首页 > 最新文献

Journal of Genetics and Genomics最新文献

英文 中文
Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-25 DOI: 10.1016/j.jgg.2025.01.011
Xiangyu Qing, Jianrui Li, Zhen Lin, Wei Wang, Fei Yi, Jian Chen, Qiujie Liu, Weibin Song, Jinsheng Lai, Baojian Chen, Haiming Zhao, Zhijia Yang

Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm, a large storage organ, accounting for nearly 90% of the dry weight of mature kernel, serves as the main place for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein. Knockout of ZmEREB167 significantly increases kernel size and weight, as well as starch and protein content, compared with the wild type. In situ hybridization experiments show that ZmEREB167 is highly expressed in the BETL as well as PED regions of maize kernels. Dual-luciferase assays show that ZmEREB167 exhibits transcriptionally repressor activity in maize protoplasts. Transcriptome analysis reveals that a large number of genes are up-regulated in the Zmereb167-C1 mutant compared with the wild type, including key genetic factors such as ZmMRP-1 and ZmMN1, as well as multiple transporters involved in maize endosperm development. Integration of RNA-seq and ChIP-seq results identify 68 target genes modulated by ZmEREB167. We find that ZmEREB167 directly targets OPAQUE2, ZmNRT1.1, ZmIAA12, ZmIAA19, and ZmbZIP20, repressing their expressions. Our study demonstrates that ZmEREB167 functions as a negative regulator in maize endosperm development and affects starch accumulation and kernel size.

{"title":"Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size.","authors":"Xiangyu Qing, Jianrui Li, Zhen Lin, Wei Wang, Fei Yi, Jian Chen, Qiujie Liu, Weibin Song, Jinsheng Lai, Baojian Chen, Haiming Zhao, Zhijia Yang","doi":"10.1016/j.jgg.2025.01.011","DOIUrl":"10.1016/j.jgg.2025.01.011","url":null,"abstract":"<p><p>Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm, a large storage organ, accounting for nearly 90% of the dry weight of mature kernel, serves as the main place for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein. Knockout of ZmEREB167 significantly increases kernel size and weight, as well as starch and protein content, compared with the wild type. In situ hybridization experiments show that ZmEREB167 is highly expressed in the BETL as well as PED regions of maize kernels. Dual-luciferase assays show that ZmEREB167 exhibits transcriptionally repressor activity in maize protoplasts. Transcriptome analysis reveals that a large number of genes are up-regulated in the Zmereb167-C1 mutant compared with the wild type, including key genetic factors such as ZmMRP-1 and ZmMN1, as well as multiple transporters involved in maize endosperm development. Integration of RNA-seq and ChIP-seq results identify 68 target genes modulated by ZmEREB167. We find that ZmEREB167 directly targets OPAQUE2, ZmNRT1.1, ZmIAA12, ZmIAA19, and ZmbZIP20, repressing their expressions. Our study demonstrates that ZmEREB167 functions as a negative regulator in maize endosperm development and affects starch accumulation and kernel size.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-23 DOI: 10.1016/j.jgg.2025.01.009
Conghe Liu, Zhihao Liu, Zheng Dong, Sijin Liu, Haidong Kan, Shuping Zhang

Ferroptosis, a type of programmed cell death, represents a distinct paradigm in cell biology. It is characterized by the iron-dependent accumulation of reactive oxygen species, which induce lipid peroxidation (LPO), and is orchestrated by the interplay between iron, lipid peroxides, and glutathione. In this review, we emphasize the frequently overlooked role of iron in LPO beyond the classical iron-driven Fenton reaction in several crucial processes that regulate cellular iron homeostasis, including iron intake and export as well as ferritinophagy, and the emerging roles of endoplasmic reticulum-resident flavoprotein oxidoreductases, especially P450 oxidoreductases, in modulating LPO. We summarize how various types of fatty acids (FAs), including saturated, monounsaturated, and polyunsaturated FAs, differentially influence ferroptosis when incorporated into phospholipids. Furthermore, we highlight the therapeutic potential of targeting LPO to mitigate ferroptosis and discuss the regulatory mechanisms of endogenous lipophilic radical-trapping antioxidants that confer resistance to ferroptosis, shedding light on therapeutic avenues for ferroptosis-associated diseases.

