance while requiring fewer quantum gates than manually designed circuits. However, existing QAS algorithms optimize the structure from scratch for each VQA without using any prior experience, rendering the process inefficient and time-consuming. Moreover, determining the number of quantum gates, a crucial hyper-parameter in these algorithms is a challenging and time-consuming task. To mitigate these challenges, we accelerate the QAS algorithm via a meta-trained generator. The proposed algorithm directly generates high-performance circuits for a new VQA by utilizing a meta-trained Variational AutoEncoder (VAE). The number of quantum gates required in the designed circuit is automatically determined based on meta-knowledge learned from a variety of training tasks. Furthermore, we have developed a meta-predictor to filter out circuits with suboptimal performance, thereby accelerating the algorithm. Simulation results on variational quantum compiling and Quantum Approximation Optimization Algorithm (QAOA) demonstrate the superior performance of our method over a state-of-the-art algorithm, namely Differentiable Quantum Architecture Search (DQAS).
{"title":"A meta-trained generator for quantum architecture search","authors":"Zhimin He, Chuangtao Chen, Zhengjiang Li, Haozhen Situ, Fei Zhang, Shenggen Zheng, Lvzhou Li","doi":"10.1140/epjqt/s40507-024-00255-9","DOIUrl":"10.1140/epjqt/s40507-024-00255-9","url":null,"abstract":"<div><p>Variational Quantum Algorithms (VQAs) have made great success in the Noisy Intermediate-Scale Quantum (NISQ) era due to their relative resilience to noise and high flexibility relative to quantum resources. Quantum Architecture Search (QAS) aims to enhance the performance of VQAs by refining the structure of the adopted Parameterized Quantum Circuit (PQC). QAS is garnering increased attention owing to its automation, reduced reliance on expert experience, and its ability to achieve better performance while requiring fewer quantum gates than manually designed circuits. However, existing QAS algorithms optimize the structure from scratch for each VQA without using any prior experience, rendering the process inefficient and time-consuming. Moreover, determining the number of quantum gates, a crucial hyper-parameter in these algorithms is a challenging and time-consuming task. To mitigate these challenges, we accelerate the QAS algorithm via a meta-trained generator. The proposed algorithm directly generates high-performance circuits for a new VQA by utilizing a meta-trained Variational AutoEncoder (VAE). The number of quantum gates required in the designed circuit is automatically determined based on meta-knowledge learned from a variety of training tasks. Furthermore, we have developed a meta-predictor to filter out circuits with suboptimal performance, thereby accelerating the algorithm. Simulation results on variational quantum compiling and Quantum Approximation Optimization Algorithm (QAOA) demonstrate the superior performance of our method over a state-of-the-art algorithm, namely Differentiable Quantum Architecture Search (DQAS).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00255-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1140/epjqt/s40507-024-00250-0
Anastasiia S. Nikolaeva, Evgeniy O. Kiktenko, Aleksey K. Fedorov
The development of a universal fault-tolerant quantum computer that can solve efficiently various difficult computational problems is an outstanding challenge for science and technology. In this work, we propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits). Our method uses a transpilation of a circuit in the standard qubit form, which depends on the characteristics of a qudit-based processor, such as the number of available qudits and the number of accessible levels. This approach provides a qubit-to-qudit mapping and comparison to a standard realization of quantum algorithms highlighting potential advantages of qudits. We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set. We then illustrate our method by considering an example of an efficient implementation of a 6-qubit quantum algorithm with qudits. In this particular example, we demonstrate how using qudits allows a decreasing amount of two-body interactions in the qubit circuit implementation. We expect that our findings are of relevance for ongoing experiments with noisy intermediate-scale quantum devices that operate with information carriers allowing qudit encodings, such as trapped ions and neutral atoms, as well as optical and solid-state systems.
