首页 > 最新文献

EPJ Quantum Technology最新文献

英文 中文
Optical payload design for downlink quantum key distribution and keyless communication using CubeSats 利用立方体卫星进行下行链路量子密钥分发和无密钥通信的光学有效载荷设计
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-30 DOI: 10.1140/epjqt/s40507-024-00254-w
Pedro Neto Mendes, Gonçalo Lobato Teixeira, David Pinho, Rui Rocha, Paulo André, Manfred Niehus, Ricardo Faleiro, Davide Rusca, Emmanuel Zambrini Cruzeiro

Quantum key distribution is costly and, at the moment, offers low performance in space applications. Other more recent protocols could offer a potential practical solution to this problem. In this work, a preliminary optical payload design using commercial off-the-shelf elements for a quantum communication downlink in a 3U CubeSat is proposed. It is shown that this quantum state emitter allows the establishment of two types of quantum communication between the satellite and the ground station: quantum key distribution and quantum keyless private communication. Numerical simulations are provided that show the feasibility of the scheme for both protocols as well as their performance. For the simplified BB84, a maximum secret key rate of about 80 kHz and minimum QBER of slightly more than 0.07% is found, at the zenith, while for quantum private keyless communication, a 700 MHz private rate is achieved. This design serves as a platform for the implementation of novel quantum communication protocols that can improve the performance of quantum communications in space.

量子密钥分发成本高昂,目前在空间应用中性能较低。其他更先进的协议可以为这一问题提供潜在的实用解决方案。在这项工作中,提出了一个初步的光学有效载荷设计,使用商用现成元件在 3U 立方体卫星中实现量子通信下行链路。研究表明,这种量子态发射器可以在卫星和地面站之间建立两种类型的量子通信:量子密钥分发和量子无钥私人通信。数值模拟显示了这两种协议方案的可行性及其性能。对于简化的 BB84,发现天顶处的最大秘钥速率约为 80 kHz,最小 QBER 略高于 0.07%,而对于量子无钥私人通信,则实现了 700 MHz 的私人速率。这一设计可作为实施新型量子通信协议的平台,从而提高空间量子通信的性能。
{"title":"Optical payload design for downlink quantum key distribution and keyless communication using CubeSats","authors":"Pedro Neto Mendes,&nbsp;Gonçalo Lobato Teixeira,&nbsp;David Pinho,&nbsp;Rui Rocha,&nbsp;Paulo André,&nbsp;Manfred Niehus,&nbsp;Ricardo Faleiro,&nbsp;Davide Rusca,&nbsp;Emmanuel Zambrini Cruzeiro","doi":"10.1140/epjqt/s40507-024-00254-w","DOIUrl":"10.1140/epjqt/s40507-024-00254-w","url":null,"abstract":"<div><p>Quantum key distribution is costly and, at the moment, offers low performance in space applications. Other more recent protocols could offer a potential practical solution to this problem. In this work, a preliminary optical payload design using commercial off-the-shelf elements for a quantum communication downlink in a 3U CubeSat is proposed. It is shown that this quantum state emitter allows the establishment of two types of quantum communication between the satellite and the ground station: quantum key distribution and quantum keyless private communication. Numerical simulations are provided that show the feasibility of the scheme for both protocols as well as their performance. For the simplified BB84, a maximum secret key rate of about 80 kHz and minimum QBER of slightly more than 0.07% is found, at the zenith, while for quantum private keyless communication, a 700 MHz private rate is achieved. This design serves as a platform for the implementation of novel quantum communication protocols that can improve the performance of quantum communications in space.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00254-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states 量子多态交换测试:一种估算任意数量量子态重叠的算法
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1140/epjqt/s40507-024-00259-5
Wen Liu, Yang-Zhi Li, Han-Wen Yin, Zhi-Rao Wang, Jiang Wu

Estimating the overlap between two states is an important task with several applications in quantum information. However, the typical swap test circuit can only measure a sole pair of quantum states at a time. In this study, a recursive quantum circuit is designed to measure overlaps of n quantum states (left | {phi _{1} } right rangle ,left | {phi _{2} } right rangle ,ldotsleft | {phi _{n} }right rangle ) concurrently with (O(k2^{k})) controlled-swap(CSWAP) gates and (O(k)) ancillary qubits, where (k=left lceil {log n} right rceil ). All pairwise overlaps among input quantum states (|langle phi _{i}|phi _{j}rangle |^{2}) can be obtained in this circuit. Compared with existing scheme for measuring the overlap of multiple quantum states, the circuit provides higher precision and less consumption of ancillary qubits. In addition, some simulation experiments are performed on IBM quantum cloud platform to verify the superiority of this algorithm.

