Pub Date : 2024-04-19DOI: 10.1140/epjqt/s40507-024-00238-w
S. Sgroi, G. Zicari, A. Imparato, M. Paternostro
We study the excitation transfer across a fully connected quantum network whose sites energies can be artificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically optimize its local energies to achieve high excitation transfer for various environmental conditions, using an adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate our solutions in terms of resilience against variations in either the network connection strengths, or size, as well as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phenomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial open networks through the simple manipulation of local energies.
{"title":"Efficient excitation-transfer across fully connected networks via local-energy optimization","authors":"S. Sgroi, G. Zicari, A. Imparato, M. Paternostro","doi":"10.1140/epjqt/s40507-024-00238-w","DOIUrl":"10.1140/epjqt/s40507-024-00238-w","url":null,"abstract":"<div><p>We study the excitation transfer across a fully connected quantum network whose sites energies can be artificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically optimize its local energies to achieve high excitation transfer for various environmental conditions, using an adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate our solutions in terms of resilience against variations in either the network connection strengths, or size, as well as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phenomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial open networks through the simple manipulation of local energies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00238-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1140/epjqt/s40507-024-00237-x
Avraham Merzel, Philipp Bitzenbauer, Kim Krijtenburg-Lewerissa, Kirsten Stadermann, Erica Andreotti, Daria Anttila, Maria Bondani, Maria Luisa (Marilù) Chiofalo, Sergej Faletič, Renaat Frans, Simon Goorney, Franziska Greinert, Leon Jurčić, Zdeňka Koupilová, Massimiliano Malgieri, Rainer Müller, Pasquale Onorato, Gesche Pospiech, Malte Ubben, Andreas Woitzik, Henk Pol
Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of (N= 39) high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.
{"title":"The core of secondary level quantum education: a multi-stakeholder perspective","authors":"Avraham Merzel, Philipp Bitzenbauer, Kim Krijtenburg-Lewerissa, Kirsten Stadermann, Erica Andreotti, Daria Anttila, Maria Bondani, Maria Luisa (Marilù) Chiofalo, Sergej Faletič, Renaat Frans, Simon Goorney, Franziska Greinert, Leon Jurčić, Zdeňka Koupilová, Massimiliano Malgieri, Rainer Müller, Pasquale Onorato, Gesche Pospiech, Malte Ubben, Andreas Woitzik, Henk Pol","doi":"10.1140/epjqt/s40507-024-00237-x","DOIUrl":"10.1140/epjqt/s40507-024-00237-x","url":null,"abstract":"<div><p>Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of <span>(N= 39)</span> high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00237-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The classical moving target segmentation (MTS) algorithm in a video can segment the moving targets out by calculating frame by frame, but the algorithm encounters a real-time problem as the data increases. Recently, the benefits of quantum computing in video processing have been demonstrated, but it is still scarce for MTS. In this paper, a quantum moving target segmentation algorithm for grayscale video based on background difference method is proposed, which can simultaneously model the background of all frames and perform background difference to segment the moving targets. In addition, a feasible quantum subtractor is designed to perform the background difference operation. Then, several quantum units, including quantum cyclic shift transformation, quantum background modeling, quantum background difference, and quantum binarization, are designed in detail to establish the complete quantum circuit. For a video containing (2^{m}) frames (every frame is a (2^{n} times 2^{n}) image with q grayscale levels), the complexity of our algorithm is O((n+q)). This is an exponential speedup over the classical algorithm and also outperforms the existing quantum algorithms. Finally, the experiment on IBM Q demonstrates the feasibility of our algorithm in this noisy intermediate-scale quantum (NISQ) era.
