首页 > 最新文献

EPJ Quantum Technology最新文献

英文 中文
Multiparty quantum key agreement based on GHZ states 基于 GHZ 状态的多方量子密钥协议
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-22 DOI: 10.1140/epjqt/s40507-025-00353-2
Ya-Xi Shu, Chen-Ming Bai, Sujuan Zhang

This paper introduces the design process of a multiparty quantum key agreement protocol based on the Greenberger-Horne-Zeilinger state in detail. Building on the traditional circle-type quantum key agreement protocol, we introduce a star structure, which significantly improves the speed and efficiency of key agreement. To facilitate the reader’s understanding, we provide an example of a four participants quantum key agreement protocol. In the process of quantum state transmission, we perform operations using the Pauli matrix and the Hadamard matrix to ensure that the quantum state remains in one of the four basis states. This significantly enhances the security of the protocol. After rigorous security analysis, we find that the protocol can effectively resist intercept-resend attack, entangle-measure attack, collective attack, and dishonest participant attack. Under a collective attack, if the first particle is subjected to bit-flipping noise, then (p<0.2430) only guarantees (r>0.2) when (a=1). Additionally, we conduct a fairness analysis and evaluate the practical performance of the proposed protocol. In an ideal depolarization noise-free environment, the protocol can achieve a positive key rate only when the global detection efficiency exceeds 0.9636. Finally, we conduct a comprehensive comparative analysis of the protocols. The results show that our proposed protocol is superior to other existing schemes in terms of efficiency and running time.

本文详细介绍了基于greenberger - horn - zeilinger状态的多方量子密钥协议的设计过程。在传统的圆形量子密钥协议的基础上,引入星型结构,显著提高了密钥协议的速度和效率。为了便于读者理解,我们提供了一个四参与者量子密钥协议的示例。在量子态传输过程中,我们使用泡利矩阵和哈达玛矩阵进行运算,以确保量子态保持在四种基态之一。这大大提高了协议的安全性。经过严格的安全性分析,我们发现该协议能够有效抵御拦截重发攻击、纠缠度量攻击、集体攻击和不诚实参与者攻击。在集体攻击下,如果第一个粒子受到比特翻转噪声,那么(p<0.2430)只保证(r>0.2)当(a=1)。此外,我们还进行了公平性分析并评估了所提出协议的实际性能。在理想的去极化无噪声环境下,该协议只有在全局检测效率超过0.9636时才能实现正密钥率。最后,我们对协议进行了全面的比较分析。结果表明,我们提出的协议在效率和运行时间上都优于现有的协议。
{"title":"Multiparty quantum key agreement based on GHZ states","authors":"Ya-Xi Shu,&nbsp;Chen-Ming Bai,&nbsp;Sujuan Zhang","doi":"10.1140/epjqt/s40507-025-00353-2","DOIUrl":"10.1140/epjqt/s40507-025-00353-2","url":null,"abstract":"<div><p>This paper introduces the design process of a multiparty quantum key agreement protocol based on the Greenberger-Horne-Zeilinger state in detail. Building on the traditional circle-type quantum key agreement protocol, we introduce a star structure, which significantly improves the speed and efficiency of key agreement. To facilitate the reader’s understanding, we provide an example of a four participants quantum key agreement protocol. In the process of quantum state transmission, we perform operations using the Pauli matrix and the Hadamard matrix to ensure that the quantum state remains in one of the four basis states. This significantly enhances the security of the protocol. After rigorous security analysis, we find that the protocol can effectively resist intercept-resend attack, entangle-measure attack, collective attack, and dishonest participant attack. Under a collective attack, if the first particle is subjected to bit-flipping noise, then <span>(p&lt;0.2430)</span> only guarantees <span>(r&gt;0.2)</span> when <span>(a=1)</span>. Additionally, we conduct a fairness analysis and evaluate the practical performance of the proposed protocol. In an ideal depolarization noise-free environment, the protocol can achieve a positive key rate only when the global detection efficiency exceeds 0.9636. Finally, we conduct a comprehensive comparative analysis of the protocols. The results show that our proposed protocol is superior to other existing schemes in terms of efficiency and running time.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00353-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143861222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
10 GHz robust polarization modulation towards high-speed satellite-based quantum communication 面向高速卫星量子通信的10ghz鲁棒极化调制
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-11 DOI: 10.1140/epjqt/s40507-025-00349-y
Ze-Xu Wang, Hua-Xing Xu, Ju Li, Hui-Cun Yu, Jin-Quan Huang, Hui Han, Chang-Lei Wang, Ping Zhang, Fei-Fei Yin, Kun Xu, Bo Liu, Yi-Tang Dai

In practical satellite-based quantum key distribution (QKD) systems, the preparation and transmission of polarization-encoding photons suffer from complex environmental effects and high channel loss. Consequently, the hinge to enhancing the secure key rate (SKR) lies in achieving robust, low-error, and high-speed polarization modulation. Although the schemes that enable self-compensation demonstrate remarkable robustness, their modulation speed is limited to around 2 GHz to prevent the interaction between the electrical signal and the reverse optical pulses. Here, we utilize the non-reciprocity of the lithium niobate modulators and eliminate the modulation on the reverse optical pulses. This characteristic is widely available in the radio-frequency band, allowing the modulation speed to no longer be limited by the self-compensating optics and enabling further increases. The measured average intrinsic quantum bit error rate of the four polarization states at 10 GHz system repetition frequency is as low as 0.53% over 10 min without any compensation. The simulation results show that our scheme can maintain a SKR of about 5 kbps even at the extreme communication distances between the satellite and the earth. Our work can be efficiently applied in high-speed, high-loss satellite-based quantum communication scenarios.

在实际的卫星量子密钥分发(QKD)系统中,偏振编码光子的制备和传输受到复杂环境影响和高信道损耗的影响。因此,提高安全密钥率(SKR)的关键在于实现稳健、低误差和高速的偏振调制。虽然实现自我补偿的方案具有显著的鲁棒性,但其调制速度被限制在 2 GHz 左右,以防止电信号与反向光脉冲之间的相互作用。在这里,我们利用铌酸锂调制器的非互易性,消除了对反向光脉冲的调制。这一特性在射频波段中广泛存在,使得调制速度不再受自补偿光学器件的限制,并能进一步提高。在 10 GHz 系统重复频率下,测量到的四种偏振态的平均本征量子比特误差率在 10 分钟内低至 0.53%,且无需任何补偿。仿真结果表明,即使在卫星与地球之间通信距离极远的情况下,我们的方案也能保持约 5 kbps 的 SKR。我们的工作可以有效地应用于高速、高损耗的卫星量子通信场景。
{"title":"10 GHz robust polarization modulation towards high-speed satellite-based quantum communication","authors":"Ze-Xu Wang,&nbsp;Hua-Xing Xu,&nbsp;Ju Li,&nbsp;Hui-Cun Yu,&nbsp;Jin-Quan Huang,&nbsp;Hui Han,&nbsp;Chang-Lei Wang,&nbsp;Ping Zhang,&nbsp;Fei-Fei Yin,&nbsp;Kun Xu,&nbsp;Bo Liu,&nbsp;Yi-Tang Dai","doi":"10.1140/epjqt/s40507-025-00349-y","DOIUrl":"10.1140/epjqt/s40507-025-00349-y","url":null,"abstract":"<div><p>In practical satellite-based quantum key distribution (QKD) systems, the preparation and transmission of polarization-encoding photons suffer from complex environmental effects and high channel loss. Consequently, the hinge to enhancing the secure key rate (SKR) lies in achieving robust, low-error, and high-speed polarization modulation. Although the schemes that enable self-compensation demonstrate remarkable robustness, their modulation speed is limited to around 2 GHz to prevent the interaction between the electrical signal and the reverse optical pulses. Here, we utilize the non-reciprocity of the lithium niobate modulators and eliminate the modulation on the reverse optical pulses. This characteristic is widely available in the radio-frequency band, allowing the modulation speed to no longer be limited by the self-compensating optics and enabling further increases. The measured average intrinsic quantum bit error rate of the four polarization states at 10 GHz system repetition frequency is as low as 0.53% over 10 min without any compensation. The simulation results show that our scheme can maintain a SKR of about 5 kbps even at the extreme communication distances between the satellite and the earth. Our work can be efficiently applied in high-speed, high-loss satellite-based quantum communication scenarios.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00349-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor optical amplifier-based laser system for cold-atom sensors 基于半导体光放大器的冷原子传感器激光系统
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-10 DOI: 10.1140/epjqt/s40507-025-00348-z
Eric Kittlaus, Jonathon Hunacek, Mahmood Bagheri, Hani Nejadriahi, Mehdi Langlois, Sheng-wey Chiow, Nan Yu, Siamak Forouhar