估算两个状态之间的重叠是一项重要任务,在量子信息领域有多种应用。然而,典型的交换测试电路一次只能测量一对量子态。本研究设计了一种递归量子电路,用于测量 n 个量子态的重叠。}right rangle ,left | {phi _{2} }}| {phi _{n} }同时使用 $O(k2^{k})$ 受控交换(CSWAP)门和 $O(k)$ 辅助量子比特,其中 $k=left lceil {log n} 。}right rceil $ 。输入量子态之间的所有成对重叠 $|langle phi _{i}|phi _{j}rangle |^{2}$ 都可以在这个电路中得到。与现有的测量多个量子态重叠的方案相比,该电路具有更高的精度和更少的辅助量子比特消耗。此外,我们还在IBM量子云平台上进行了一些仿真实验,以验证该算法的优越性。
{"title":"Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states","authors":"Wen Liu,&nbsp;Yang-Zhi Li,&nbsp;Han-Wen Yin,&nbsp;Zhi-Rao Wang,&nbsp;Jiang Wu","doi":"10.1140/epjqt/s40507-024-00259-5","DOIUrl":"10.1140/epjqt/s40507-024-00259-5","url":null,"abstract":"<div><p>Estimating the overlap between two states is an important task with several applications in quantum information. However, the typical swap test circuit can only measure a sole pair of quantum states at a time. In this study, a recursive quantum circuit is designed to measure overlaps of <i>n</i> quantum states <span>(left | {phi _{1} } right rangle ,left | {phi _{2} } right rangle ,ldotsleft | {phi _{n} }right rangle )</span> concurrently with <span>(O(k2^{k}))</span> controlled-swap(CSWAP) gates and <span>(O(k))</span> ancillary qubits, where <span>(k=left lceil {log n} right rceil )</span>. All pairwise overlaps among input quantum states <span>(|langle phi _{i}|phi _{j}rangle |^{2})</span> can be obtained in this circuit. Compared with existing scheme for measuring the overlap of multiple quantum states, the circuit provides higher precision and less consumption of ancillary qubits. In addition, some simulation experiments are performed on IBM quantum cloud platform to verify the superiority of this algorithm.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00259-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On validity of quantum partial adiabatic search 论量子部分绝热搜索的有效性
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1140/epjqt/s40507-024-00258-6
Jie Sun, Dunbo Cai, Songfeng Lu, Ling Qian, Runqing Zhang

In this paper, we further verify the validity of the quantum partial adiabatic search algorithm which was initialized in the previous related works by revisiting its quantum circuit model. The main results got here are as follows. When considering implementing quantum partial adiabatic evolution on a quantum circuit, a correction is given for the time slice estimation for the first stage during this approximation in the previous related works, new evidence is provided for a time complexity cost (O(sqrt{N}/M)) of quantum partial adiabatic algorithm is impossible, and the correct time complexity (O(sqrt{N/M})) of it is emphasized once more according to its circuit correspondence, in which N is the total number of elements in the search problem of which M of them are the marked ones. The findings exposed are hopeful for revisiting quantum partial adiabatic evolution and its connection with the quantum circuit model.

在本文中,我们通过重新审视量子电路模型,进一步验证了之前相关研究中初始化的量子部分绝热搜索算法的有效性。主要结果如下。当考虑在量子电路上实现量子偏绝热演化时,对之前相关工作中这种近似过程中第一阶段的时间片估计进行了修正,为量子偏绝热算法的时间复杂度成本$O(sqrt{N}/M)$是不可能的提供了新的证据、并根据其电路对应关系再次强调了其正确的时间复杂度 $O(sqrt{N/M})$,其中 N 是搜索问题中元素的总数,其中 M 是标记的元素。这些发现对重新审视量子偏绝热演化及其与量子电路模型的联系充满希望。
{"title":"On validity of quantum partial adiabatic search","authors":"Jie Sun,&nbsp;Dunbo Cai,&nbsp;Songfeng Lu,&nbsp;Ling Qian,&nbsp;Runqing Zhang","doi":"10.1140/epjqt/s40507-024-00258-6","DOIUrl":"10.1140/epjqt/s40507-024-00258-6","url":null,"abstract":"<div><p>In this paper, we further verify the validity of the quantum partial adiabatic search algorithm which was initialized in the previous related works by revisiting its quantum circuit model. The main results got here are as follows. When considering implementing quantum partial adiabatic evolution on a quantum circuit, a correction is given for the time slice estimation for the first stage during this approximation in the previous related works, new evidence is provided for a time complexity cost <span>(O(sqrt{N}/M))</span> of quantum partial adiabatic algorithm is impossible, and the correct time complexity <span>(O(sqrt{N/M}))</span> of it is emphasized once more according to its circuit correspondence, in which <i>N</i> is the total number of elements in the search problem of which <i>M</i> of them are the marked ones. The findings exposed are hopeful for revisiting quantum partial adiabatic evolution and its connection with the quantum circuit model.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00258-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation 噪声量子计算机与可扩展经典深度学习之间的协同作用,实现量子错误缓解
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-15 DOI: 10.1140/epjqt/s40507-024-00256-8
Simone Cantori, Andrea Mari, David Vitali, Sebastiano Pilati