视频中的经典移动目标分割(MTS)算法可以通过逐帧计算将移动目标分割出来,但随着数据量的增加,该算法会遇到实时性问题。最近,量子计算在视频处理中的优势已经显现,但它在 MTS 中的应用仍然匮乏。本文提出了一种基于背景差分法的灰度视频量子移动目标分割算法,该算法可以同时对所有帧的背景进行建模,并执行背景差分来分割移动目标。此外,还设计了一种可行的量子减法器来执行背景差分操作。然后,详细设计了几个量子单元,包括量子循环移位变换、量子背景建模、量子背景差分和量子二值化,从而建立了完整的量子电路。对于包含 (2^{m}) 帧的视频(每一帧都是具有 q 个灰度级的 (2^{n} times 2^{n}) 图像),我们算法的复杂度为 O((n+q)) 。这比经典算法的速度快了指数级,也优于现有的量子算法。最后,在 IBM Q 上进行的实验证明了我们的算法在这个噪声中等规模量子(NISQ)时代的可行性。
{"title":"A quantum moving target segmentation algorithm for grayscale video based on background difference method","authors":"Lu Wang, Yuxiang Liu, Fanxu Meng, Wenjie Liu, Zaichen Zhang, Xutao Yu","doi":"10.1140/epjqt/s40507-024-00234-0","DOIUrl":"10.1140/epjqt/s40507-024-00234-0","url":null,"abstract":"<div><p>The classical moving target segmentation (MTS) algorithm in a video can segment the moving targets out by calculating frame by frame, but the algorithm encounters a real-time problem as the data increases. Recently, the benefits of quantum computing in video processing have been demonstrated, but it is still scarce for MTS. In this paper, a quantum moving target segmentation algorithm for grayscale video based on background difference method is proposed, which can simultaneously model the background of all frames and perform background difference to segment the moving targets. In addition, a feasible quantum subtractor is designed to perform the background difference operation. Then, several quantum units, including quantum cyclic shift transformation, quantum background modeling, quantum background difference, and quantum binarization, are designed in detail to establish the complete quantum circuit. For a video containing <span>(2^{m})</span> frames (every frame is a <span>(2^{n} times 2^{n})</span> image with <i>q</i> grayscale levels), the complexity of our algorithm is O<span>((n+q))</span>. This is an exponential speedup over the classical algorithm and also outperforms the existing quantum algorithms. Finally, the experiment on IBM Q demonstrates the feasibility of our algorithm in this noisy intermediate-scale quantum (NISQ) era.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00234-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1140/epjqt/s40507-024-00233-1
Nour A. Nasser, Amin H. Al-Khursan
Many body effects in the wetting layer (WL)-double quantum dot (DQD)-metal nanoparticle (MNP) structure have been studied by modeling the Coulomb scattering rates in this structure. The strong coupling between WL-DQD-MNPs was considered. An orthogonalized plane wave (OPW) is assumed between WL-QD transitions. The transition momenta are calculated accordingly to specify the normalized Rabi frequency on this structure, considering the strong coupling between the WL-DQD-MNP structures. This approach is important for realizing scattering rates, including in-and-out capture and relaxation rates, which are essential for specifying the type of structure used depending on the optimum value of the scattering time required to fit the application. The QD hole capture rate is the highest, and the hole capture times are the shortest. The relaxation times are less than the electron capture times by one order, while they are half of the hole capture times. The capture rates increase with increasing distance R between the DQDs and the MNP. High tunneling increases hole-capture rates and changes the relaxation rates, showing the importance of tunneling in controlling the scattering rates.