Precise control of atomic systems has led to an array of emerging ‘quantum’ sensor concepts ranging from Rydberg-atom RF-electric probes to cold-atom interferometer gravimeters. Looking forward, the potential impact of these technologies hinges on their capability to be adapted from laboratory-scale experiments to compact and low-power field-deployable instruments. However, existing setups typically require a bulky and power-hungry laser and optics system (LOS) to prepare, control, and interrogate the relevant atomic system using a variety of frequency-referenced and rapidly reconfigurable laser beams. In this work, we investigate the feasibility of using semiconductor optical amplifiers (SOAs) to replace high-power pump lasers and acousto-optic modulators within a simple atom cooling apparatus, looking forward to the ultimate goal of a space-deployable atom interferometer. We find that existing off-the-shelf SOA components operating at relevant wavelengths for Cs and Rb atom cooling (852 and 780 nm, respectively) are able to permit an attractive combination of rapid (sub-microsecond), high extinction ratio (>60-65 dB) switching while acting as power boosters prior to the atom physics package. These attributes enable a radically different, power-efficient approach to LOS design, reducing or eliminating the need for Watt-class laser amplifiers that are unsuitable for flight deployment. Building on these results, we construct a simple and compact all-semiconductor laser/amplifier LOS for atom cooling that is integrated with custom path-to-flight drive electronics. Up to 125 mW of total optical power is delivered to six fiber-coupled channels for magneto-optical-trap-based cooling of a cloud of neutral Cs atoms. The entire LOS, including reference and cooling laser subsystems and control electronics, occupies a volume of 20×20×15 cm and totals DC power consumption of around 13.5 W, and is designed in a modular format so that additional hardware for synthesizing atom interferometry beams may be added through future development efforts. These results indicate the utility of all-semiconductor laser systems for future low-power flyable atom-based sensor instruments.

原子系统的精确控制导致了一系列新兴的“量子”传感器概念,从里德堡原子rf电探针到冷原子干涉仪重力仪。展望未来,这些技术的潜在影响取决于它们从实验室规模的实验到紧凑和低功率的现场可部署仪器的适应能力。然而,现有的装置通常需要一个体积庞大且耗电的激光和光学系统(LOS)来准备、控制和询问相关的原子系统,使用各种频率参考和快速可重构的激光束。在这项工作中,我们研究了在一个简单的原子冷却装置中使用半导体光放大器(soa)取代高功率泵浦激光器和声光调制器的可行性,并期待着一个可空间部署的原子干涉仪的最终目标。我们发现,现有的现成SOA组件在Cs和Rb原子冷却(分别为852和780 nm)的相关波长下工作,能够实现快速(亚微秒)、高消光比(>60-65 dB)开关的诱人组合,同时在原子物理封装之前充当功率助推器。这些特性为LOS设计提供了一种完全不同的节能方法,减少或消除了不适合飞行部署的瓦特级激光放大器的需求。基于这些结果,我们构建了一个简单紧凑的全半导体激光/放大器LOS,用于原子冷却,并集成了定制的路径到飞行驱动电子设备。高达125兆瓦的总光功率被输送到六个光纤耦合通道,用于基于磁光阱的中性Cs原子云冷却。整个LOS,包括参考和冷却激光子系统以及控制电子设备,体积为20×20×15厘米,总直流功耗约13.5 W,采用模块化格式设计,以便通过未来的开发工作增加合成原子干涉测量光束的额外硬件。这些结果表明了全半导体激光系统在未来低功率可飞行原子传感仪器中的实用性。
{"title":"Semiconductor optical amplifier-based laser system for cold-atom sensors","authors":"Eric Kittlaus,&nbsp;Jonathon Hunacek,&nbsp;Mahmood Bagheri,&nbsp;Hani Nejadriahi,&nbsp;Mehdi Langlois,&nbsp;Sheng-wey Chiow,&nbsp;Nan Yu,&nbsp;Siamak Forouhar","doi":"10.1140/epjqt/s40507-025-00348-z","DOIUrl":"10.1140/epjqt/s40507-025-00348-z","url":null,"abstract":"<div><p>Precise control of atomic systems has led to an array of emerging ‘quantum’ sensor concepts ranging from Rydberg-atom RF-electric probes to cold-atom interferometer gravimeters. Looking forward, the potential impact of these technologies hinges on their capability to be adapted from laboratory-scale experiments to compact and low-power field-deployable instruments. However, existing setups typically require a bulky and power-hungry laser and optics system (LOS) to prepare, control, and interrogate the relevant atomic system using a variety of frequency-referenced and rapidly reconfigurable laser beams. In this work, we investigate the feasibility of using semiconductor optical amplifiers (SOAs) to replace high-power pump lasers and acousto-optic modulators within a simple atom cooling apparatus, looking forward to the ultimate goal of a space-deployable atom interferometer. We find that existing off-the-shelf SOA components operating at relevant wavelengths for Cs and Rb atom cooling (852 and 780 nm, respectively) are able to permit an attractive combination of rapid (sub-microsecond), high extinction ratio (&gt;60-65 dB) switching while acting as power boosters prior to the atom physics package. These attributes enable a radically different, power-efficient approach to LOS design, reducing or eliminating the need for Watt-class laser amplifiers that are unsuitable for flight deployment. Building on these results, we construct a simple and compact all-semiconductor laser/amplifier LOS for atom cooling that is integrated with custom path-to-flight drive electronics. Up to 125 mW of total optical power is delivered to six fiber-coupled channels for magneto-optical-trap-based cooling of a cloud of neutral Cs atoms. The entire LOS, including reference and cooling laser subsystems and control electronics, occupies a volume of 20×20×15 cm and totals DC power consumption of around 13.5 W, and is designed in a modular format so that additional hardware for synthesizing atom interferometry beams may be added through future development efforts. These results indicate the utility of all-semiconductor laser systems for future low-power flyable atom-based sensor instruments.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00348-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143818310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the mechanisms of qubit representations and introducing a new category system for visual representations: results from expert ratings 探索量子比特表示的机制,并引入一种新的视觉表示类别系统:来自专家评级的结果
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-08 DOI: 10.1140/epjqt/s40507-025-00346-1
Linda Qerimi, Sarah Malone, Eva Rexigel, Sascha Mehlhase, Jochen Kuhn, Stefan Küchemann

In quantum physics (QP) education, the use of representations such as diagrams and visual aids that connect to mathematical concepts is crucial. Research in representation theory indicates that combining symbolic-mathematical elements (e.g., formulae) with visual-graphical representations enhances conceptual understanding more effectively than representations that merely depict phenomena. However, common representations vary widely, and existing category systems do not adequately distinguish between them in QP. To address this, we developed a new set of differentiation criteria based on insights from representation research, QP education, and specific aspects of the quantum sciences. We created a comprehensive category system for evaluating visual QP representations for educational use, grounded in Ainsworths (2006) DeFT Framework.