We investigate the potential of combining the computational power of noisy quantum computers and of classical scalable convolutional neural networks (CNNs). The goal is to accurately predict exact expectation values of parameterized quantum circuits representing the Trotter-decomposed dynamics of quantum Ising models. By incorporating (simulated) noisy expectation values alongside circuit structure information, our CNNs effectively capture the underlying relationships between circuit architecture and output behaviour, enabling, via transfer learning, also predictions for circuits with more qubits than those included in the training set. Notably, thanks to the quantum information, our CNNs succeed even when supervised learning based only on classical descriptors fails. Furthermore, they outperform a popular error mitigation scheme, namely, zero-noise extrapolation, demonstrating that the synergy between quantum and classical computational tools leads to higher accuracy compared with quantum-only or classical-only approaches. By tuning the noise strength, we explore the crossover from a computationally powerful classical CNN assisted by quantum noisy data, towards rather precise quantum computations, further error-mitigated via classical deep learning.

我们研究了将噪声量子计算机的计算能力与经典可扩展卷积神经网络(CNN)的计算能力相结合的潜力。我们的目标是准确预测代表量子伊辛模型特罗特分解动力学的参数化量子电路的精确期望值。通过将(模拟的)噪声期望值与电路结构信息结合起来,我们的 CNNs 有效地捕捉到了电路结构与输出行为之间的潜在关系,通过迁移学习,还能预测比训练集所包含的量子比特更多的电路。值得注意的是,得益于量子信息,即使仅基于经典描述符的监督学习失败,我们的 CNN 也能取得成功。此外,它们的表现优于一种流行的误差缓解方案,即零噪声外推法,这表明量子计算工具与经典计算工具之间的协同作用能带来比纯量子或纯经典方法更高的准确性。通过调整噪声强度,我们探索了从由量子噪声数据辅助的计算能力强大的经典 CNN 到相当精确的量子计算,再通过经典深度学习进行误差缓解的交叉过程。
{"title":"Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation","authors":"Simone Cantori,&nbsp;Andrea Mari,&nbsp;David Vitali,&nbsp;Sebastiano Pilati","doi":"10.1140/epjqt/s40507-024-00256-8","DOIUrl":"10.1140/epjqt/s40507-024-00256-8","url":null,"abstract":"<div><p>We investigate the potential of combining the computational power of noisy quantum computers and of classical scalable convolutional neural networks (CNNs). The goal is to accurately predict exact expectation values of parameterized quantum circuits representing the Trotter-decomposed dynamics of quantum Ising models. By incorporating (simulated) noisy expectation values alongside circuit structure information, our CNNs effectively capture the underlying relationships between circuit architecture and output behaviour, enabling, via transfer learning, also predictions for circuits with more qubits than those included in the training set. Notably, thanks to the quantum information, our CNNs succeed even when supervised learning based only on classical descriptors fails. Furthermore, they outperform a popular error mitigation scheme, namely, zero-noise extrapolation, demonstrating that the synergy between quantum and classical computational tools leads to higher accuracy compared with quantum-only or classical-only approaches. By tuning the noise strength, we explore the crossover from a computationally powerful classical CNN assisted by quantum noisy data, towards rather precise quantum computations, further error-mitigated via classical deep learning.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00256-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A meta-trained generator for quantum architecture search 用于量子架构搜索的元训练生成器
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-09 DOI: 10.1140/epjqt/s40507-024-00255-9
Zhimin He, Chuangtao Chen, Zhengjiang Li, Haozhen Situ, Fei Zhang, Shenggen Zheng, Lvzhou Li