铁变态反应是一种程序性细胞死亡,代表了细胞生物学的一种独特模式。它的特点是活性氧的铁依赖性积累,从而诱发脂质过氧化(LPO),并由铁、脂质过氧化物和谷胱甘肽之间的相互作用协调。在这篇综述中,我们强调了铁在 LPO 中经常被忽视的作用,除了经典的铁驱动芬顿反应外,铁还在调节细胞铁稳态的几个关键过程中起着重要作用,包括铁的摄入和输出以及铁蛋白吞噬,以及内质网驻留的黄蛋白氧化还原酶(尤其是 P450 氧化还原酶)在调节 LPO 中的新作用。我们总结了各种类型的脂肪酸(FA),包括饱和、单不饱和和多不饱和脂肪酸,在加入磷脂后如何对铁变态反应产生不同的影响。此外,我们还强调了以 LPO 为靶点来缓解铁变态反应的治疗潜力,并讨论了内源性亲脂性自由基捕获抗氧化剂赋予铁变态反应抵抗力的调节机制,为铁变态反应相关疾病的治疗途径提供了启示。
{"title":"Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis.","authors":"Conghe Liu, Zhihao Liu, Zheng Dong, Sijin Liu, Haidong Kan, Shuping Zhang","doi":"10.1016/j.jgg.2025.01.009","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.009","url":null,"abstract":"<p><p>Ferroptosis, a type of programmed cell death, represents a distinct paradigm in cell biology. It is characterized by the iron-dependent accumulation of reactive oxygen species, which induce lipid peroxidation (LPO), and is orchestrated by the interplay between iron, lipid peroxides, and glutathione. In this review, we emphasize the frequently overlooked role of iron in LPO beyond the classical iron-driven Fenton reaction in several crucial processes that regulate cellular iron homeostasis, including iron intake and export as well as ferritinophagy, and the emerging roles of endoplasmic reticulum-resident flavoprotein oxidoreductases, especially P450 oxidoreductases, in modulating LPO. We summarize how various types of fatty acids (FAs), including saturated, monounsaturated, and polyunsaturated FAs, differentially influence ferroptosis when incorporated into phospholipids. Furthermore, we highlight the therapeutic potential of targeting LPO to mitigate ferroptosis and discuss the regulatory mechanisms of endogenous lipophilic radical-trapping antioxidants that confer resistance to ferroptosis, shedding light on therapeutic avenues for ferroptosis-associated diseases.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The HISTONE ACETYLTRANSFERASE 1 interacts with CONSTANS to promote flowering in Arabidopsis.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-22 DOI: 10.1016/j.jgg.2025.01.010
Zhenwei Liang, Yisui Huang, Yuanhao Hao, Xin Song, Tao Zhu, Chen Liu, Chenlong Li

Chromatin modifications including histone acetylation play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown. In this study, we elucidated the critical function of HAC1 in promoting flowering via exerting active epigenetic markers at two key floral integrators, FT and SOC1, thereby regulating their expression to trigger the flowering process. We show that HAC1 physically interacts with CONSTANS (CO) in vivo and in vitro. Chromatin immunoprecipitation results indicate that HAC1 directly binds to the FT and SOC1 loci. Loss of HAC1 impairs CO-mediated transcriptional activation of FT and SOC1 in promoting flowering. Moreover, CO mutation leads to the decreased enrichment of HAC1 at FT and SOC1, indicating that CO recruits HAC1 to FT and SOC1. Finally, HAC1, as well as CO, is required for the elevated histone acetylation level at FT and SOC1. Taken together, our finding reveals that HAC1-mediated histone acetylation boots flowering via a CO-dependent activation of FT and SOC1.