{"title":"Coulomb effect in hybrid double quantum dot-metal nanoparticle systems considering the wetting layer","authors":"Nour A. Nasser, Amin H. Al-Khursan","doi":"10.1140/epjqt/s40507-024-00233-1","DOIUrl":"10.1140/epjqt/s40507-024-00233-1","url":null,"abstract":"<div><p>Many body effects in the wetting layer (WL)-double quantum dot (DQD)-metal nanoparticle (MNP) structure have been studied by modeling the Coulomb scattering rates in this structure. The strong coupling between WL-DQD-MNPs was considered. An orthogonalized plane wave (OPW) is assumed between WL-QD transitions. The transition momenta are calculated accordingly to specify the normalized Rabi frequency on this structure, considering the strong coupling between the WL-DQD-MNP structures. This approach is important for realizing scattering rates, including in-and-out capture and relaxation rates, which are essential for specifying the type of structure used depending on the optimum value of the scattering time required to fit the application. The QD hole capture rate is the highest, and the hole capture times are the shortest. The relaxation times are less than the electron capture times by one order, while they are half of the hole capture times. The capture rates increase with increasing distance <i>R</i> between the DQDs and the MNP. High tunneling increases hole-capture rates and changes the relaxation rates, showing the importance of tunneling in controlling the scattering rates.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00233-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.1140/epjqt/s40507-024-00236-y
Michael Fromm, Owe Philipsen, Wolfgang Unger, Christopher Winterowd
We derive the primitive quantum gate sets to simulate lattice quantum chromodynamics (LQCD) in the strong-coupling limit with one flavor of massless staggered quarks. This theory is of interest for studies at non-zero density as the sign problem can be overcome using Monte Carlo methods. In this work, we use it as a testing ground for quantum simulations. The key point is that no truncation of the bosonic Hilbert space is necessary as the theory is formulated in terms of color-singlet degrees of freedom (“baryons” and “mesons”). The baryons become static in the limit of continuous time and decouple, whereas the dynamics of the mesonic theory involves two qubits per lattice site. Lending dynamics also to the “baryons” simply requires to use the derived gate set in its controlled version.
{"title":"Quantum gate sets for lattice QCD in the strong-coupling limit: (N_{f}=1)","authors":"Michael Fromm, Owe Philipsen, Wolfgang Unger, Christopher Winterowd","doi":"10.1140/epjqt/s40507-024-00236-y","DOIUrl":"10.1140/epjqt/s40507-024-00236-y","url":null,"abstract":"<div><p>We derive the primitive quantum gate sets to simulate lattice quantum chromodynamics (LQCD) in the strong-coupling limit with one flavor of massless staggered quarks. This theory is of interest for studies at non-zero density as the sign problem can be overcome using Monte Carlo methods. In this work, we use it as a testing ground for quantum simulations. The key point is that no truncation of the bosonic Hilbert space is necessary as the theory is formulated in terms of color-singlet degrees of freedom (“baryons” and “mesons”). The baryons become static in the limit of continuous time and decouple, whereas the dynamics of the mesonic theory involves two qubits per lattice site. Lending dynamics also to the “baryons” simply requires to use the derived gate set in its controlled version.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00236-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.1140/epjqt/s40507-024-00235-z
Gan Gao
In the paper (EPJ Quant. Technol. 10:29, 2023), Kuo et al. proposed a multiparty quantum secret sharing protocol based on a novel structure and single qubits. Owing to the absence of an entanglement state, the proposed protocol is more practical than other quantum secret sharing protocols which use entanglement properties. Therefore, we study the security of the proposed protocol and find there exists a security loophole in the n-party ((ngeq 4)) secret sharing case in it, that is, two dishonest agents can collude to obtain (part of) Alice’s secret without the help of the other agents. In order to overcome the security loophole, we give an improved protocol and make a security analysis for it. By calculating, the qubit efficiency of the three-party case in it is equal to (frac{1}{8}), which is higher than that in Hillery et al.’s protocol (Phys. Rev. A 59:1829, 1999).