Variational Quantum Algorithms (VQAs) have made great success in the Noisy Intermediate-Scale Quantum (NISQ) era due to their relative resilience to noise and high flexibility relative to quantum resources. Quantum Architecture Search (QAS) aims to enhance the performance of VQAs by refining the structure of the adopted Parameterized Quantum Circuit (PQC). QAS is garnering increased attention owing to its automation, reduced reliance on expert experience, and its ability to achieve better performance while requiring fewer quantum gates than manually designed circuits. However, existing QAS algorithms optimize the structure from scratch for each VQA without using any prior experience, rendering the process inefficient and time-consuming. Moreover, determining the number of quantum gates, a crucial hyper-parameter in these algorithms is a challenging and time-consuming task. To mitigate these challenges, we accelerate the QAS algorithm via a meta-trained generator. The proposed algorithm directly generates high-performance circuits for a new VQA by utilizing a meta-trained Variational AutoEncoder (VAE). The number of quantum gates required in the designed circuit is automatically determined based on meta-knowledge learned from a variety of training tasks. Furthermore, we have developed a meta-predictor to filter out circuits with suboptimal performance, thereby accelerating the algorithm. Simulation results on variational quantum compiling and Quantum Approximation Optimization Algorithm (QAOA) demonstrate the superior performance of our method over a state-of-the-art algorithm, namely Differentiable Quantum Architecture Search (DQAS).

变分量子算法(Variational Quantum Algorithms,VQAs)在噪声中量子(Noisy Intermediate-Scale Quantum,NISQ)时代取得了巨大的成功,这得益于其对噪声的相对弹性以及相对于量子资源的高灵活性。量子架构搜索(QAS)旨在通过改进所采用的参数化量子电路(PQC)的结构来提高 VQAs 的性能。QAS 自动化程度高,减少了对专家经验的依赖,而且与人工设计的电路相比,QAS 需要的量子门更少,却能实现更高的性能,因此受到越来越多的关注。然而,现有的 QAS 算法在不利用任何先前经验的情况下,从头开始优化每个 VQA 的结构,这使得整个过程既低效又耗时。此外,确定量子门的数量(这些算法中的一个关键超参数)是一项具有挑战性且耗时的任务。为了减轻这些挑战,我们通过元训练生成器加速了 QAS 算法。所提出的算法通过利用元训练变异自动编码器(VAE),直接为新的 VQA 生成高性能电路。设计电路所需的量子门数量是根据从各种训练任务中学到的元知识自动确定的。此外,我们还开发了一种元预测器,用于过滤性能不佳的电路,从而加速算法。变量子编译和量子逼近优化算法(QAOA)的仿真结果表明,我们的方法比最先进的算法(即可微分量子架构搜索(DQAS))性能更优。
{"title":"A meta-trained generator for quantum architecture search","authors":"Zhimin He,&nbsp;Chuangtao Chen,&nbsp;Zhengjiang Li,&nbsp;Haozhen Situ,&nbsp;Fei Zhang,&nbsp;Shenggen Zheng,&nbsp;Lvzhou Li","doi":"10.1140/epjqt/s40507-024-00255-9","DOIUrl":"10.1140/epjqt/s40507-024-00255-9","url":null,"abstract":"<div><p>Variational Quantum Algorithms (VQAs) have made great success in the Noisy Intermediate-Scale Quantum (NISQ) era due to their relative resilience to noise and high flexibility relative to quantum resources. Quantum Architecture Search (QAS) aims to enhance the performance of VQAs by refining the structure of the adopted Parameterized Quantum Circuit (PQC). QAS is garnering increased attention owing to its automation, reduced reliance on expert experience, and its ability to achieve better performance while requiring fewer quantum gates than manually designed circuits. However, existing QAS algorithms optimize the structure from scratch for each VQA without using any prior experience, rendering the process inefficient and time-consuming. Moreover, determining the number of quantum gates, a crucial hyper-parameter in these algorithms is a challenging and time-consuming task. To mitigate these challenges, we accelerate the QAS algorithm via a meta-trained generator. The proposed algorithm directly generates high-performance circuits for a new VQA by utilizing a meta-trained Variational AutoEncoder (VAE). The number of quantum gates required in the designed circuit is automatically determined based on meta-knowledge learned from a variety of training tasks. Furthermore, we have developed a meta-predictor to filter out circuits with suboptimal performance, thereby accelerating the algorithm. Simulation results on variational quantum compiling and Quantum Approximation Optimization Algorithm (QAOA) demonstrate the superior performance of our method over a state-of-the-art algorithm, namely Differentiable Quantum Architecture Search (DQAS).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00255-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient realization of quantum algorithms with qudits 用量子比特高效实现量子算法
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-26 DOI: 10.1140/epjqt/s40507-024-00250-0
Anastasiia S. Nikolaeva, Evgeniy O. Kiktenko, Aleksey K. Fedorov

