首页 > 最新文献

EPJ Quantum Technology最新文献

英文 中文
A KPI framework to standardize the measurement of a country’s progress in bringing quantum computing into application 量子计算应用进展的标准化衡量指标框架
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-04 DOI: 10.1140/epjqt/s40507-024-00245-x
Quantum Technology and Application Consortium – QUTAC, Julia Binder, Lara Hachmann, Sebastian Luber

Quantum computing (QC) is a new and disruptive technology with large economic potential especially in application and downstream value creation stages. Hence, it is important for an economy to understand the current implementation state and to know the ecosystem to support the successful industrial application of this technology. Regularly identifying potential areas of improvement and then defining appropriate actions is necessary to ensure a leading position. Therefore, the Quantum Technology and Application Consortium (QUTAC) has developed a Key Performance Indicator (KPI) framework consisting of 24 KPIs that represent a country’s performance in applying QC. Detailed measurement guidelines and clear data sources ensure transparency of measurement, reproducibility of KPI values and comparability over time. An aggregation method allows summarizing the results of all KPIs. Thus, it is possible to assess the performance of each stakeholder involved and to calculate a single composite indicator that represents the country’s performance. The KPI framework can be adapted to any country and enables the comparison of the performance of different countries. It is a proposal for standardizing the evaluation of QC and its ecosystem on a national level. Thus, strengths and weaknesses can be identified and measurements for improvement derived. The paper highlights the development of the framework, its main features and the application of the framework to Germany. Based on the results, we will discuss the current state of QC application in Germany and make possible suggestions for improvement.

量子计算(QC)是一项全新的颠覆性技术,具有巨大的经济潜力,尤其是在应用和下游价值创造阶段。因此,对于一个经济体来说,重要的是了解当前的实施状态,并了解支持该技术成功工业应用的生态系统。要确保领先地位,就必须定期确定潜在的改进领域,然后确定适当的行动。因此,量子技术与应用联盟(QUTAC)制定了一个关键绩效指标(KPI)框架,由 24 个关键绩效指标组成,代表了一个国家在应用 QC 方面的绩效。详细的衡量准则和明确的数据来源确保了衡量的透明度、关键绩效指标值的可重复性和时间上的可比性。通过汇总方法可以总结所有关键绩效指标的结果。因此,可以评估每个相关利益方的绩效,并计算出代表国家绩效的单一综合指标。关键绩效指标框架可适用于任何国家,并可对不同国家的绩效进行比较。它建议在国家层面对质量控制及其生态系统进行标准化评估。因此,可以找出优缺点并制定改进措施。本文重点介绍了该框架的发展、主要特点以及该框架在德国的应用。在此基础上,我们将讨论德国质量控制应用的现状,并提出可能的改进建议。
{"title":"A KPI framework to standardize the measurement of a country’s progress in bringing quantum computing into application","authors":"Quantum Technology and Application Consortium – QUTAC,&nbsp;Julia Binder,&nbsp;Lara Hachmann,&nbsp;Sebastian Luber","doi":"10.1140/epjqt/s40507-024-00245-x","DOIUrl":"10.1140/epjqt/s40507-024-00245-x","url":null,"abstract":"<div><p>Quantum computing (QC) is a new and disruptive technology with large economic potential especially in application and downstream value creation stages. Hence, it is important for an economy to understand the current implementation state and to know the ecosystem to support the successful industrial application of this technology. Regularly identifying potential areas of improvement and then defining appropriate actions is necessary to ensure a leading position. Therefore, the Quantum Technology and Application Consortium (QUTAC) has developed a Key Performance Indicator (KPI) framework consisting of 24 KPIs that represent a country’s performance in applying QC. Detailed measurement guidelines and clear data sources ensure transparency of measurement, reproducibility of KPI values and comparability over time. An aggregation method allows summarizing the results of all KPIs. Thus, it is possible to assess the performance of each stakeholder involved and to calculate a single composite indicator that represents the country’s performance. The KPI framework can be adapted to any country and enables the comparison of the performance of different countries. It is a proposal for standardizing the evaluation of QC and its ecosystem on a national level. Thus, strengths and weaknesses can be identified and measurements for improvement derived. The paper highlights the development of the framework, its main features and the application of the framework to Germany. Based on the results, we will discuss the current state of QC application in Germany and make possible suggestions for improvement.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00245-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of robust memory modes for linear quantum systems with unknown inputs 合成具有未知输入的线性量子系统的稳健记忆模式
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-30 DOI: 10.1140/epjqt/s40507-024-00249-7
Zibo Miao, Xinpeng Chen, Yu Pan, Qing Gao