{"title":"Cryptanalysis and improvement of efficient multiparty quantum secret sharing based on a novel structure and single qubits","authors":"Gan Gao","doi":"10.1140/epjqt/s40507-024-00235-z","DOIUrl":"10.1140/epjqt/s40507-024-00235-z","url":null,"abstract":"<div><p>In the paper (EPJ Quant. Technol. 10:29, 2023), Kuo <i>et al.</i> proposed a multiparty quantum secret sharing protocol based on a novel structure and single qubits. Owing to the absence of an entanglement state, the proposed protocol is more practical than other quantum secret sharing protocols which use entanglement properties. Therefore, we study the security of the proposed protocol and find there exists a security loophole in the <i>n</i>-party (<span>(ngeq 4)</span>) secret sharing case in it, that is, two dishonest agents can collude to obtain (part of) Alice’s secret without the help of the other agents. In order to overcome the security loophole, we give an improved protocol and make a security analysis for it. By calculating, the qubit efficiency of the three-party case in it is equal to <span>(frac{1}{8})</span>, which is higher than that in Hillery <i>et al.</i>’s protocol (Phys. Rev. A 59:1829, 1999).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00235-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1140/epjqt/s40507-024-00231-3
Bo Wu, Dunwei Liao, Zhenke Ding, Kai Yang, Yi Liu, Di Sang, Qiang An, Yunqi Fu
Rydberg atom-based superheterodyne with additional local oscillator (LO) signal is a novel approach to detect electric field with high measured sensitivity. However, the LO signal is often supplied to the atomic vapor cell by free-space illumination, which lacks mobility and integration for practical applications. Here, we present a LO port integrated split-ring resonator for realizing high sensitivity-enhanced electric field measurements. The LO signal is sent directly to the resonator through a parallel-plate waveguide, which is shown to achieve a sensitivity enhancement of 32 dB. The integrated resonator has an electrical size of 0.088λ and the feed port S11 reaches −38.2 dB.
{"title":"Local oscillator port integrated resonator for Rydberg atom-based electric field measurement enhancement","authors":"Bo Wu, Dunwei Liao, Zhenke Ding, Kai Yang, Yi Liu, Di Sang, Qiang An, Yunqi Fu","doi":"10.1140/epjqt/s40507-024-00231-3","DOIUrl":"10.1140/epjqt/s40507-024-00231-3","url":null,"abstract":"<div><p>Rydberg atom-based superheterodyne with additional local oscillator (LO) signal is a novel approach to detect electric field with high measured sensitivity. However, the LO signal is often supplied to the atomic vapor cell by free-space illumination, which lacks mobility and integration for practical applications. Here, we present a LO port integrated split-ring resonator for realizing high sensitivity-enhanced electric field measurements. The LO signal is sent directly to the resonator through a parallel-plate waveguide, which is shown to achieve a sensitivity enhancement of 32 dB. The integrated resonator has an electrical size of 0.088<i>λ</i> and the feed port S11 reaches −38.2 dB.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00231-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1140/epjqt/s40507-024-00230-4
Tomasz Białecki, Tomasz Rybotycki, Josep Batle, Jakub Tworzydło, Adam Bednorz
We demonstrate an implementation of the precise test of dimension on the qubit, using the public IBM quantum computer, using the determinant dimension witness. The accuracy is below 10−3 comparing to maximal possible value of the witness in higher dimension. The test involving minimal independent sets of preparation and measurement operations (gates) is applied both for specific configurations and parametric ones. The test is robust against nonidealities such as incoherent leakage and erroneous gate execution. Two of the IBM devices failed the test by more than 5 standard deviations, which has no simple explanation.