The development of a universal fault-tolerant quantum computer that can solve efficiently various difficult computational problems is an outstanding challenge for science and technology. In this work, we propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits). Our method uses a transpilation of a circuit in the standard qubit form, which depends on the characteristics of a qudit-based processor, such as the number of available qudits and the number of accessible levels. This approach provides a qubit-to-qudit mapping and comparison to a standard realization of quantum algorithms highlighting potential advantages of qudits. We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set. We then illustrate our method by considering an example of an efficient implementation of a 6-qubit quantum algorithm with qudits. In this particular example, we demonstrate how using qudits allows a decreasing amount of two-body interactions in the qubit circuit implementation. We expect that our findings are of relevance for ongoing experiments with noisy intermediate-scale quantum devices that operate with information carriers allowing qudit encodings, such as trapped ions and neutral atoms, as well as optical and solid-state systems.

开发能高效解决各种计算难题的通用容错量子计算机是科学与技术领域面临的一项严峻挑战。在这项工作中,我们提出了一种利用多级量子系统(量子比特)高效实现量子算法的技术。我们的方法使用标准量子比特形式的电路转译,这取决于基于量子比特的处理器的特性,如可用量子比特的数量和可访问量级的数量。这种方法提供了量子比特到量子比特的映射,并与量子算法的标准实现进行了比较,突出了量子比特的潜在优势。我们提供了一个明确的方案,将量子比特电路转换成取自特定通用集的单比特和双比特门序列。然后,我们通过一个使用量子比特高效实现 6 量子比特量子算法的例子来说明我们的方法。在这个特殊的例子中,我们展示了如何通过使用量子比特来减少量子比特电路实现中的双体相互作用。我们希望我们的研究结果对正在进行的实验具有现实意义,这些实验使用的是允许量子比特编码的信息载体,如被困离子和中性原子,以及光学和固态系统。
{"title":"Efficient realization of quantum algorithms with qudits","authors":"Anastasiia S. Nikolaeva,&nbsp;Evgeniy O. Kiktenko,&nbsp;Aleksey K. Fedorov","doi":"10.1140/epjqt/s40507-024-00250-0","DOIUrl":"10.1140/epjqt/s40507-024-00250-0","url":null,"abstract":"<div><p>The development of a universal fault-tolerant quantum computer that can solve efficiently various difficult computational problems is an outstanding challenge for science and technology. In this work, we propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits). Our method uses a transpilation of a circuit in the standard qubit form, which depends on the characteristics of a qudit-based processor, such as the number of available qudits and the number of accessible levels. This approach provides a qubit-to-qudit mapping and comparison to a standard realization of quantum algorithms highlighting potential advantages of qudits. We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set. We then illustrate our method by considering an example of an efficient implementation of a 6-qubit quantum algorithm with qudits. In this particular example, we demonstrate how using qudits allows a decreasing amount of two-body interactions in the qubit circuit implementation. We expect that our findings are of relevance for ongoing experiments with noisy intermediate-scale quantum devices that operate with information carriers allowing qudit encodings, such as trapped ions and neutral atoms, as well as optical and solid-state systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00250-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the bias in iterative quantum amplitude estimation 关于迭代量子振幅估计中的偏差
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-25 DOI: 10.1140/epjqt/s40507-024-00253-x
Koichi Miyamoto

Quantum amplitude estimation (QAE) is a pivotal quantum algorithm to estimate the squared amplitude a of the target basis state in a quantum state (|{Phi}rangle ). Various improvements on the original quantum phase estimation-based QAE have been proposed for resource reduction. One of such improved versions is iterative quantum amplitude estimation (IQAE), which outputs an estimate â of a through the iterated rounds of the measurements on the quantum states like (G^{k}|{Phi}rangle ), with the number k of operations of the Grover operator G (the Grover number) and the shot number determined adaptively. This paper investigates the bias in IQAE. Through the numerical experiments to simulate IQAE, we reveal that the estimate by IQAE is biased and the bias is enhanced for some specific values of a. We see that the termination criterion in IQAE that the estimated accuracy of â falls below the threshold is a source of the bias. Besides, we observe that (k_{mathrm{fin}}), the Grover number in the final round, and (f_{mathrm{fin}}), a quantity affecting the probability distribution of measurement outcomes in the final round, are the key factors to determine the bias, and the bias enhancement for specific values of a is due to the skewed distribution of ((k_{mathrm{fin}},f_{mathrm{fin}})). We also present a bias mitigation method: just re-executing the final round with the Grover number and the shot number fixed.