In this paper, the synthesis of robust memory modes for linear quantum passive systems in the presence of unknown inputs has been studied, aimed at facilitating secure storage and communication of quantum information. In particular, we can switch on decoherence-free (DF) modes in the storage stage by placing the poles on the imaginary axis via a coherent feedback control scheme, and these memory modes can further be simultaneously made robust against perturbations to the system parameters by minimizing the condition number associated with imaginary poles. The DF modes can also be switched off by tuning the controller parameters to place the poles in the left half of the complex plane in the writing/reading stage. We develop explicit algebraic conditions guiding the design of such a coherent quantum controller, which involves employing an augmented system model to counter the influence of unknown inputs. Examples are provided to illustrate the procedure of synthesizing robust memory modes for linear optical quantum systems.

本文研究了线性量子被动系统在未知输入情况下的稳健记忆模式的合成,旨在促进量子信息的安全存储和通信。特别是,我们可以通过相干反馈控制方案,在虚轴上设置极点,从而在存储阶段开启无退相干(DF)模式,并通过最小化与虚极点相关的条件数,进一步使这些记忆模式同时具有抵御系统参数扰动的鲁棒性。在写入/读取阶段,还可以通过调整控制器参数将极点置于复平面的左半部分来关闭 DF 模式。我们开发了明确的代数条件来指导这种相干量子控制器的设计,其中包括采用增强系统模型来抵消未知输入的影响。我们举例说明了为线性光量子系统合成稳健记忆模式的过程。
{"title":"Synthesis of robust memory modes for linear quantum systems with unknown inputs","authors":"Zibo Miao,&nbsp;Xinpeng Chen,&nbsp;Yu Pan,&nbsp;Qing Gao","doi":"10.1140/epjqt/s40507-024-00249-7","DOIUrl":"10.1140/epjqt/s40507-024-00249-7","url":null,"abstract":"<div><p>In this paper, the synthesis of robust memory modes for linear quantum passive systems in the presence of unknown inputs has been studied, aimed at facilitating secure storage and communication of quantum information. In particular, we can switch on decoherence-free (DF) modes in the storage stage by placing the poles on the imaginary axis via a coherent feedback control scheme, and these memory modes can further be simultaneously made robust against perturbations to the system parameters by minimizing the condition number associated with imaginary poles. The DF modes can also be switched off by tuning the controller parameters to place the poles in the left half of the complex plane in the writing/reading stage. We develop explicit algebraic conditions guiding the design of such a coherent quantum controller, which involves employing an augmented system model to counter the influence of unknown inputs. Examples are provided to illustrate the procedure of synthesizing robust memory modes for linear optical quantum systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00249-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers 在 IBM 量子计算机上对谷歌梧桐门进行全量子层析研究
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-27 DOI: 10.1140/epjqt/s40507-024-00248-8
Muhammad AbuGhanem, Hichem Eleuch

The potential of achieving computational hardware with quantum advantage depends heavily on the quality of quantum gate operations. However, the presence of imperfect two-qubit gates poses a significant challenge and acts as a major obstacle in developing scalable quantum information processors. Google’s Quantum AI and collaborators claimed to have conducted a supremacy regime experiment. In this experiment, a new two-qubit universal gate called the Sycamore gate is constructed and employed to generate random quantum circuits (RQCs), using a programmable quantum processor with 53 qubits. These computations were carried out in a computational state space of size (9 times 10^{15}). Nevertheless, even in strictly-controlled laboratory settings, quantum information on quantum processors is susceptible to various disturbances, including undesired interaction with the surroundings and imperfections in the quantum state. To address this issue, we conduct both quantum state tomography (QST) and quantum process tomography (QPT) experiments on Google’s Sycamore gate using different artificial architectural superconducting quantum computer. Furthermore, to demonstrate how errors affect gate fidelity at the level of quantum circuits, we design and conduct full QST experiments for the five-qubit eight-cycle circuit, which was introduced as an example of the programability of Google’s Sycamore quantum processor. These quantum tomography experiments are conducted in three distinct environments: noise-free, noisy simulation, and on IBM Quantum’s genuine quantum computer. Our results offer valuable insights into the performance of IBM Quantum’s hardware and the robustness of Sycamore gates within this experimental setup. These findings contribute to our understanding of quantum hardware performance and provide valuable information for optimizing quantum algorithms for practical applications.