我们利用 IBM 公共量子计算机,使用行列式维度见证,演示了量子比特维度精确测试的实现。与高维度见证的最大可能值相比,精度低于 10-3。测试涉及最小独立的准备和测量操作集(门),既适用于特定配置,也适用于参数配置。该测试对不连贯泄漏和错误门执行等非理想情况具有鲁棒性。IBM 两款设备的测试失败率超过 5 个标准差,这一点无法简单解释。
{"title":"Precise certification of a qubit space","authors":"Tomasz Białecki, Tomasz Rybotycki, Josep Batle, Jakub Tworzydło, Adam Bednorz","doi":"10.1140/epjqt/s40507-024-00230-4","DOIUrl":"10.1140/epjqt/s40507-024-00230-4","url":null,"abstract":"<div><p>We demonstrate an implementation of the precise test of dimension on the qubit, using the public IBM quantum computer, using the determinant dimension witness. The accuracy is below 10<sup>−3</sup> comparing to maximal possible value of the witness in higher dimension. The test involving minimal independent sets of preparation and measurement operations (gates) is applied both for specific configurations and parametric ones. The test is robust against nonidealities such as incoherent leakage and erroneous gate execution. Two of the IBM devices failed the test by more than 5 standard deviations, which has no simple explanation.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00230-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1140/epjqt/s40507-024-00232-2
Michael Fromm, Owe Philipsen, Michael Spannowsky, Christopher Winterowd
The properties of strongly-coupled lattice gauge theories at finite density as well as in real time have largely eluded first-principles studies on the lattice. This is due to the failure of importance sampling for systems with a complex action. An alternative to evade the sign problem is quantum simulation. Although still in its infancy, a lot of progress has been made in devising algorithms to address these problems. In particular, recent efforts have addressed the question of how to produce thermal Gibbs states on a quantum computer. In this study, we apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry. We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.
{"title":"Simulating (Z_{2}) lattice gauge theory with the variational quantum thermalizer","authors":"Michael Fromm, Owe Philipsen, Michael Spannowsky, Christopher Winterowd","doi":"10.1140/epjqt/s40507-024-00232-2","DOIUrl":"10.1140/epjqt/s40507-024-00232-2","url":null,"abstract":"<div><p>The properties of strongly-coupled lattice gauge theories at finite density as well as in real time have largely eluded first-principles studies on the lattice. This is due to the failure of importance sampling for systems with a complex action. An alternative to evade the sign problem is quantum simulation. Although still in its infancy, a lot of progress has been made in devising algorithms to address these problems. In particular, recent efforts have addressed the question of how to produce thermal Gibbs states on a quantum computer. In this study, we apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry. We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00232-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1140/epjqt/s40507-024-00229-x
David Petrosyan, József Fortágh, Gershon Kurizki
Sub-wavelength arrays of atoms exhibit remarkable optical properties, analogous to those of phased array antennas, such as collimated directional emission or nearly perfect reflection of light near the collective resonance frequency. We propose to use a single-sheet sub-wavelength array of atoms as a switchable mirror to achieve a coherent interface between propagating optical photons and microwave photons in a superconducting coplanar waveguide resonator. In the proposed setup, the atomic array is located near the surface of the integrated superconducting chip containing the microwave cavity and optical waveguide. A driving laser couples the excited atomic state to Rydberg states with strong microwave transition. Then the presence or absence of a microwave photon in the superconducting cavity makes the atomic array transparent or reflective to the incoming optical pulses of proper frequency and finite bandwidth.
{"title":"Coherent interface between optical and microwave photons on an integrated superconducting atom chip","authors":"David Petrosyan, József Fortágh, Gershon Kurizki","doi":"10.1140/epjqt/s40507-024-00229-x","DOIUrl":"10.1140/epjqt/s40507-024-00229-x","url":null,"abstract":"<div><p>Sub-wavelength arrays of atoms exhibit remarkable optical properties, analogous to those of phased array antennas, such as collimated directional emission or nearly perfect reflection of light near the collective resonance frequency. We propose to use a single-sheet sub-wavelength array of atoms as a switchable mirror to achieve a coherent interface between propagating optical photons and microwave photons in a superconducting coplanar waveguide resonator. In the proposed setup, the atomic array is located near the surface of the integrated superconducting chip containing the microwave cavity and optical waveguide. A driving laser couples the excited atomic state to Rydberg states with strong microwave transition. Then the presence or absence of a microwave photon in the superconducting cavity makes the atomic array transparent or reflective to the incoming optical pulses of proper frequency and finite bandwidth.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00229-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}