量子振幅估计(QAE)是一种关键的量子算法,用于估计量子态(|{Phi}rangle )中目标基态的振幅平方 a。为了减少资源,人们对原始的基于量子相位估计的 QAE 提出了各种改进方案。其中一个改进版本是迭代量子振幅估计(IQAE),它通过对量子态的迭代轮测量输出一个估计值â,如(G^{k}|{Phi}rangle ),格罗弗算子 G 的运算次数 k(格罗弗数)和射击数是自适应确定的。本文研究了 IQAE 中的偏差。通过模拟 IQAE 的数值实验,我们发现 IQAE 的估计值是有偏差的,并且在某些特定的 a 值下偏差会增强。此外,我们还发现最后一轮的格罗弗数(k_{/mathrm{fin}})和影响最后一轮测量结果概率分布的量(f_{/mathrm{fin}})是决定偏差的关键因素,而特定 a 值的偏差增强是由于((k_{/mathrm{fin}},f_{/mathrm{fin}}))的倾斜分布造成的。我们还提出了一种减轻偏差的方法:只需在固定格罗弗数和射击数的情况下重新执行最后一轮。
{"title":"On the bias in iterative quantum amplitude estimation","authors":"Koichi Miyamoto","doi":"10.1140/epjqt/s40507-024-00253-x","DOIUrl":"10.1140/epjqt/s40507-024-00253-x","url":null,"abstract":"<div><p>Quantum amplitude estimation (QAE) is a pivotal quantum algorithm to estimate the squared amplitude <i>a</i> of the target basis state in a quantum state <span>(|{Phi}rangle )</span>. Various improvements on the original quantum phase estimation-based QAE have been proposed for resource reduction. One of such improved versions is iterative quantum amplitude estimation (IQAE), which outputs an estimate <i>â</i> of <i>a</i> through the iterated rounds of the measurements on the quantum states like <span>(G^{k}|{Phi}rangle )</span>, with the number <i>k</i> of operations of the Grover operator <i>G</i> (the Grover number) and the shot number determined adaptively. This paper investigates the bias in IQAE. Through the numerical experiments to simulate IQAE, we reveal that the estimate by IQAE is biased and the bias is enhanced for some specific values of <i>a</i>. We see that the termination criterion in IQAE that the estimated accuracy of <i>â</i> falls below the threshold is a source of the bias. Besides, we observe that <span>(k_{mathrm{fin}})</span>, the Grover number in the final round, and <span>(f_{mathrm{fin}})</span>, a quantity affecting the probability distribution of measurement outcomes in the final round, are the key factors to determine the bias, and the bias enhancement for specific values of <i>a</i> is due to the skewed distribution of <span>((k_{mathrm{fin}},f_{mathrm{fin}}))</span>. We also present a bias mitigation method: just re-executing the final round with the Grover number and the shot number fixed.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00253-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous variable entanglement between propagating optical modes using optomechanics 利用光力学实现传播光模式之间的连续可变纠缠
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-20 DOI: 10.1140/epjqt/s40507-024-00252-y
Greeshma Gopinath, Yong Li, Sankar Davuluri

In this study, a method for entangling two spatially separated output laser fields from an optomechanical cavity is proposed. In the existing standard methods, entanglement is created by driving the two-mode squeezing part of the linearized optomechanical interaction;, however our method generates entanglement using the quantum back-action nullifying meter technique. As a result, entanglement can be generated outside the blue sideband frequency in both resolved and unresolved sideband regimes. We further show that the system is stable in the entire region where the Duan criterion for inseparability is fulfilled. The effect of thermal noise on the generated entanglement is examined. Finally, we compare this technique with standard methods for entanglement generation using optomechanics.