实现具有量子优势的计算硬件的潜力在很大程度上取决于量子门操作的质量。然而,不完美的双量子比特门的存在带来了巨大挑战,成为开发可扩展量子信息处理器的主要障碍。谷歌的量子人工智能与合作者声称已经进行了一次至高机制实验。在这项实验中,他们构建了一个名为 "梧桐门 "的新型双量子比特通用门,并利用一个拥有 53 个量子比特的可编程量子处理器来生成随机量子电路(RQC)。这些计算是在一个大小为(9乘以10^{15})的计算状态空间中进行的。然而,即使在严格控制的实验室环境中,量子处理器上的量子信息也很容易受到各种干扰,包括与周围环境的意外交互和量子态的不完美。为了解决这个问题,我们使用不同的人工架构超导量子计算机,在谷歌梧桐门上进行了量子态层析成像(QST)和量子过程层析成像(QPT)实验。此外,为了证明误差如何影响量子电路层面的栅极保真度,我们为五量子比特八周期电路设计并进行了完整的量子态层析成像(QST)实验,该电路是作为谷歌 Sycamore 量子处理器可编程性的一个例子引入的。这些量子层析成像实验在三种不同的环境中进行:无噪声、噪声模拟以及 IBM Quantum 真正的量子计算机。我们的结果为了解 IBM Quantum 硬件的性能以及 Sycamore 门在此实验设置中的鲁棒性提供了宝贵的见解。这些发现有助于我们了解量子硬件的性能,并为优化实际应用中的量子算法提供了宝贵的信息。
{"title":"Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers","authors":"Muhammad AbuGhanem,&nbsp;Hichem Eleuch","doi":"10.1140/epjqt/s40507-024-00248-8","DOIUrl":"10.1140/epjqt/s40507-024-00248-8","url":null,"abstract":"<div><p>The potential of achieving computational hardware with quantum advantage depends heavily on the quality of quantum gate operations. However, the presence of imperfect two-qubit gates poses a significant challenge and acts as a major obstacle in developing scalable quantum information processors. Google’s Quantum AI and collaborators claimed to have conducted a supremacy regime experiment. In this experiment, a new two-qubit universal gate called the <i>Sycamore</i> gate is constructed and employed to generate random quantum circuits (RQCs), using a programmable quantum processor with 53 qubits. These computations were carried out in a computational state space of size <span>(9 times 10^{15})</span>. Nevertheless, even in strictly-controlled laboratory settings, quantum information on quantum processors is susceptible to various disturbances, including undesired interaction with the surroundings and imperfections in the quantum state. To address this issue, we conduct both quantum state tomography (QST) and quantum process tomography (QPT) experiments on Google’s <i>Sycamore</i> gate using different artificial architectural superconducting quantum computer. Furthermore, to demonstrate how errors affect gate fidelity at the level of quantum circuits, we design and conduct full QST experiments for the five-qubit eight-cycle circuit, which was introduced as an example of the programability of Google’s <i>Sycamore</i> quantum processor. These quantum tomography experiments are conducted in three distinct environments: noise-free, noisy simulation, and on IBM Quantum’s genuine quantum computer. Our results offer valuable insights into the performance of IBM Quantum’s hardware and the robustness of <i>Sycamore</i> gates within this experimental setup. These findings contribute to our understanding of quantum hardware performance and provide valuable information for optimizing quantum algorithms for practical applications.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00248-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different secure semi-quantum summation models without measurement 无需测量的不同安全半量子求和模型
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-22 DOI: 10.1140/epjqt/s40507-024-00247-9
Yuan Tian, Nanyijia Zhang, Chongqiang Ye, Genqing Bian, Jian Li

Secure semi-quantum summation entails the collective computation of the sum of private secrets by multi-untrustworthy and resource-limited participants, facilitated by a quantum third-party. This paper introduces three semi-quantum summation protocols based on single photons, where eliminating the need for classical users to possess measurement capabilities. Two-party protocol 1 and protocol 2 are structured upon different models: star and ring, respectively. The security analysis extensively evaluates the protocols’ resilience against outside and inside attacks, demonstrating protocols are asymptotically secure. Protocol 3 extends two-party protocol 1 to multi-party scenarios, broadening its applicability. Comparison reveals a reduction in the workload for classical users compared to previous similar protocols, and the protocols’ correctness are visually validated through simulation by Qiskit.