Twenty-one experts from four countries evaluated this category system using four qubit representations: the Bloch sphere, Circle Notation, Quantum Bead, and the pie chart (Qake) model. This evaluation enabled us to assess the discriminative power of our criteria and to gain expert-based insights into the perceived effectiveness of each representation in supporting the learning of QP concepts. It evaluated how well each representation conveyed quantum concepts such as quantum state, measurement, superposition, entanglement, and quantum technologies (X-, Z-, and H-gates) across 16 criteria.

The results showed significant differences in the effectiveness of these representations, particularly in conveying key concepts like superposition and measurement from an expert perspective. Additionally, expert ratings indicated notable variations in the potential of each representation to induce misconceptions, linked to differences in shape, measurement behaviour, and requirements for understanding entanglement. We also discuss considerations for developing new representations and suggest directions for future empirical studies.

在量子物理(QP)教育中,使用与数学概念相关的图表和视觉辅助工具等表示是至关重要的。表征理论的研究表明,将符号数学元素(如公式)与视觉图形表征相结合,比仅仅描述现象的表征更有效地增强了概念理解。然而,常见的表征差异很大,现有的类别系统在QP中不能充分区分它们。为了解决这个问题,我们基于表征研究、QP教育和量子科学的具体方面的见解,开发了一套新的区分标准。我们以ainsworth (2006) DeFT框架为基础,创建了一个全面的类别系统,用于评估用于教育的视觉QP表示。来自四个国家的21位专家使用四种量子位表示对这一分类系统进行了评估:Bloch sphere、Circle Notation、Quantum Bead和饼状图(Qake)模型。这一评估使我们能够评估我们的标准的辨别能力,并获得基于专家的见解,了解每个表征在支持QP概念学习方面的感知有效性。它评估了每个表示在16个标准中如何很好地传达量子概念,如量子态、测量、叠加、纠缠和量子技术(X、Z和h门)。结果显示,这些表示的有效性存在显著差异,特别是在从专家的角度传达叠加和测量等关键概念方面。此外,专家评级表明,每种表征的潜在差异会引起误解,这与形状、测量行为和理解纠缠的要求的差异有关。我们还讨论了开发新表征的考虑因素,并提出了未来实证研究的方向。
{"title":"Exploring the mechanisms of qubit representations and introducing a new category system for visual representations: results from expert ratings","authors":"Linda Qerimi,&nbsp;Sarah Malone,&nbsp;Eva Rexigel,&nbsp;Sascha Mehlhase,&nbsp;Jochen Kuhn,&nbsp;Stefan Küchemann","doi":"10.1140/epjqt/s40507-025-00346-1","DOIUrl":"10.1140/epjqt/s40507-025-00346-1","url":null,"abstract":"<div><p>In quantum physics (QP) education, the use of representations such as diagrams and visual aids that connect to mathematical concepts is crucial. Research in representation theory indicates that combining symbolic-mathematical elements (e.g., formulae) with visual-graphical representations enhances conceptual understanding more effectively than representations that merely depict phenomena. However, common representations vary widely, and existing category systems do not adequately distinguish between them in QP. To address this, we developed a new set of differentiation criteria based on insights from representation research, QP education, and specific aspects of the quantum sciences. We created a comprehensive category system for evaluating visual QP representations for educational use, grounded in Ainsworths (2006) DeFT Framework.</p><p>Twenty-one experts from four countries evaluated this category system using four qubit representations: the Bloch sphere, Circle Notation, Quantum Bead, and the pie chart (Qake) model. This evaluation enabled us to assess the discriminative power of our criteria and to gain expert-based insights into the perceived effectiveness of each representation in supporting the learning of QP concepts. It evaluated how well each representation conveyed quantum concepts such as quantum state, measurement, superposition, entanglement, and quantum technologies (X-, Z-, and H-gates) across 16 criteria.</p><p>The results showed significant differences in the effectiveness of these representations, particularly in conveying key concepts like superposition and measurement from an expert perspective. Additionally, expert ratings indicated notable variations in the potential of each representation to induce misconceptions, linked to differences in shape, measurement behaviour, and requirements for understanding entanglement. We also discuss considerations for developing new representations and suggest directions for future empirical studies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00346-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why teach quantum in your own time: the values of grassroots organizations involved in quantum technologies education and outreach 为什么在自己的时间教授量子:参与量子技术教育和推广的基层组织的价值
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-07 DOI: 10.1140/epjqt/s40507-025-00345-2
Ulrike Genenz, Neelanjana Anne, Zeynep Kılıç, Daniel Mathews, Oya Ok, Adrian Schmidt, Zeki Can Seskir

This paper examines the intersection of goals and values within grassroots organizations operating in the realm of quantum technologies (QT) education. It delineates a fundamental distinction between the objective to provide education and the drive to democratize learning through principles of inclusivity, accessibility, and diversity. The analysis reveals how these organizations navigate their nascent stages, grappling with the dual challenge of adhering to their foundational values while aspiring for sustainable growth and development in the highly specialized field of QT. The study uncovers the strategic approaches adopted by these entities, including efforts to create educational ecosystems and foster community engagement. The research underscores the potential vulnerabilities of these grassroots organizations, particularly in relation to the longevity and evolution of their initiatives as members transition into professional roles within the quantum sector. Through this investigation, the paper contributes to a nuanced understanding of how emerging educational organizations in the QT field balance their ideological commitments with practical growth considerations, highlighting the critical factors that influence their trajectory and impact.