{"title":"Efficient realization of quantum algorithms with qudits","authors":"Anastasiia S. Nikolaeva, Evgeniy O. Kiktenko, Aleksey K. Fedorov","doi":"10.1140/epjqt/s40507-024-00250-0","DOIUrl":"10.1140/epjqt/s40507-024-00250-0","url":null,"abstract":"<div><p>The development of a universal fault-tolerant quantum computer that can solve efficiently various difficult computational problems is an outstanding challenge for science and technology. In this work, we propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits). Our method uses a transpilation of a circuit in the standard qubit form, which depends on the characteristics of a qudit-based processor, such as the number of available qudits and the number of accessible levels. This approach provides a qubit-to-qudit mapping and comparison to a standard realization of quantum algorithms highlighting potential advantages of qudits. We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set. We then illustrate our method by considering an example of an efficient implementation of a 6-qubit quantum algorithm with qudits. In this particular example, we demonstrate how using qudits allows a decreasing amount of two-body interactions in the qubit circuit implementation. We expect that our findings are of relevance for ongoing experiments with noisy intermediate-scale quantum devices that operate with information carriers allowing qudit encodings, such as trapped ions and neutral atoms, as well as optical and solid-state systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00250-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1140/epjqt/s40507-024-00253-x
Koichi Miyamoto
Quantum amplitude estimation (QAE) is a pivotal quantum algorithm to estimate the squared amplitude a of the target basis state in a quantum state (|{Phi}rangle ). Various improvements on the original quantum phase estimation-based QAE have been proposed for resource reduction. One of such improved versions is iterative quantum amplitude estimation (IQAE), which outputs an estimate â of a through the iterated rounds of the measurements on the quantum states like (G^{k}|{Phi}rangle ), with the number k of operations of the Grover operator G (the Grover number) and the shot number determined adaptively. This paper investigates the bias in IQAE. Through the numerical experiments to simulate IQAE, we reveal that the estimate by IQAE is biased and the bias is enhanced for some specific values of a. We see that the termination criterion in IQAE that the estimated accuracy of â falls below the threshold is a source of the bias. Besides, we observe that (k_{mathrm{fin}}), the Grover number in the final round, and (f_{mathrm{fin}}), a quantity affecting the probability distribution of measurement outcomes in the final round, are the key factors to determine the bias, and the bias enhancement for specific values of a is due to the skewed distribution of ((k_{mathrm{fin}},f_{mathrm{fin}})). We also present a bias mitigation method: just re-executing the final round with the Grover number and the shot number fixed.
量子振幅估计(QAE)是一种关键的量子算法,用于估计量子态(|{Phi}rangle )中目标基态的振幅平方 a。为了减少资源,人们对原始的基于量子相位估计的 QAE 提出了各种改进方案。其中一个改进版本是迭代量子振幅估计(IQAE),它通过对量子态的迭代轮测量输出一个估计值â,如(G^{k}|{Phi}rangle ),格罗弗算子 G 的运算次数 k(格罗弗数)和射击数是自适应确定的。本文研究了 IQAE 中的偏差。通过模拟 IQAE 的数值实验,我们发现 IQAE 的估计值是有偏差的,并且在某些特定的 a 值下偏差会增强。此外,我们还发现最后一轮的格罗弗数(k_{/mathrm{fin}})和影响最后一轮测量结果概率分布的量(f_{/mathrm{fin}})是决定偏差的关键因素,而特定 a 值的偏差增强是由于((k_{/mathrm{fin}},f_{/mathrm{fin}}))的倾斜分布造成的。我们还提出了一种减轻偏差的方法:只需在固定格罗弗数和射击数的情况下重新执行最后一轮。
{"title":"On the bias in iterative quantum amplitude estimation","authors":"Koichi Miyamoto","doi":"10.1140/epjqt/s40507-024-00253-x","DOIUrl":"10.1140/epjqt/s40507-024-00253-x","url":null,"abstract":"<div><p>Quantum amplitude estimation (QAE) is a pivotal quantum algorithm to estimate the squared amplitude <i>a</i> of the target basis state in a quantum state <span>(|{Phi}rangle )</span>. Various improvements on the original quantum phase estimation-based QAE have been proposed for resource reduction. One of such improved versions is iterative quantum amplitude estimation (IQAE), which outputs an estimate <i>â</i> of <i>a</i> through the iterated rounds of the measurements on the quantum states like <span>(G^{k}|{Phi}rangle )</span>, with the number <i>k</i> of operations of the Grover operator <i>G</i> (the Grover number) and the shot number determined adaptively. This paper investigates the bias in IQAE. Through the numerical experiments to simulate IQAE, we reveal that the estimate by IQAE is biased and the bias