安全半量子求和需要在量子第三方的协助下,由多个不可信且资源有限的参与者集体计算私人秘密的总和。本文介绍了三种基于单光子的半量子求和协议,消除了经典用户对测量能力的需求。双方协议 1 和协议 2 分别基于不同的模型:星形和环形。安全分析广泛评估了协议对外部和内部攻击的抵御能力,证明协议是渐进安全的。协议 3 将两方协议 1 扩展到多方场景,扩大了其适用范围。通过比较发现,与以前的类似协议相比,经典用户的工作量有所减少,协议的正确性也通过 Qiskit 的模拟得到了直观验证。
{"title":"Different secure semi-quantum summation models without measurement","authors":"Yuan Tian,&nbsp;Nanyijia Zhang,&nbsp;Chongqiang Ye,&nbsp;Genqing Bian,&nbsp;Jian Li","doi":"10.1140/epjqt/s40507-024-00247-9","DOIUrl":"10.1140/epjqt/s40507-024-00247-9","url":null,"abstract":"<div><p>Secure semi-quantum summation entails the collective computation of the sum of private secrets by multi-untrustworthy and resource-limited participants, facilitated by a quantum third-party. This paper introduces three semi-quantum summation protocols based on single photons, where eliminating the need for classical users to possess measurement capabilities. Two-party protocol 1 and protocol 2 are structured upon different models: star and ring, respectively. The security analysis extensively evaluates the protocols’ resilience against outside and inside attacks, demonstrating protocols are asymptotically secure. Protocol 3 extends two-party protocol 1 to multi-party scenarios, broadening its applicability. Comparison reveals a reduction in the workload for classical users compared to previous similar protocols, and the protocols’ correctness are visually validated through simulation by Qiskit.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00247-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping 通过选择性雷德贝格泵浦实现中性原子的整体交换和受控交换门
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-21 DOI: 10.1140/epjqt/s40507-024-00246-w
C. F. Sun, X. Y. Chen, W. L. Mu, G. C. Wang, J. B. You, X. Q. Shao

Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems.

整体量子计算因其抗错性和执行通用量子计算的能力,为量子计算提供了一个前景广阔的范例。在此,我们基于选择性雷德贝格泵机制,提出了一种在中性原子系统中快速实现全量子交换门的方案。通过采用随时间变化的软控制,与随时间变化的驱动相比,即使在更高的驱动强度下,我们也能有效减轻非共振项的影响。这种方法加速了逻辑门的合成,并被动地降低了退相干效应。此外,通过引入额外的原子并应用适当的驱动场,我们的方案可以直接扩展到实现三量子位受控交换门。这一进步使它成为中性原子系统中量子态制备、量子开关和可变量子算法的重要工具。
{"title":"Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping","authors":"C. F. Sun,&nbsp;X. Y. Chen,&nbsp;W. L. Mu,&nbsp;G. C. Wang,&nbsp;J. B. You,&nbsp;X. Q. Shao","doi":"10.1140/epjqt/s40507-024-00246-w","DOIUrl":"10.1140/epjqt/s40507-024-00246-w","url":null,"abstract":"<div><p>Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00246-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spooky action at a distance? A two-phase study into learners’ views of quantum entanglement 超距作用?分两个阶段研究学习者对量子纠缠的看法
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-10 DOI: 10.1140/epjqt/s40507-024-00244-y
Michael Brang, Helena Franke, Franziska Greinert, Malte S. Ubben, Fabian Hennig, Philipp Bitzenbauer