本研究提出了一种方法,用于纠缠光机械腔中两个空间分离的输出激光场。在现有的标准方法中,纠缠是通过驱动线性化光机电相互作用的双模挤压部分产生的;而我们的方法是利用量子反作用无效计技术产生纠缠。因此,纠缠可以在蓝色边带频率之外的解析和非解析边带状态下产生。我们进一步证明,该系统在满足不可分性段准则的整个区域内都是稳定的。我们还研究了热噪声对产生的纠缠的影响。最后,我们将该技术与使用光学机械生成纠缠的标准方法进行了比较。
{"title":"Continuous variable entanglement between propagating optical modes using optomechanics","authors":"Greeshma Gopinath,&nbsp;Yong Li,&nbsp;Sankar Davuluri","doi":"10.1140/epjqt/s40507-024-00252-y","DOIUrl":"10.1140/epjqt/s40507-024-00252-y","url":null,"abstract":"<div><p>In this study, a method for entangling two spatially separated output laser fields from an optomechanical cavity is proposed. In the existing standard methods, entanglement is created by driving the two-mode squeezing part of the linearized optomechanical interaction;, however our method generates entanglement using the quantum back-action nullifying meter technique. As a result, entanglement can be generated outside the blue sideband frequency in both resolved and unresolved sideband regimes. We further show that the system is stable in the entire region where the Duan criterion for inseparability is fulfilled. The effect of thermal noise on the generated entanglement is examined. Finally, we compare this technique with standard methods for entanglement generation using optomechanics.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00252-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intelligent threshold selection method to improve orbital angular momentum-encoded quantum key distribution under turbulence 改进湍流条件下轨道角动量编码量子密钥分发的智能阈值选择方法
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-06 DOI: 10.1140/epjqt/s40507-024-00251-z
Jia-Hao Li, Jie Tang, Xing-Yu Wang, Yang Xue, Hui-Cun Yu, Zhi-Feng Deng, Yue-Xiang Cao, Ying Liu, Dan Wu, Hao-Ran Hu, Ya Wang, Hua-Zhi Lun, Jia-Hua Wei, Bo Zhang, Bo Liu, Lei Shi

High-dimensional quantum key distribution (HD-QKD) encoded by orbital angular momentum (OAM) presents significant advantages in terms of information capacity. However, perturbations caused by free-space atmospheric turbulence decrease the performance of the system by introducing random fluctuations in the transmittance of OAM photons. Currently, the theoretical performance analysis of OAM-encoded QKD systems exists a gap when concerning the statistical distribution under the free-space link. In this article, we analyzed the security of QKD systems by combining probability distribution of transmission coefficient (PDTC) of OAM with decoy-state BB84 method. To address the problem that the invalid key rate is calculated in the part transmittance interval of the post-processing process, an intelligent threshold method based on neural network is proposed to improve OAM-encoded QKD, which aims to conserve computing resources and enhance system efficiency. Our findings reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant plays a crucial role in ensuring secure key generation. Meanwhile, the training error of neural network is at the magnitude around 10−3, indicating the ability to predict optimization parameters quickly and accurately. Our work contributes to the advancement of parameter optimization and prediction for free-space OAM-encoded HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the development of free-space experimental setups.

以轨道角动量(OAM)编码的高维量子密钥分发(HD-QKD)在信息容量方面具有显著优势。然而,自由空间大气湍流造成的扰动会在轨道角动量光子的透射率中引入随机波动,从而降低系统的性能。目前,关于自由空间链路下的统计分布,OAM 编码 QKD 系统的理论性能分析还存在空白。本文结合 OAM 的传输系数概率分布(PDTC)和诱饵状态 BB84 方法,分析了 QKD 系统的安全性。针对后处理过程中在部分传输区间计算无效密钥率的问题,提出了一种基于神经网络的智能阈值方法来改进 OAM 编码 QKD,以达到节约计算资源、提高系统效率的目的。我们的研究结果表明,均方根(RMS)OAM 光束半径与弗里德常数的比值对确保密钥生成的安全性起着至关重要的作用。同时,神经网络的训练误差在 10-3 左右,表明其具有快速准确预测优化参数的能力。我们的工作有助于推动自由空间 OAM 编码 HD-QKD 系统的参数优化和预测。此外,它还为支持自由空间实验装置的开发提供了宝贵的理论见解。
{"title":"An intelligent threshold selection method to improve orbital angular momentum-encoded quantum key distribution under turbulence","authors":"Jia-Hao Li,&nbsp;Jie Tang,&nbsp;Xing-Yu Wang,&nbsp;Yang Xue,&nbsp;Hui-Cun Yu,&nbsp;Zhi-Feng Deng,&nbsp;Yue-Xiang Cao,&nbsp;Ying Liu,&nbsp;Dan Wu,&nbsp;Hao-Ran Hu,&nbsp;Ya Wang,&nbsp;Hua-Zhi Lun,&nbsp;Jia-Hua Wei,&nbsp;Bo Zhang,&nbsp;Bo Liu,&nbsp;Lei Shi","doi":"10.1140/epjqt/s40507-024-00251-z","DOIUrl":"10.1140/epjqt/s40507-024-00251-z","url":null,"abstract":"<div><p>High-dimensional quantum key distribution (HD-QKD) encoded by orbital angular momentum (OAM) presents significant advantages in terms of information capacity. However, perturbations caused by free-space atmospheric turbulence decrease the performance of the system by introducing random fluctuations in the transmittance of OAM photons. Currently, the theoretical performance analysis of OAM-encoded QKD systems exists a gap when concerning the statistical distribution under the free-space link. In this article, we analyzed the security of QKD systems by combining probability distribution of transmission coefficient (PDTC) of OAM with decoy-state BB84 method. To address the problem that the invalid key rate is calculated in the part transmittance interval of the post-processing process, an intelligent threshold method based on neural network is proposed to improve OAM-encoded QKD, which aims to conserve computing resources and enhance system efficiency. Our findings reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant plays a crucial role in ensuring secure key generation. Meanwhile, the training error of neural network is at the magnitude around 10<sup>−3</sup>, indicating the ability to predict optimization parameters quickly and accurately. Our work contributes to the advancement of parameter optimization and prediction for free-space OAM-encoded HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the development of free-space experimental setups.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00251-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards quantum technologies with gamma photons 利用伽马光子发展量子技术
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-06 DOI: 10.1140/epjqt/s40507-024-00240-2
S. Ujeniuc, R. Suvaila