本文考察了在量子技术(QT)教育领域运作的基层组织的目标和价值观的交集。它描述了提供教育的目标与通过包容性、可及性和多样性原则推动学习民主化之间的根本区别。分析揭示了这些组织是如何在他们的初级阶段,努力应对双重挑战,坚持他们的基本价值观,同时渴望在高度专业化的QT领域实现可持续增长和发展。研究揭示了这些实体采用的战略方法,包括努力创造教育生态系统和促进社区参与。该研究强调了这些基层组织的潜在脆弱性,特别是在成员过渡到量子领域的专业角色时,其倡议的寿命和演变。通过这项调查,本文有助于细致入微地了解QT领域的新兴教育组织如何平衡其意识形态承诺与实际增长考虑,突出影响其轨迹和影响的关键因素。
{"title":"Why teach quantum in your own time: the values of grassroots organizations involved in quantum technologies education and outreach","authors":"Ulrike Genenz,&nbsp;Neelanjana Anne,&nbsp;Zeynep Kılıç,&nbsp;Daniel Mathews,&nbsp;Oya Ok,&nbsp;Adrian Schmidt,&nbsp;Zeki Can Seskir","doi":"10.1140/epjqt/s40507-025-00345-2","DOIUrl":"10.1140/epjqt/s40507-025-00345-2","url":null,"abstract":"<div><p>This paper examines the intersection of goals and values within grassroots organizations operating in the realm of quantum technologies (QT) education. It delineates a fundamental distinction between the objective to provide education and the drive to democratize learning through principles of inclusivity, accessibility, and diversity. The analysis reveals how these organizations navigate their nascent stages, grappling with the dual challenge of adhering to their foundational values while aspiring for sustainable growth and development in the highly specialized field of QT. The study uncovers the strategic approaches adopted by these entities, including efforts to create educational ecosystems and foster community engagement. The research underscores the potential vulnerabilities of these grassroots organizations, particularly in relation to the longevity and evolution of their initiatives as members transition into professional roles within the quantum sector. Through this investigation, the paper contributes to a nuanced understanding of how emerging educational organizations in the QT field balance their ideological commitments with practical growth considerations, highlighting the critical factors that influence their trajectory and impact.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00345-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terrestrial Very-Long-Baseline Atom Interferometry: summary of the second workshop 地面甚长基线原子干涉测量法:第二次研讨会总结
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-03 DOI: 10.1140/epjqt/s40507-025-00344-3
Adam Abdalla, Mahiro Abe, Sven Abend, Mouine Abidi, Monika Aidelsburger, Ashkan Alibabaei, Baptiste Allard, John Antoniadis, Gianluigi Arduini, Nadja Augst, Philippos Balamatsias, Antun Balaž, Hannah Banks, Rachel L. Barcklay, Michele Barone, Michele Barsanti, Mark G. Bason, Angelo Bassi, Jean-Baptiste Bayle, Charles F. A. Baynham, Quentin Beaufils, Sélyan Beldjoudi, Aleksandar Belić, Shayne Bennetts, Jose Bernabeu, Andrea Bertoldi, Clara Bigard, N. P. Bigelow, Robert Bingham, Diego Blas, Alexey Bobrick, Samuel Boehringer, Aleksandar Bogojević, Kai Bongs, Daniela Bortoletto, Philippe Bouyer, Christian Brand, Oliver Buchmueller, Gabriela Buica, Sergio Calatroni, Léo Calmels, Priscilla Canizares, Benjamin Canuel, Ana Caramete, Laurentiu-Ioan Caramete, Matteo Carlesso, John Carlton, Samuel P. Carman, Andrew Carroll, Mateo Casariego, Minoas Chairetis, Vassilis Charmandaris, Upasna Chauhan, Jiajun Chen, Maria Luisa Marilù Chiofalo, Donatella Ciampini, Alessia Cimbri, Pierre Cladé, Jonathon Coleman, Florin Lucian Constantin, Carlo R. Contaldi, Robin Corgier, Bineet Dash, G. J. Davies, Claudia de Rham, Albert De Roeck, Daniel Derr, Soumyodeep Dey, Fabio Di Pumpo, Goran S. Djordjevic, Babette Döbrich, Peter Dornan, Michael Doser, Giannis Drougakis, Jacob Dunningham, Alisher Duspayev, Sajan Easo, Joshua Eby, Maxim Efremov, Gedminas Elertas, John Ellis, Nicholas Entin, Stephen Fairhurst, Mattia Fanì, Farida Fassi, Pierre Fayet, Daniel Felea, Jie Feng, Robert Flack, Chris Foot, Tim Freegarde, Elina Fuchs, Naceur Gaaloul, Dongfeng Gao, Susan Gardner, Barry M. Garraway, Carlos L. Garrido Alzar, Alexandre Gauguet, Enno Giese, Patrick Gill, Gian F. Giudice, Eric P. Glasbrenner, Jonah Glick, Peter W. Graham, Eduardo Granados, Paul F. Griffin, Jordan Gué, Saïda Guellati-Khelifa, Subhadeep Gupta, Vishu Gupta, Lucia Hackermueller, Martin Haehnelt, Timo Hakulinen, Klemens Hammerer, Ekim T. Hanımeli, Tiffany Harte, Sabrina Hartmann, Leonie Hawkins, Aurelien Hees, Alexander Herbst, Thomas M. Hird, Richard Hobson, Jason Hogan, Bodil Holst, Michael Holynski, Onur Hosten, Chung Chuan Hsu, Wayne Cheng-Wei Huang, Kenneth M. Hughes, Kamran Hussain, Gert Hütsi, Antonio Iovino, Maria-Catalina Isfan, Gregor Janson, Peter Jeglič, Philippe Jetzer, Yijun Jiang, Gediminas Juzeliūnas, Wilhelm Kaenders, Matti Kalliokoski, Alex Kehagias, Eva Kilian, Carsten Klempt, Peter Knight, Soumen Koley, Bernd Konrad, Tim Kovachy, Markus Krutzik, Mukesh Kumar, Pradeep Kumar, Hamza Labiad, Shau-Yu Lan, Arnaud Landragin, Greg Landsberg, Mehdi Langlois, Bryony Lanigan, Bruno Leone, Christophe Le Poncin-Lafitte, Samuel Lellouch, Marek Lewicki, Yu-Hung Lien, Lucas Lombriser, Elias Lopez Asamar, J. Luis Lopez-Gonzalez, Chen Lu, Giuseppe Gaetano Luciano, Nathan Lundblad, Cristian de J. López Monjaraz, Adam Lowe, Mažena Mackoit-Sinkevičienė, Michele Maggiore, Anirban Majumdar, Konstantinos Makris, Azadeh Maleknejad, Anna L. Marchant, Agnese Mariotti, Christos Markou, Barnaby Matthews, Anupam Mazumdar, Christopher McCabe, Matthias Meister, Giorgio Mentasti, Jonathan Menu, Giuseppe Messineo, Bernd Meyer-Hoppe, Salvatore Micalizio, Federica Migliaccio, Peter Millington, Milan Milosevic, Abhay Mishra, Jeremiah Mitchell, Gavin W. Morley, Noam Mouelle, Jürgen Müller, David Newbold, Wei-Tou Ni, Christian Niehof, Johannes Noller, Senad Odžak, Daniel K. L. Oi, Andreas Oikonomou, Yasser Omar, Chris Overstreet, Vishnupriya Puthiya Veettil, Julia Pahl, Sean Paling, Zhongyin Pan, George Pappas, Vinay Pareek, Elizabeth Pasatembou, Mauro Paternostro, Vishal K. Pathak, Emanuele Pelucchi, Franck Pereira dos Santos, Achim Peters, Annie Pichery, Igor Pikovski, Apostolos Pilaftsis, Florentina-Crenguta Pislan, Robert Plunkett, Rosa Poggiani, Marco Prevedelli, Johann Rafelski, Juhan Raidal, Martti Raidal, Ernst Maria Rasel, Sébastien Renaux-Petel, Andrea Richaud, Pedro Rivero-Antunez, Tangui Rodzinka, Albert Roura, Jan Rudolph, Dylan Sabulsky, Marianna S. Safronova, Mairi Sakellariadou, Leonardo Salvi, Muhammed Sameed, Sumit Sarkar, Patrik Schach, Stefan Alaric Schäffer, Jesse Schelfhout, Manuel Schilling, Vladimir Schkolnik, Wolfgang P. Schleich, Dennis Schlippert, Ulrich Schneider, Florian Schreck, Ariel Schwartzman, Nico Schwersenz, Olga Sergijenko, Haifa Rejeb Sfar, Lijing Shao, Ian Shipsey, Jing Shu, Yeshpal Singh, Carlos F. Sopuerta, Marianna Sorba, Fiodor Sorrentino, Alessandro D. A. M. Spallicci, Petruta Stefanescu, Nikolaos Stergioulas, Daniel Stoerk, Hrudya Thaivalappil Sunilkumar, Jannik Ströhle, Zoie Tam, Dhruv Tandon, Yijun Tang, Dorothee Tell, Jacques Tempere, Dylan J. Temples, Rohit P. Thampy, Ingmari C. Tietje, Guglielmo M. Tino, Jonathan N. Tinsley, Ovidiu Tintareanu Mircea, Kimberly Tkalčec, Andrew J. Tolley, Vincenza Tornatore, Alejandro Torres-Orjuela, Philipp Treutlein, Andrea Trombettoni, Christian Ufrecht, Juan Urrutia, Tristan Valenzuela, Linda R. Valerio, Maurits van der Grinten, Ville Vaskonen, Verónica Vázquez-Aceves, Hardi Veermäe, Flavio Vetrano, Nikolay V. Vitanov, Wolf von Klitzing, Sebastian Wald, Thomas Walker, Reinhold Walser, Jin Wang, Yan Wang, C. A. Weidner, André Wenzlawski, Michael Werner, Lisa Wörner, Mohamed E. Yahia, Efe Yazgan, Emmanuel Zambrini Cruzeiro, M. Zarei, Mingsheng Zhan, Shengnan Zhang, Lin Zhou, Erik Zupanič