Quantum entanglement is a challenging concept within the field of physics education, often eluding a full grasp by both educators and learners alike. In this paper, we report findings from a two-phase empirical study into the views of entanglement held by pre-service physics teachers and physics students from various universities. In the first phase, we utilized a questionnaire consisting of open-ended questions which was completed by 31 pre-service physics teachers. The study participants’ ideas were explored using qualitative content analysis which led to the creation of rating scale items used in study phase 2. These items were administered to a broader cohort including 73 physics university students in order to capture the learners’ agreement or disagreement with the questionnaire statements, and hence, helped to validate and substantiate the in-depth insights from study phase 1. Key findings revealed widespread accurate notions, like the need to consider the entire system when examining entangled states. However, less elaborated views were also identified, including ideas such as that measurements of entangled states always show perfect (anti-)correlation. Another striking observation was the confusion between quantum entanglement and superposition. In the case of quantum teleportation, many participants seemed to have a basic grasp of the concept, although a number of misconceptions were apparent, notably the idea that quantum entanglement enables faster-than-light communication. Practically, the findings can assist educators in anticipating and addressing widespread (mis-)conceptions, paving the way for more effective instruction in quantum mechanics and its real-world applications, such as quantum cryptography and computing.

量子纠缠是物理教育领域中一个具有挑战性的概念,教育者和学习者往往都无法完全掌握。在本文中,我们分两个阶段报告了一项实证研究的结果,研究对象是来自不同大学的职前物理教师和物理学生对纠缠的看法。在第一阶段,我们使用了一份由开放式问题组成的调查问卷,由 31 位职前物理教师填写。通过定性内容分析,我们对研究参与者的观点进行了探讨,并据此制定了第二阶段研究中使用的评分量表项目。对包括 73 名物理专业大学生在内的更广泛群体进行了这些项目的调查,以了解学习者对问卷陈述的同意或不同意情况,从而帮助验证和证实研究阶段 1 的深入见解。主要研究结果显示了广泛的准确概念,如在研究纠缠态时需要考虑整个系统。不过,也发现了一些不太详尽的观点,包括对纠缠态的测量总是显示出完美的(反)相关性等想法。另一个引人注目的现象是量子纠缠与叠加之间的混淆。就量子远距传 输而言,许多参与者似乎已基本掌握了这一概念,但也存在一些明显的误解,特别是认为量子纠缠能 够实现比光速更快的通信。实际上,这些发现可以帮助教育工作者预测和解决普遍存在的(错误)概念,为更有效地指导量子力学及其在现实世界中的应用(如量子密码学和计算)铺平道路。
{"title":"Spooky action at a distance? A two-phase study into learners’ views of quantum entanglement","authors":"Michael Brang,&nbsp;Helena Franke,&nbsp;Franziska Greinert,&nbsp;Malte S. Ubben,&nbsp;Fabian Hennig,&nbsp;Philipp Bitzenbauer","doi":"10.1140/epjqt/s40507-024-00244-y","DOIUrl":"10.1140/epjqt/s40507-024-00244-y","url":null,"abstract":"<div><p>Quantum entanglement is a challenging concept within the field of physics education, often eluding a full grasp by both educators and learners alike. In this paper, we report findings from a two-phase empirical study into the views of entanglement held by pre-service physics teachers and physics students from various universities. In the first phase, we utilized a questionnaire consisting of open-ended questions which was completed by 31 pre-service physics teachers. The study participants’ ideas were explored using qualitative content analysis which led to the creation of rating scale items used in study phase 2. These items were administered to a broader cohort including 73 physics university students in order to capture the learners’ agreement or disagreement with the questionnaire statements, and hence, helped to validate and substantiate the in-depth insights from study phase 1. Key findings revealed widespread accurate notions, like the need to consider the entire system when examining entangled states. However, less elaborated views were also identified, including ideas such as that measurements of entangled states always show perfect (anti-)correlation. Another striking observation was the confusion between quantum entanglement and superposition. In the case of quantum teleportation, many participants seemed to have a basic grasp of the concept, although a number of misconceptions were apparent, notably the idea that quantum entanglement enables faster-than-light communication. Practically, the findings can assist educators in anticipating and addressing widespread (mis-)conceptions, paving the way for more effective instruction in quantum mechanics and its real-world applications, such as quantum cryptography and computing.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00244-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-premises superconducting quantum computer for education and research 用于教育和研究的内部超导量子计算机
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-29 DOI: 10.1140/epjqt/s40507-024-00243-z
Jami Rönkkö, Olli Ahonen, Ville Bergholm, Alessio Calzona, Attila Geresdi, Hermanni Heimonen, Johannes Heinsoo, Vladimir Milchakov, Stefan Pogorzalek, Matthew Sarsby, Mykhailo Savytskyi, Stefan Seegerer, Fedor Šimkovic IV, P. V. Sriluckshmy, Panu T. Vesanen, Mikio Nakahara