is enhanced for some specific values of <i>a</i>. We see that the termination criterion in IQAE that the estimated accuracy of <i>â</i> falls below the threshold is a source of the bias. Besides, we observe that <span>(k_{mathrm{fin}})</span>, the Grover number in the final round, and <span>(f_{mathrm{fin}})</span>, a quantity affecting the probability distribution of measurement outcomes in the final round, are the key factors to determine the bias, and the bias enhancement for specific values of <i>a</i> is due to the skewed distribution of <span>((k_{mathrm{fin}},f_{mathrm{fin}}))</span>. We also present a bias mitigation method: just re-executing the final round with the Grover number and the shot number fixed.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00253-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1140/epjqt/s40507-024-00252-y
Greeshma Gopinath, Yong Li, Sankar Davuluri
In this study, a method for entangling two spatially separated output laser fields from an optomechanical cavity is proposed. In the existing standard methods, entanglement is created by driving the two-mode squeezing part of the linearized optomechanical interaction;, however our method generates entanglement using the quantum back-action nullifying meter technique. As a result, entanglement can be generated outside the blue sideband frequency in both resolved and unresolved sideband regimes. We further show that the system is stable in the entire region where the Duan criterion for inseparability is fulfilled. The effect of thermal noise on the generated entanglement is examined. Finally, we compare this technique with standard methods for entanglement generation using optomechanics.
{"title":"Continuous variable entanglement between propagating optical modes using optomechanics","authors":"Greeshma Gopinath, Yong Li, Sankar Davuluri","doi":"10.1140/epjqt/s40507-024-00252-y","DOIUrl":"10.1140/epjqt/s40507-024-00252-y","url":null,"abstract":"<div><p>In this study, a method for entangling two spatially separated output laser fields from an optomechanical cavity is proposed. In the existing standard methods, entanglement is created by driving the two-mode squeezing part of the linearized optomechanical interaction;, however our method generates entanglement using the quantum back-action nullifying meter technique. As a result, entanglement can be generated outside the blue sideband frequency in both resolved and unresolved sideband regimes. We further show that the system is stable in the entire region where the Duan criterion for inseparability is fulfilled. The effect of thermal noise on the generated entanglement is examined. Finally, we compare this technique with standard methods for entanglement generation using optomechanics.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00252-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1140/epjqt/s40507-024-00251-z
Jia-Hao Li, Jie Tang, Xing-Yu Wang, Yang Xue, Hui-Cun Yu, Zhi-Feng Deng, Yue-Xiang Cao, Ying Liu, Dan Wu, Hao-Ran Hu, Ya Wang, Hua-Zhi Lun, Jia-Hua Wei, Bo Zhang, Bo Liu, Lei Shi
High-dimensional quantum key distribution (HD-QKD) encoded by orbital angular momentum (OAM) presents significant advantages in terms of information capacity. However, perturbations caused by free-space atmospheric turbulence decrease the performance of the system by introducing random fluctuations in the transmittance of OAM photons. Currently, the theoretical performance analysis of OAM-encoded QKD systems exists a gap when concerning the statistical distribution under the free-space link. In this article, we analyzed the security of QKD systems by combining probability distribution of transmission coefficient (PDTC) of OAM with decoy-state BB84 method. To address the problem that the invalid key rate is calculated in the part transmittance interval of the post-processing process, an intelligent threshold method based on neural network is proposed to improve OAM-encoded QKD, which aims to conserve computing resources and enhance system efficiency. Our findings reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant plays a crucial role in ensuring secure key generation. Meanwhile, the training error of neural network is at the magnitude around 10−3, indicating the ability to predict optimization parameters quickly and accurately. Our work contributes to the advancement of parameter optimization and prediction for free-space OAM-encoded HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the development of free-space experimental setups.