This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024 (Second Terrestrial Very-Long-Baseline Atom Interferometry Workshop, Imperial College, April 2024), building on the initial discussions during the inaugural workshop held at CERN in March 2023 (First Terrestrial Very-Long-Baseline Atom Interferometry Workshop, CERN, March 2023). Like the summary of the first workshop (Abend et al. in AVS Quantum Sci. 6:024701, 2024), this document records a critical milestone for the international atom interferometry community. It documents our concerted efforts to evaluate progress, address emerging challenges, and refine strategic directions for future large-scale atom interferometry projects. Our commitment to collaboration is manifested by the integration of diverse expertise and the coordination of international resources, all aimed at advancing the frontiers of atom interferometry physics and technology, as set out in a Memorandum of Understanding signed by over 50 institutions (Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study).

第二届地面超长基线原子干涉(TVLBAI)研讨会的总结提供了我们于2024年4月在伦敦举行的会议的全面概述(第二届地面超长基线原子干涉研讨会,帝国理工学院,2024年4月),建立在2023年3月在CERN举行的首届研讨会期间的初步讨论(第一届地面超长基线原子干涉研讨会,CERN, 2023年3月)。与第一次研讨会的总结(Abend et al. in AVS Quantum Sci. 6:024701, 2024)一样,该文件记录了国际原子干涉测量界的一个关键里程碑。它记录了我们在评估进展、应对新出现的挑战和完善未来大规模原子干涉测量项目战略方向方面的共同努力。我们对合作的承诺体现在整合不同的专业知识和国际资源的协调,所有这些都旨在推进原子干涉测量物理和技术的前沿,正如50多个机构签署的谅解备忘录(陆地甚长基线原子干涉仪研究谅解备忘录)所述。
{"title":"Terrestrial Very-Long-Baseline Atom Interferometry: summary of the second workshop","authors":"Adam Abdalla,&nbsp;Mahiro Abe,&nbsp;Sven Abend,&nbsp;Mouine Abidi,&nbsp;Monika Aidelsburger,&nbsp;Ashkan Alibabaei,&nbsp;Baptiste Allard,&nbsp;John Antoniadis,&nbsp;Gianluigi Arduini,&nbsp;Nadja Augst,&nbsp;Philippos Balamatsias,&nbsp;Antun Balaž,&nbsp;Hannah Banks,&nbsp;Rachel L. Barcklay,&nbsp;Michele Barone,&nbsp;Michele Barsanti,&nbsp;Mark G. Bason,&nbsp;Angelo Bassi,&nbsp;Jean-Baptiste Bayle,&nbsp;Charles F. A. Baynham,&nbsp;Quentin Beaufils,&nbsp;Sélyan Beldjoudi,&nbsp;Aleksandar Belić,&nbsp;Shayne Bennetts,&nbsp;Jose Bernabeu,&nbsp;Andrea Bertoldi,&nbsp;Clara Bigard,&nbsp;N. P. Bigelow,&nbsp;Robert Bingham,&nbsp;Diego Blas,&nbsp;Alexey Bobrick,&nbsp;Samuel Boehringer,&nbsp;Aleksandar Bogojević,&nbsp;Kai Bongs,&nbsp;Daniela Bortoletto,&nbsp;Philippe Bouyer,&nbsp;Christian Brand,&nbsp;Oliver Buchmueller,&nbsp;Gabriela Buica,&nbsp;Sergio Calatroni,&nbsp;Léo Calmels,&nbsp;Priscilla Canizares,&nbsp;Benjamin Canuel,&nbsp;Ana Caramete,&nbsp;Laurentiu-Ioan Caramete,&nbsp;Matteo Carlesso,&nbsp;John Carlton,&nbsp;Samuel P. Carman,&nbsp;Andrew Carroll,&nbsp;Mateo Casariego,&nbsp;Minoas Chairetis,&nbsp;Vassilis Charmandaris,&nbsp;Upasna Chauhan,&nbsp;Jiajun Chen,&nbsp;Maria Luisa Marilù Chiofalo,&nbsp;Donatella Ciampini,&nbsp;Alessia Cimbri,&nbsp;Pierre Cladé,&nbsp;Jonathon Coleman,&nbsp;Florin Lucian Constantin,&nbsp;Carlo R. Contaldi,&nbsp;Robin Corgier,&nbsp;Bineet Dash,&nbsp;G. J. Davies,&nbsp;Claudia de Rham,&nbsp;Albert De Roeck,&nbsp;Daniel Derr,&nbsp;Soumyodeep Dey,&nbsp;Fabio Di Pumpo,&nbsp;Goran S. Djordjevic,&nbsp;Babette Döbrich,&nbsp;Peter Dornan,&nbsp;Michael Doser,&nbsp;Giannis Drougakis,&nbsp;Jacob Dunningham,&nbsp;Alisher Duspayev,&nbsp;Sajan Easo,&nbsp;Joshua Eby,&nbsp;Maxim Efremov,&nbsp;Gedminas Elertas,&nbsp;John Ellis,&nbsp;Nicholas Entin,&nbsp;Stephen Fairhurst,&nbsp;Mattia Fanì,&nbsp;Farida Fassi,&nbsp;Pierre Fayet,&nbsp;Daniel Felea,&nbsp;Jie Feng,&nbsp;Robert Flack,&nbsp;Chris Foot,&nbsp;Tim Freegarde,&nbsp;Elina Fuchs,&nbsp;Naceur Gaaloul,&nbsp;Dongfeng Gao,&nbsp;Susan Gardner,&nbsp;Barry M. Garraway,&nbsp;Carlos L. Garrido Alzar,&nbsp;Alexandre Gauguet,&nbsp;Enno Giese,&nbsp;Patrick Gill,&nbsp;Gian F. Giudice,&nbsp;Eric P. Glasbrenner,&nbsp;Jonah Glick,&nbsp;Peter W. Graham,&nbsp;Eduardo Granados,&nbsp;Paul F. Griffin,&nbsp;Jordan Gué,&nbsp;Saïda Guellati-Khelifa,&nbsp;Subhadeep Gupta,&nbsp;Vishu Gupta,&nbsp;Lucia Hackermueller,&nbsp;Martin Haehnelt,&nbsp;Timo Hakulinen,&nbsp;Klemens Hammerer,&nbsp;Ekim T. Hanımeli,&nbsp;Tiffany Harte,&nbsp;Sabrina Hartmann,&nbsp;Leonie Hawkins,&nbsp;Aurelien Hees,&nbsp;Alexander Herbst,&nbsp;Thomas M. Hird,&nbsp;Richard Hobson,&nbsp;Jason Hogan,&nbsp;Bodil Holst,&nbsp;Michael Holynski,&nbsp;Onur Hosten,&nbsp;Chung Chuan Hsu,&nbsp;Wayne Cheng-Wei Huang,&nbsp;Kenneth M. Hughes,&nbsp;Kamran Hussain,&nbsp;Gert Hütsi,&nbsp;Antonio Iovino,&nbsp;Maria-Catalina Isfan,&nbsp;Gregor Janson,&nbsp;Peter Jeglič,&nbsp;Philippe Jetzer,&nbsp;Yijun Jiang,&nbsp;Gediminas Juzeliūnas,&nbsp;Wilhelm Kaenders,&nbsp;Matti Kalliokoski,&nbsp;Alex Kehagias,&nbsp;Eva Kilian,&nbsp;Carsten Klempt,&nbsp;Peter Knight,&nbsp;Soumen Koley,&nbsp;Bernd Konrad,&nbsp;Tim Kovachy,&nbsp;Markus Krutzik,&nbsp;Mukesh Kumar,&nbsp;Pradeep Kumar,&nbsp;Hamza Labiad,&nbsp;Shau-Yu Lan,&nbsp;Arnaud Landragin,&nbsp;Greg Landsberg,&nbsp;Mehdi Langlois,&nbsp;Bryony Lanigan,&nbsp;Bruno Leone,&nbsp;Christophe Le