With a growing interest in quantum technology globally, there is an increasing need for accessing relevant physical systems for education and research. In this paper we introduce a commercially available on-site quantum computer utilizing superconducting technology, offering insights into its fundamental hardware and software components. We show how this system can be used in education to teach quantum concepts and deepen understanding of quantum theory and quantum computing. It offers learning opportunities for future talent and contributes to technological progress. Additionally, we demonstrate its use in research by replicating some notable recent achievements.

随着全球对量子技术的兴趣与日俱增,人们越来越需要获取相关物理系统用于教育和研究。在本文中,我们介绍了一种利用超导技术的商用现场量子计算机,并深入探讨了其基本硬件和软件组件。我们展示了如何在教育中使用该系统来教授量子概念,加深对量子理论和量子计算的理解。它为未来人才提供了学习机会,促进了技术进步。此外,我们还通过复制近期取得的一些显著成果,展示了该系统在科研中的应用。
{"title":"On-premises superconducting quantum computer for education and research","authors":"Jami Rönkkö,&nbsp;Olli Ahonen,&nbsp;Ville Bergholm,&nbsp;Alessio Calzona,&nbsp;Attila Geresdi,&nbsp;Hermanni Heimonen,&nbsp;Johannes Heinsoo,&nbsp;Vladimir Milchakov,&nbsp;Stefan Pogorzalek,&nbsp;Matthew Sarsby,&nbsp;Mykhailo Savytskyi,&nbsp;Stefan Seegerer,&nbsp;Fedor Šimkovic IV,&nbsp;P. V. Sriluckshmy,&nbsp;Panu T. Vesanen,&nbsp;Mikio Nakahara","doi":"10.1140/epjqt/s40507-024-00243-z","DOIUrl":"10.1140/epjqt/s40507-024-00243-z","url":null,"abstract":"<div><p>With a growing interest in quantum technology globally, there is an increasing need for accessing relevant physical systems for education and research. In this paper we introduce a commercially available on-site quantum computer utilizing superconducting technology, offering insights into its fundamental hardware and software components. We show how this system can be used in education to teach quantum concepts and deepen understanding of quantum theory and quantum computing. It offers learning opportunities for future talent and contributes to technological progress. Additionally, we demonstrate its use in research by replicating some notable recent achievements.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00243-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminating sensing blind spots of field-enhanced Rydberg atomic antenna via an asymmetric parallel-plate resonator 通过非对称平行板谐振器消除场增强雷德贝格原子天线的传感盲点
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-24 DOI: 10.1140/epjqt/s40507-024-00239-9
Bo Wu, Yan-Li Zhou, Zhen-Ke Ding, Rui-Qi Mao, Si-Xian Qian, Zhi-Qian Wan, Yi Liu, Qiang An, Yi Lin, Yun-Qi Fu

Due to its large electric dipole moment, the Rydberg atom exhibits a strong response to weak electric fields, hence it is regarded as a highly promising atomic antenna. However, to enhance the reception sensitivity, split-ring resonators are needed normally, which will brings sensing blind spots. Thus it is not conducive to the application of full-coverage space communication. Here we propose that an atomic antenna with an asymmetric parallel-plate resonator, can not only enhance the received signal, but also eliminate sensing blind spots (pattern roundness can reach 7.8 dB while the split-ring resonator can be up to 39 dB). We analyze the influence of structural parameters on the field enhancement factor and directionality, and further discuss the limitation of the sensitivity by using thermal resistor noise theory. This work is expected to pave the way for the development of field-enhanced Rydberg atomic antennas that communicate without a blind spot.