{"title":"An intelligent threshold selection method to improve orbital angular momentum-encoded quantum key distribution under turbulence","authors":"Jia-Hao Li, Jie Tang, Xing-Yu Wang, Yang Xue, Hui-Cun Yu, Zhi-Feng Deng, Yue-Xiang Cao, Ying Liu, Dan Wu, Hao-Ran Hu, Ya Wang, Hua-Zhi Lun, Jia-Hua Wei, Bo Zhang, Bo Liu, Lei Shi","doi":"10.1140/epjqt/s40507-024-00251-z","DOIUrl":"10.1140/epjqt/s40507-024-00251-z","url":null,"abstract":"<div><p>High-dimensional quantum key distribution (HD-QKD) encoded by orbital angular momentum (OAM) presents significant advantages in terms of information capacity. However, perturbations caused by free-space atmospheric turbulence decrease the performance of the system by introducing random fluctuations in the transmittance of OAM photons. Currently, the theoretical performance analysis of OAM-encoded QKD systems exists a gap when concerning the statistical distribution under the free-space link. In this article, we analyzed the security of QKD systems by combining probability distribution of transmission coefficient (PDTC) of OAM with decoy-state BB84 method. To address the problem that the invalid key rate is calculated in the part transmittance interval of the post-processing process, an intelligent threshold method based on neural network is proposed to improve OAM-encoded QKD, which aims to conserve computing resources and enhance system efficiency. Our findings reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant plays a crucial role in ensuring secure key generation. Meanwhile, the training error of neural network is at the magnitude around 10<sup>−3</sup>, indicating the ability to predict optimization parameters quickly and accurately. Our work contributes to the advancement of parameter optimization and prediction for free-space OAM-encoded HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the development of free-space experimental setups.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00251-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1140/epjqt/s40507-024-00240-2
S. Ujeniuc, R. Suvaila
In the context of the second quantum revolution, the ability to manipulate quantum systems is already used for various techniques and a growing number of technology demonstrators, mostly with low energy photons. In this frame, our intention is to extend quantum technologies to gamma photons. Our aim is to take advantage of resources brought by entanglement with higher energy particles, particularly electron-positron annihilation quanta. Tools for low frequency quantum experiments are not suitable for penetrant radiation, consequently we need to use effects typical to the keV-MeV energy range instead. High energy photon protocols would include fundamental properties testing, industrial imaging, quantum random number generators, quantum simulators, military applications and improvement of already existing medical procedures. In this paper we review some important steps in the study of annihilation photon correlations, we point out the experimental differences and necessities with respect to the energy increase in quantum photonic experiments and we describe the design of a quantum gamma device we propose for experiments meant to prove feasibility of gamma ray based protocols. The perspective behind our project is to evidence the possibility to communicate via entangled quanta through media which are not transparent for low energy photons.
{"title":"Towards quantum technologies with gamma photons","authors":"S. Ujeniuc, R. Suvaila","doi":"10.1140/epjqt/s40507-024-00240-2","DOIUrl":"10.1140/epjqt/s40507-024-00240-2","url":null,"abstract":"<div><p>In the context of the second quantum revolution, the ability to manipulate quantum systems is already used for various techniques and a growing number of technology demonstrators, mostly with low energy photons. In this frame, our intention is to extend quantum technologies to gamma photons. Our aim is to take advantage of resources brought by entanglement with higher energy particles, particularly electron-positron annihilation quanta. Tools for low frequency quantum experiments are not suitable for penetrant radiation, consequently we need to use effects typical to the keV-MeV energy range instead. High energy photon protocols would include fundamental properties testing, industrial imaging, quantum random number generators, quantum simulators, military applications and improvement of already existing medical procedures. In this paper we review some important steps in the study of annihilation photon correlations, we point out the experimental differences and necessities with respect to the energy increase in quantum photonic experiments and we describe the design of a quantum gamma device we propose for experiments meant to prove feasibility of gamma ray based protocols. The perspective behind our project is to evidence the possibility to communicate via entangled quanta through media which are not transparent for low energy photons.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00240-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}