Poncin-Lafitte,&nbsp;Samuel Lellouch,&nbsp;Marek Lewicki,&nbsp;Yu-Hung Lien,&nbsp;Lucas Lombriser,&nbsp;Elias Lopez Asamar,&nbsp;J. Luis Lopez-Gonzalez,&nbsp;Chen Lu,&nbsp;Giuseppe Gaetano Luciano,&nbsp;Nathan Lundblad,&nbsp;Cristian de J. López Monjaraz,&nbsp;Adam Lowe,&nbsp;Mažena Mackoit-Sinkevičienė,&nbsp;Michele Maggiore,&nbsp;Anirban Majumdar,&nbsp;Konstantinos Makris,&nbsp;Azadeh Maleknejad,&nbsp;Anna L. Marchant,&nbsp;Agnese Mariotti,&nbsp;Christos Markou,&nbsp;Barnaby Matthews,&nbsp;Anupam Mazumdar,&nbsp;Christopher McCabe,&nbsp;Matthias Meister,&nbsp;Giorgio Mentasti,&nbsp;Jonathan Menu,&nbsp;Giuseppe Messineo,&nbsp;Bernd Meyer-Hoppe,&nbsp;Salvatore Micalizio,&nbsp;Federica Migliaccio,&nbsp;Peter Millington,&nbsp;Milan Milosevic,&nbsp;Abhay Mishra,&nbsp;Jeremiah Mitchell,&nbsp;Gavin W. Morley,&nbsp;Noam Mouelle,&nbsp;Jürgen Müller,&nbsp;David Newbold,&nbsp;Wei-Tou Ni,&nbsp;Christian Niehof,&nbsp;Johannes Noller,&nbsp;Senad Odžak,&nbsp;Daniel K. L. Oi,&nbsp;Andreas Oikonomou,&nbsp;Yasser Omar,&nbsp;Chris Overstreet,&nbsp;Vishnupriya Puthiya Veettil,&nbsp;Julia Pahl,&nbsp;Sean Paling,&nbsp;Zhongyin Pan,&nbsp;George Pappas,&nbsp;Vinay Pareek,&nbsp;Elizabeth Pasatembou,&nbsp;Mauro Paternostro,&nbsp;Vishal K. Pathak,&nbsp;Emanuele Pelucchi,&nbsp;Franck Pereira dos Santos,&nbsp;Achim Peters,&nbsp;Annie Pichery,&nbsp;Igor Pikovski,&nbsp;Apostolos Pilaftsis,&nbsp;Florentina-Crenguta Pislan,&nbsp;Robert Plunkett,&nbsp;Rosa Poggiani,&nbsp;Marco Prevedelli,&nbsp;Johann Rafelski,&nbsp;Juhan Raidal,&nbsp;Martti Raidal,&nbsp;Ernst Maria Rasel,&nbsp;Sébastien Renaux-Petel,&nbsp;Andrea Richaud,&nbsp;Pedro Rivero-Antunez,&nbsp;Tangui Rodzinka,&nbsp;Albert Roura,&nbsp;Jan Rudolph,&nbsp;Dylan Sabulsky,&nbsp;Marianna S. Safronova,&nbsp;Mairi Sakellariadou,&nbsp;Leonardo Salvi,&nbsp;Muhammed Sameed,&nbsp;Sumit Sarkar,&nbsp;Patrik Schach,&nbsp;Stefan Alaric Schäffer,&nbsp;Jesse Schelfhout,&nbsp;Manuel Schilling,&nbsp;Vladimir Schkolnik,&nbsp;Wolfgang P. Schleich,&nbsp;Dennis Schlippert,&nbsp;Ulrich Schneider,&nbsp;Florian Schreck,&nbsp;Ariel Schwartzman,&nbsp;Nico Schwersenz,&nbsp;Olga Sergijenko,&nbsp;Haifa Rejeb Sfar,&nbsp;Lijing Shao,&nbsp;Ian Shipsey,&nbsp;Jing Shu,&nbsp;Yeshpal Singh,&nbsp;Carlos F. Sopuerta,&nbsp;Marianna Sorba,&nbsp;Fiodor Sorrentino,&nbsp;Alessandro D. A. M. Spallicci,&nbsp;Petruta Stefanescu,&nbsp;Nikolaos Stergioulas,&nbsp;Daniel Stoerk,&nbsp;Hrudya Thaivalappil Sunilkumar,&nbsp;Jannik Ströhle,&nbsp;Zoie Tam,&nbsp;Dhruv Tandon,&nbsp;Yijun Tang,&nbsp;Dorothee Tell,&nbsp;Jacques Tempere,&nbsp;Dylan J. Temples,&nbsp;Rohit P. Thampy,&nbsp;Ingmari C. Tietje,&nbsp;Guglielmo M. Tino,&nbsp;Jonathan N. Tinsley,&nbsp;Ovidiu Tintareanu Mircea,&nbsp;Kimberly Tkalčec,&nbsp;Andrew J. Tolley,&nbsp;Vincenza Tornatore,&nbsp;Alejandro Torres-Orjuela,&nbsp;Philipp Treutlein,&nbsp;Andrea Trombettoni,&nbsp;Christian Ufrecht,&nbsp;Juan Urrutia,&nbsp;Tristan Valenzuela,&nbsp;Linda R. Valerio,&nbsp;Maurits van der Grinten,&nbsp;Ville Vaskonen,&nbsp;Verónica Vázquez-Aceves,&nbsp;Hardi Veermäe,&nbsp;Flavio Vetrano,&nbsp;Nikolay V. Vitanov,&nbsp;Wolf von Klitzing,&nbsp;Sebastian Wald,&nbsp;Thomas Walker,&nbsp;Reinhold Walser,&nbsp;Jin Wang,&nbsp;Yan Wang,&nbsp;C. A. Weidner,&nbsp;André Wenzlawski,&nbsp;Michael Werner,&nbsp;Lisa Wörner,&nbsp;Mohamed E. Yahia,&nbsp;Efe Yazgan,&nbsp;Emmanuel Zambrini Cruzeiro,&nbsp;M. Zarei,&nbsp;Mingsheng Zhan,&nbsp;Shengnan Zhang,&nbsp;Lin Zhou,&nbsp;Erik Zupanič","doi":"10.1140/epjqt/s40507-025-00344-3","DOIUrl":"10.1140/epjqt/s40507-025-00344-3","url":null,"abstract":"<div><p>This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024 (Second Terrestrial Very-Long-Baseline Atom Interferometry Workshop, Imperial College, April 2024), building on the initial discussions during the inaugural workshop held at CERN in March 2023 (First Terrestrial Very-Long-Baseline Atom Interferometry Workshop, CERN, March 2023). Like the summary of the first workshop (Abend et al. in AVS Quantum Sci. 6:024701, 2024), this document records a critical milestone for the international atom interferometry community. It documents our concerted efforts to evaluate progress, address emerging challenges, and refine strategic directions for future large-scale atom interferometry projects. Our commitment to collaboration is manifested by the integration of diverse expertise and the coordination of international resources, all aimed at advancing the frontiers of atom interferometry physics and technology, as set out in a Memorandum of Understanding signed by over 50 institutions (Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00344-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probabilistic quantum algorithm for imaginary-time evolution based on Taylor expansion 基于Taylor展开的虚时间演化概率量子算法
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-03 DOI: 10.1140/epjqt/s40507-025-00347-0
Xin Yi, Jiacheng Huo, Guanhua Liu, Ling Fan, Ru Zhang, Cong Cao