由于雷德贝格原子具有很大的电偶极矩,它对微弱电场的反应很强,因此被认为是一种很有前途的原子天线。然而,为了提高接收灵敏度,通常需要使用分环谐振器,这会带来感应盲点。因此不利于全覆盖空间通信的应用。在这里,我们提出了一种带有非对称平行板谐振器的原子天线,不仅能增强接收信号,还能消除感应盲点(图案圆度可达 7.8 dB,而分环谐振器可达 39 dB)。我们分析了结构参数对场增强因子和方向性的影响,并利用热阻噪声理论进一步讨论了灵敏度的限制。这项工作有望为开发无盲点通信的场增强雷德堡原子天线铺平道路。
{"title":"Eliminating sensing blind spots of field-enhanced Rydberg atomic antenna via an asymmetric parallel-plate resonator","authors":"Bo Wu,&nbsp;Yan-Li Zhou,&nbsp;Zhen-Ke Ding,&nbsp;Rui-Qi Mao,&nbsp;Si-Xian Qian,&nbsp;Zhi-Qian Wan,&nbsp;Yi Liu,&nbsp;Qiang An,&nbsp;Yi Lin,&nbsp;Yun-Qi Fu","doi":"10.1140/epjqt/s40507-024-00239-9","DOIUrl":"10.1140/epjqt/s40507-024-00239-9","url":null,"abstract":"<div><p>Due to its large electric dipole moment, the Rydberg atom exhibits a strong response to weak electric fields, hence it is regarded as a highly promising atomic antenna. However, to enhance the reception sensitivity, split-ring resonators are needed normally, which will brings sensing blind spots. Thus it is not conducive to the application of full-coverage space communication. Here we propose that an atomic antenna with an asymmetric parallel-plate resonator, can not only enhance the received signal, but also eliminate sensing blind spots (pattern roundness can reach 7.8 dB while the split-ring resonator can be up to 39 dB). We analyze the influence of structural parameters on the field enhancement factor and directionality, and further discuss the limitation of the sensitivity by using thermal resistor noise theory. This work is expected to pave the way for the development of field-enhanced Rydberg atomic antennas that communicate without a blind spot.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00239-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital quantum simulation of gravitational optomechanics with IBM quantum computers 利用 IBM 量子计算机对引力光学机械进行数字量子模拟
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-24 DOI: 10.1140/epjqt/s40507-024-00242-0
Pablo Guillermo Carmona Rufo, Anupam Mazumdar, Sougato Bose, Carlos Sabín

We showcase the digital quantum simulation of the action of a Hamiltonian that governs the interaction between a quantum mechanical oscillator and an optical field, generating quantum entanglement between them via gravitational effects. This is achieved by making use of a boson-qubit mapping protocol and a digital gate decomposition that allow us to run the simulations in the quantum computers available in the IBM Quantum platform. We present the obtained results for the fidelity of the experiment in two different quantum computers, after applying error mitigation and post-selection techniques. The achieved results correspond to fidelities over 90%, which indicates that we were able to perform a faithful digital quantum simulation of the interaction and therefore of the generation of quantum entanglement by gravitational means in optomechanical systems.

我们展示了哈密顿作用的数字量子模拟,该哈密顿支配着量子力学振荡器与光场之间的相互作用,通过引力效应在两者之间产生量子纠缠。这是通过利用玻色子-量子比特映射协议和数字门分解实现的,使我们能够在 IBM 量子平台的量子计算机上运行模拟。我们介绍了在两台不同量子计算机上应用错误缓解和后选技术后获得的实验保真度结果。所取得的结果保真度超过 90%,这表明我们能够对相互作用进行忠实的数字量子模拟,并因此能够在光机械系统中通过引力产生量子纠缠。
{"title":"Digital quantum simulation of gravitational optomechanics with IBM quantum computers","authors":"Pablo Guillermo Carmona Rufo,&nbsp;Anupam Mazumdar,&nbsp;Sougato Bose,&nbsp;Carlos Sabín","doi":"10.1140/epjqt/s40507-024-00242-0","DOIUrl":"10.1140/epjqt/s40507-024-00242-0","url":null,"abstract":"<div><p>We showcase the digital quantum simulation of the action of a Hamiltonian that governs the interaction between a quantum mechanical oscillator and an optical field, generating quantum entanglement between them via gravitational effects. This is achieved by making use of a boson-qubit mapping protocol and a digital gate decomposition that allow us to run the simulations in the quantum computers available in the IBM Quantum platform. We present the obtained results for the fidelity of the experiment in two different quantum computers, after applying error mitigation and post-selection techniques. The achieved results correspond to fidelities over 90%, which indicates that we were able to perform a faithful digital quantum simulation of the interaction and therefore of the generation of quantum entanglement by gravitational means in optomechanical systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00242-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum image representations based on density matrices in open quantum systems 开放量子系统中基于密度矩阵的量子图像表征
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-19 DOI: 10.1140/epjqt/s40507-024-00241-1
Yingying Hu, Dayong Lu, Qianqian Zhang, Meiyu Xu