In the context of the second quantum revolution, the ability to manipulate quantum systems is already used for various techniques and a growing number of technology demonstrators, mostly with low energy photons. In this frame, our intention is to extend quantum technologies to gamma photons. Our aim is to take advantage of resources brought by entanglement with higher energy particles, particularly electron-positron annihilation quanta. Tools for low frequency quantum experiments are not suitable for penetrant radiation, consequently we need to use effects typical to the keV-MeV energy range instead. High energy photon protocols would include fundamental properties testing, industrial imaging, quantum random number generators, quantum simulators, military applications and improvement of already existing medical procedures. In this paper we review some important steps in the study of annihilation photon correlations, we point out the experimental differences and necessities with respect to the energy increase in quantum photonic experiments and we describe the design of a quantum gamma device we propose for experiments meant to prove feasibility of gamma ray based protocols. The perspective behind our project is to evidence the possibility to communicate via entangled quanta through media which are not transparent for low energy photons.

在第二次量子革命的背景下,操纵量子系统的能力已被用于各种技术和越来越多的技术示范,其中大部分是低能量光子。在此框架下,我们打算将量子技术扩展到伽马光子。我们的目标是利用与高能粒子,特别是电子-正电子湮灭量子的纠缠所带来的资源。低频量子实验的工具不适合穿透辐射,因此我们需要使用典型的 keV-MeV 能量范围的效应。高能光子协议将包括基本特性测试、工业成像、量子随机数发生器、量子模拟器、军事应用以及改进现有的医疗程序。在本文中,我们回顾了湮灭光子相关性研究的一些重要步骤,指出了量子光子实验中能量增加方面的实验差异和必要性,并介绍了我们为证明基于伽马射线协议的可行性实验而提出的量子伽马设备的设计方案。我们的项目旨在证明通过纠缠量子在对低能量光子不透明的介质中进行通信的可能性。
{"title":"Towards quantum technologies with gamma photons","authors":"S. Ujeniuc,&nbsp;R. Suvaila","doi":"10.1140/epjqt/s40507-024-00240-2","DOIUrl":"10.1140/epjqt/s40507-024-00240-2","url":null,"abstract":"<div><p>In the context of the second quantum revolution, the ability to manipulate quantum systems is already used for various techniques and a growing number of technology demonstrators, mostly with low energy photons. In this frame, our intention is to extend quantum technologies to gamma photons. Our aim is to take advantage of resources brought by entanglement with higher energy particles, particularly electron-positron annihilation quanta. Tools for low frequency quantum experiments are not suitable for penetrant radiation, consequently we need to use effects typical to the keV-MeV energy range instead. High energy photon protocols would include fundamental properties testing, industrial imaging, quantum random number generators, quantum simulators, military applications and improvement of already existing medical procedures. In this paper we review some important steps in the study of annihilation photon correlations, we point out the experimental differences and necessities with respect to the energy increase in quantum photonic experiments and we describe the design of a quantum gamma device we propose for experiments meant to prove feasibility of gamma ray based protocols. The perspective behind our project is to evidence the possibility to communicate via entangled quanta through media which are not transparent for low energy photons.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00240-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EPJ Quantum Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1