Imaginary-time evolution is a powerful tool for obtaining the ground state of a quantum system, but the complexity of classical algorithms designed for simulating imaginary-time evolution will increase significantly as the size of the quantum system becomes larger. Here, a probabilistic quantum algorithm based on Taylor expansion for implementing imaginary-time evolution is introduced. For Hamiltonians composed of Pauli product terms, the quantum circuit requires only a single ancillary qubit and is exclusively constructed using elementary single-qubit and two-qubit gates. Furthermore, similar principles are used to extend the algorithm to the case where the Hamiltonian takes a more general form. The algorithm only requires negligible precomputed numerical calculations, without the need for complex classical pre-mathematical calculations or optimization loops. We demonstrate the algorithm by solving the ground state energy of hydrogen molecules and Heisenberg Hamiltonians. Moreover, we conducted experiments on real quantum computers through the quantum cloud platform to find the ground state energy of Heisenberg Hamiltonians. Our work extends the methods for realizing imaginary-time evolution on quantum computers, and our algorithm exhibits potential for implementation on near-term quantum devices, particularly when the Hamiltonian consists of Pauli product terms.

虚时演化是获得量子系统基态的有力工具,但随着量子系统规模的增大,用于模拟虚时演化的经典算法的复杂性将显著增加。本文介绍了一种基于泰勒展开的概率量子算法,用于实现虚时进化。对于由泡利积项组成的哈密顿量,量子电路只需要一个辅助量子比特,并且只使用基本单量子比特和双量子比特门来构建。此外,使用类似的原理将算法扩展到哈密顿量采用更一般形式的情况。该算法只需要可忽略不计的预计算数值计算,不需要复杂的经典预数学计算或优化循环。我们通过求解氢分子的基态能量和海森堡哈密顿量来证明该算法。此外,我们通过量子云平台在真实的量子计算机上进行实验,寻找海森堡哈密顿子的基态能量。我们的工作扩展了在量子计算机上实现虚时间演化的方法,并且我们的算法显示出在近期量子设备上实现的潜力,特别是当哈密顿量由泡利积项组成时。
{"title":"A probabilistic quantum algorithm for imaginary-time evolution based on Taylor expansion","authors":"Xin Yi,&nbsp;Jiacheng Huo,&nbsp;Guanhua Liu,&nbsp;Ling Fan,&nbsp;Ru Zhang,&nbsp;Cong Cao","doi":"10.1140/epjqt/s40507-025-00347-0","DOIUrl":"10.1140/epjqt/s40507-025-00347-0","url":null,"abstract":"<div><p>Imaginary-time evolution is a powerful tool for obtaining the ground state of a quantum system, but the complexity of classical algorithms designed for simulating imaginary-time evolution will increase significantly as the size of the quantum system becomes larger. Here, a probabilistic quantum algorithm based on Taylor expansion for implementing imaginary-time evolution is introduced. For Hamiltonians composed of Pauli product terms, the quantum circuit requires only a single ancillary qubit and is exclusively constructed using elementary single-qubit and two-qubit gates. Furthermore, similar principles are used to extend the algorithm to the case where the Hamiltonian takes a more general form. The algorithm only requires negligible precomputed numerical calculations, without the need for complex classical pre-mathematical calculations or optimization loops. We demonstrate the algorithm by solving the ground state energy of hydrogen molecules and Heisenberg Hamiltonians. Moreover, we conducted experiments on real quantum computers through the quantum cloud platform to find the ground state energy of Heisenberg Hamiltonians. Our work extends the methods for realizing imaginary-time evolution on quantum computers, and our algorithm exhibits potential for implementation on near-term quantum devices, particularly when the Hamiltonian consists of Pauli product terms.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00347-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-copy entanglement purification: a robust approach for diverse noise sources 单拷贝纠缠净化:一种针对不同噪声源的鲁棒方法
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-04-01 DOI: 10.1140/epjqt/s40507-025-00342-5
Sajede Harraz, Shuang Cong

Effectively managing various types of decoherence is crucial for leveraging entanglement in quantum information processing and quantum computing. In this paper, we propose purification circuits that deterministically produce a maximally entangled state from a single copy of an imperfect entangled pair affected by various noise sources. Unlike conventional methods, our approach eliminates the need for multiple copies of the entangled state, pre-purification operations, and imposes no restrictions on the initial entanglement fidelity of the imperfect pair. Our method utilizes ancilla qubits and CNOT gates to address errors from Pauli X and Z (bit flip and phase flip), as well as combinations of these errors that create general mixed entangled states and amplitude-damped entangled states. Our analysis shows that noisy CNOT gates impact fidelity minimally, with only the final two gates being critical. We validate our approach through mathematical analysis and practical implementation in Qiskit, demonstrating its effectiveness and robustness.

有效管理各种类型的退相干对于在量子信息处理和量子计算中利用纠缠至关重要。在本文中,我们提出了净化电路,它能从受各种噪声源影响的不完全纠缠对的单个副本中确定性地产生最大纠缠态。与传统方法不同,我们的方法不需要纠缠态的多个副本和净化前操作,对不完全纠缠对的初始纠缠保真度也没有限制。我们的方法利用辅助量子比特和 CNOT 门来解决保利 X 和 Z 误差(位翻转和相位翻转),以及产生一般混合纠缠态和振幅阻尼纠缠态的这些误差的组合。我们的分析表明,噪声 CNOT 门对保真度的影响很小,只有最后两个门是关键。我们通过数学分析和在 Qiskit 中的实际应用验证了我们的方法,证明了它的有效性和鲁棒性。
{"title":"Single-copy entanglement purification: a robust approach for diverse noise sources","authors":"Sajede Harraz,&nbsp;Shuang Cong","doi":"10.1140/epjqt/s40507-025-00342-5","DOIUrl":"10.1140/epjqt/s40507-025-00342-5","url":null,"abstract":"<div><p>Effectively managing various types of decoherence is crucial for leveraging entanglement in quantum information processing and quantum computing. In this paper, we propose purification circuits that deterministically produce a maximally entangled state from a single copy of an imperfect entangled pair affected by various noise sources. Unlike conventional methods, our approach eliminates the need for multiple copies of the entangled state, pre-purification operations, and imposes no restrictions on the initial entanglement fidelity of the imperfect pair. Our method utilizes ancilla qubits and CNOT gates to address errors from Pauli X and Z (bit flip and phase flip), as well as combinations of these errors that create general mixed entangled states and amplitude-damped entangled states. Our analysis shows that noisy CNOT gates impact fidelity minimally, with only the final two gates being critical. We validate our approach through mathematical analysis and practical implementation in Qiskit, demonstrating its effectiveness and robustness.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00342-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outcomes from a workshop on a national center for quantum education 国家量子教育中心研讨会的成果
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-03-31 DOI: 10.1140/epjqt/s40507-025-00343-4
Edwin Barnes, Michael B. Bennett, Alexandra Boltasseva, Victoria Borish, Bennett Brown, Lincoln D. Carr, Russell R. Ceballos, Faith Dukes, Emily W. Easton, Sophia E. Economou, E. E. Edwards, Noah D. Finkelstein, C. Fracchiolla, Diana Franklin, J. K. Freericks, Valerie Goss, Mark Hannum, Nancy Holincheck, Angela M. Kelly, Olivia Lanes, H. J. Lewandowski, Karen Jo Matsler, Emily Mercurio, Inès Montaño, Maajida Murdock, Kiera Peltz, Justin K. Perron, Christopher J. K. Richardson, Jessica L. Rosenberg, Richard S. Ross, Minjung Ryu, Raymond E. Samuel, Nicole Schrode, Susan Schwamberger, Thomas A. Searles, Chandralekha Singh, Alexandra Tingle, Benjamin M. Zwickl