So far, research on quantum image representation has gone through more than 20 years. During this time, the quantum image representation models used have almost all been based on state vectors. However, in practical problems, the environment and the principal quantum system cannot be separated, and isolated quantum systems do not exist in principle. This case is often referred to as an open quantum system. In open quantum systems, many problems involve density matrices, such as the calculation of Von Neumann entropy, the quantization of coherence, and the operator-sum representations of quantum operations. Therefore, the existing quantum image representation models are only suitable for closed quantum systems. To this end, the paper proposes three models that can not only represent quantum images in an open quantum system but also decompose the evolution process of quantum images utilizing operator-sum decomposition. These three models are the representation model of quantum gray-scale images, the tensor product representation model of quantum color images, and the representation model of quantum color images based on mixed states in the Bloch sphere, respectively. All these image representation models have strong correlations among them and are very different from their classical analogues. Between them, the biggest difference is that the paper employs density matrices, inspired by incoherent-coherent states, to represent quantum images rather than classical state vectors. By means of one of the representation models proposed in the paper, we finally demonstrate the evolution process of the quantum image going through the amplitude damping channel.

迄今为止,量子图像表示的研究已经走过了 20 多年的历程。在此期间,所使用的量子图像表示模型几乎都是基于状态矢量的。然而,在实际问题中,环境和主量子系统无法分离,孤立的量子系统原则上是不存在的。这种情况通常被称为开放量子系统。在开放量子系统中,许多问题都涉及密度矩阵,例如冯-诺依曼熵的计算、相干性的量化、量子运算的算子和表示等。因此,现有的量子图像表示模型只适用于封闭量子系统。为此,本文提出了三种模型,它们不仅能在开放量子系统中表示量子图像,还能利用算子和分解来分解量子图像的演化过程。这三个模型分别是量子灰度图像的表示模型、量子彩色图像的张量乘表示模型和基于布洛赫球混合态的量子彩色图像表示模型。所有这些图像表示模型之间都有很强的相关性,与经典类似模型有很大不同。它们之间最大的区别在于,本文采用了受非相干-相干态启发的密度矩阵来表示量子图像,而不是经典的状态矢量。通过文中提出的一种表示模型,我们最终展示了量子图像通过振幅阻尼通道的演化过程。
{"title":"Quantum image representations based on density matrices in open quantum systems","authors":"Yingying Hu,&nbsp;Dayong Lu,&nbsp;Qianqian Zhang,&nbsp;Meiyu Xu","doi":"10.1140/epjqt/s40507-024-00241-1","DOIUrl":"10.1140/epjqt/s40507-024-00241-1","url":null,"abstract":"<div><p>So far, research on quantum image representation has gone through more than 20 years. During this time, the quantum image representation models used have almost all been based on state vectors. However, in practical problems, the environment and the principal quantum system cannot be separated, and isolated quantum systems do not exist in principle. This case is often referred to as an open quantum system. In open quantum systems, many problems involve density matrices, such as the calculation of Von Neumann entropy, the quantization of coherence, and the operator-sum representations of quantum operations. Therefore, the existing quantum image representation models are only suitable for closed quantum systems. To this end, the paper proposes three models that can not only represent quantum images in an open quantum system but also decompose the evolution process of quantum images utilizing operator-sum decomposition. These three models are the representation model of quantum gray-scale images, the tensor product representation model of quantum color images, and the representation model of quantum color images based on mixed states in the Bloch sphere, respectively. All these image representation models have strong correlations among them and are very different from their classical analogues. Between them, the biggest difference is that the paper employs density matrices, inspired by incoherent-coherent states, to represent quantum images rather than classical state vectors. By means of one of the representation models proposed in the paper, we finally demonstrate the evolution process of the quantum image going through the amplitude damping channel.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00241-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EPJ Quantum Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1