In response to numerous programs seeking to advance quantum education and workforce development in the United States, experts from academia, industry, government, and professional societies convened for a National Science Foundation-sponsored workshop in February 2024 to explore the benefits and challenges of establishing a national center for quantum education. Broadly, such a center would foster collaboration and build the infrastructure required to develop a diverse and quantum-ready workforce. The workshop discussions focused on how a center could uniquely address gaps in public, K-12, and undergraduate quantum information science and engineering (QISE) education. Specifically, the community identified activities that, through a center, could lead to an increase in student awareness of quantum careers, boost the number of educators trained in quantum-related subjects, strengthen pathways into quantum careers, enhance the understanding of the US quantum workforce, and elevate public engagement with QISE. Core proposed activities for the center include professional development for educators, coordinated curriculum development and curation, expanded access to educational laboratory equipment, robust evaluation and assessment practices, network building, and enhanced public engagement with quantum science.

为了响应众多寻求推进美国量子教育和劳动力发展的项目,来自学术界、工业界、政府和专业协会的专家于2024年2月召开了一次由国家科学基金会赞助的研讨会,探讨建立国家量子教育中心的好处和挑战。从广义上讲,这样一个中心将促进协作,并建立必要的基础设施,以培养多样化和量子就绪的劳动力。研讨会讨论的重点是一个中心如何独特地解决公共、K-12和本科量子信息科学与工程(QISE)教育的差距。具体来说,社区确定了通过一个中心可以提高学生对量子职业的认识的活动,增加了接受过量子相关学科培训的教育工作者的数量,加强了进入量子职业的途径,增强了对美国量子劳动力的理解,并提高了公众对QISE的参与。该中心拟议的核心活动包括教育工作者的专业发展、协调课程开发和管理、扩大教育实验室设备的使用、健全的评估和评估实践、网络建设以及加强公众对量子科学的参与。
{"title":"Outcomes from a workshop on a national center for quantum education","authors":"Edwin Barnes,&nbsp;Michael B. Bennett,&nbsp;Alexandra Boltasseva,&nbsp;Victoria Borish,&nbsp;Bennett Brown,&nbsp;Lincoln D. Carr,&nbsp;Russell R. Ceballos,&nbsp;Faith Dukes,&nbsp;Emily W. Easton,&nbsp;Sophia E. Economou,&nbsp;E. E. Edwards,&nbsp;Noah D. Finkelstein,&nbsp;C. Fracchiolla,&nbsp;Diana Franklin,&nbsp;J. K. Freericks,&nbsp;Valerie Goss,&nbsp;Mark Hannum,&nbsp;Nancy Holincheck,&nbsp;Angela M. Kelly,&nbsp;Olivia Lanes,&nbsp;H. J. Lewandowski,&nbsp;Karen Jo Matsler,&nbsp;Emily Mercurio,&nbsp;Inès Montaño,&nbsp;Maajida Murdock,&nbsp;Kiera Peltz,&nbsp;Justin K. Perron,&nbsp;Christopher J. K. Richardson,&nbsp;Jessica L. Rosenberg,&nbsp;Richard S. Ross,&nbsp;Minjung Ryu,&nbsp;Raymond E. Samuel,&nbsp;Nicole Schrode,&nbsp;Susan Schwamberger,&nbsp;Thomas A. Searles,&nbsp;Chandralekha Singh,&nbsp;Alexandra Tingle,&nbsp;Benjamin M. Zwickl","doi":"10.1140/epjqt/s40507-025-00343-4","DOIUrl":"10.1140/epjqt/s40507-025-00343-4","url":null,"abstract":"<div><p>In response to numerous programs seeking to advance quantum education and workforce development in the United States, experts from academia, industry, government, and professional societies convened for a National Science Foundation-sponsored workshop in February 2024 to explore the benefits and challenges of establishing a national center for quantum education. Broadly, such a center would foster collaboration and build the infrastructure required to develop a diverse and quantum-ready workforce. The workshop discussions focused on how a center could uniquely address gaps in public, K-12, and undergraduate quantum information science and engineering (QISE) education. Specifically, the community identified activities that, through a center, could lead to an increase in student awareness of quantum careers, boost the number of educators trained in quantum-related subjects, strengthen pathways into quantum careers, enhance the understanding of the US quantum workforce, and elevate public engagement with QISE. Core proposed activities for the center include professional development for educators, coordinated curriculum development and curation, expanded access to educational laboratory equipment, robust evaluation and assessment practices, network building, and enhanced public engagement with quantum science.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00343-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for fast-oscillating fundamental constants with space missions 在太空任务中寻找快速振荡的基本常数
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2025-03-28 DOI: 10.1140/epjqt/s40507-025-00339-0
Dmitry Budker, Joshua Eby, Marianna S. Safronova, Oleg Tretiak

While it is possible to estimate the dark matter density at the Sun distance from the galactic center, this does not give information on actual dark matter density in the Solar system. There can be considerable local enhancement of dark matter density in the vicinity of gravitating centers, including the Sun, the Earth, as well as other planets in the solar system. Generic mechanisms for the formation of such halos were recently elucidated. In this work, we studies the possible halo dark matter overdensities and corresponding dark matter masses allowed for various objects in the solar system. We explore spacecraft missions to detect such halos with instruments such as quantum clocks, atomic and molecular spectrometers designed to search for fast (tens of hertz to gigahertz) oscillations of fundamental constants, highly sensitive comagnetometers, and other quantum sensors and sensor networks.

虽然有可能估算出距离银河系中心太阳距离处的暗物质密度,但这并不能提供太阳系中实际暗物质密度的信息。在引力中心附近,包括太阳、地球以及太阳系中的其他行星,暗物质密度可能会有相当大的局部增强。这种光晕形成的一般机制最近得到了阐明。在这项工作中,我们研究了太阳系中各种物体可能存在的晕暗物质超密度和相应的暗物质质量。我们探索用量子钟、原子和分子光谱仪等仪器探测这种光晕的航天器任务,这些仪器旨在寻找基本常数的快速(几十赫兹到千兆赫)振荡、高灵敏度的磁强计和其他量子传感器和传感器网络。
{"title":"Search for fast-oscillating fundamental constants with space missions","authors":"Dmitry Budker,&nbsp;Joshua Eby,&nbsp;Marianna S. Safronova,&nbsp;Oleg Tretiak","doi":"10.1140/epjqt/s40507-025-00339-0","DOIUrl":"10.1140/epjqt/s40507-025-00339-0","url":null,"abstract":"<div><p>While it is possible to estimate the dark matter density at the Sun distance from the galactic center, this does not give information on actual dark matter density in the Solar system. There can be considerable local enhancement of dark matter density in the vicinity of gravitating centers, including the Sun, the Earth, as well as other planets in the solar system. Generic mechanisms for the formation of such halos were recently elucidated. In this work, we studies the possible halo dark matter overdensities and corresponding dark matter masses allowed for various objects in the solar system. We explore spacecraft missions to detect such halos with instruments such as quantum clocks, atomic and molecular spectrometers designed to search for fast (tens of hertz to gigahertz) oscillations of fundamental constants, highly sensitive comagnetometers, and other quantum sensors and sensor networks.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00339-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EPJ Quantum Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1