{"title":"The HISTONE ACETYLTRANSFERASE 1 interacts with CONSTANS to promote flowering in Arabidopsis.","authors":"Zhenwei Liang, Yisui Huang, Yuanhao Hao, Xin Song, Tao Zhu, Chen Liu, Chenlong Li","doi":"10.1016/j.jgg.2025.01.010","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.010","url":null,"abstract":"<p><p>Chromatin modifications including histone acetylation play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown. In this study, we elucidated the critical function of HAC1 in promoting flowering via exerting active epigenetic markers at two key floral integrators, FT and SOC1, thereby regulating their expression to trigger the flowering process. We show that HAC1 physically interacts with CONSTANS (CO) in vivo and in vitro. Chromatin immunoprecipitation results indicate that HAC1 directly binds to the FT and SOC1 loci. Loss of HAC1 impairs CO-mediated transcriptional activation of FT and SOC1 in promoting flowering. Moreover, CO mutation leads to the decreased enrichment of HAC1 at FT and SOC1, indicating that CO recruits HAC1 to FT and SOC1. Finally, HAC1, as well as CO, is required for the elevated histone acetylation level at FT and SOC1. Taken together, our finding reveals that HAC1-mediated histone acetylation boots flowering via a CO-dependent activation of FT and SOC1.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the chromatin-mediated transcriptional regulatory network governing cold stress responses in fish immune cells.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-21 DOI: 10.1016/j.jgg.2025.01.008
He Jiao, Songqian Huang, Minghao Zhang, Qiao Huang, Chenyu Yan, Jingting Qi, Jiangbo Cheng, Yuan Xu, Xue Zhai, Xinwen Li, Siyao Zhan, Wei Li, Zhichao Wu, Jiulin Chan, Liangbiao Chen, Peng Hu

Temperature fluctuations challenge ectothermic species, particularly tropical fish dependent on external temperatures for physiological regulation. However, the molecular mechanisms through which low-temperature stress impacts immune responses in these species, especially in relation to chromatin accessibility and epigenetic regulation, remain poorly understood. In this study, we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia (Oreochromis niloticus), a tropical fish of significant economic importance, under cold stress. By analyzing cis-regulatory elements in open chromatin regions and their associated transcription factors (TFs), we construct a comprehensive transcriptional regulatory network (TRN) governing immune responses, including DNA damage-induced apoptosis. Our analysis identifies 119 TFs within the TRN, with Stat1 emerging as a central hub exhibiting distinct binding dynamics under cold stress, as revealed by footprint analysis. Overexpression of Stat1 in immune cells leads to apoptosis and increases the expression of apoptosis-related genes, many of which contain Stat1 binding sites in their regulatory regions, emphasizing its critical role in immune cell survival during cold stress. These results provide insights into the transcriptional and epigenetic regulation of immune responses to cold stress in tilapia and highlight Stat1 as a promising target for enhancing cold tolerance in tropical fish species.

{"title":"Uncovering the chromatin-mediated transcriptional regulatory network governing cold stress responses in fish immune cells.","authors":"He Jiao, Songqian Huang, Minghao Zhang, Qiao Huang, Chenyu Yan, Jingting Qi, Jiangbo Cheng, Yuan Xu, Xue Zhai, Xinwen Li, Siyao Zhan, Wei Li, Zhichao Wu, Jiulin Chan, Liangbiao Chen, Peng Hu","doi":"10.1016/j.jgg.2025.01.008","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.008","url":null,"abstract":"<p><p>Temperature fluctuations challenge ectothermic species, particularly tropical fish dependent on external temperatures for physiological regulation. However, the molecular mechanisms through which low-temperature stress impacts immune responses in these species, especially in relation to chromatin accessibility and epigenetic regulation, remain poorly understood. In this study, we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia (Oreochromis niloticus), a tropical fish of significant economic importance, under cold stress. By analyzing cis-regulatory elements in open chromatin regions and their associated transcription factors (TFs), we construct a comprehensive transcriptional regulatory network (TRN) governing immune responses, including DNA damage-induced apoptosis. Our analysis identifies 119 TFs within the TRN, with Stat1 emerging as a central hub exhibiting distinct binding dynamics under cold stress, as revealed by footprint analysis. Overexpression of Stat1 in immune cells leads to apoptosis and increases the expression of apoptosis-related genes, many of which contain Stat1 binding sites in their regulatory regions, emphasizing its critical role in immune cell survival during cold stress. These results provide insights into the transcriptional and epigenetic regulation of immune responses to cold stress in tilapia and highlight Stat1 as a promising target for enhancing cold tolerance in tropical fish species.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S-sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis. s -磺酰基介导的GSNOR1活性抑制调节拟南芥胚珠发育。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1016/j.jgg.2025.01.007
Shina Sun, Peng-Fei Jia, Wan Wang, Lichao Chen, Xinru Gong, Huifang Lin, Rong Wu, Wei-Cai Yang, Hong-Ju Li, Jianru Zuo, Hongyan Guo

Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear. Here, we show that H2O2 negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis. S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity. A GSNOR1C284S mutation causes a reduction of the total SNO level in pistils, thereby disrupting NO homeostasis and eventually leading to defective ovule development. These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity, thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.

活性氧(ROS)和一氧化氮(NO)是调控植物发育和胁迫反应的两类重要信号分子。s -亚硝基谷胱甘肽(GSNO)是一种重要的生物活性NO,其胞内水平受高度保守的GSNO还原酶(GSNOR)调控。然而,ros介导的GSNOR调控的分子机制仍不清楚。在这里,我们发现H2O2在拟南芥胚珠发育过程中负调控GSNOR1的活性。GSNOR1在Cys-284上的s-亚砜化抑制其酶活性。GSNOR1C284S突变导致雌蕊中总SNO水平降低,从而破坏NO稳态,最终导致胚珠发育缺陷。这些发现说明了ROS通过s -磺化介导的GSNOR活性抑制调控胚珠发育的独特机制,从而在生殖发育中建立了ROS和NO信号通路之间的分子联系。
{"title":"S-sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis.","authors":"Shina Sun, Peng-Fei Jia, Wan Wang, Lichao Chen, Xinru Gong, Huifang Lin, Rong Wu, Wei-Cai Yang, Hong-Ju Li, Jianru Zuo, Hongyan Guo","doi":"10.1016/j.jgg.2025.01.007","DOIUrl":"10.1016/j.jgg.2025.01.007","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear. Here, we show that H<sub>2</sub>O<sub>2</sub> negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis. S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity. A GSNOR1<sup>C284S</sup> mutation causes a reduction of the total SNO level in pistils, thereby disrupting NO homeostasis and eventually leading to defective ovule development. These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity, thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical evaluation of deep-learning based phylogenetic inference programs using simulated datasets. 使用模拟数据集对基于深度学习的系统发育推断程序进行关键评估。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-15 DOI: 10.1016/j.jgg.2025.01.006
Yixiao Zhu, Yonglin Li, Chuhao Li, Xing-Xing Shen, Xiaofan Zhou
{"title":"A critical evaluation of deep-learning based phylogenetic inference programs using simulated datasets.","authors":"Yixiao Zhu, Yonglin Li, Chuhao Li, Xing-Xing Shen, Xiaofan Zhou","doi":"10.1016/j.jgg.2025.01.006","DOIUrl":"10.1016/j.jgg.2025.01.006","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biallelic variants in SREBF2 cause autosomal recessive spastic paraplegia. SREBF2的双等位基因变异导致常染色体隐性痉挛性截瘫。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-14 DOI: 10.1016/j.jgg.2025.01.004
Qiao Wei, Wenlu Fan, Hong-Fu Li, Pei-Shan Wang, Man Xu, Hai-Lin Dong, Hao Yu, Jialan Lyu, Wen-Jiao Luo, Dian-Fu Chen, Wanzhong Ge, Zhi-Ying Wu

Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance. Here, we perform whole exome sequencing in a cohort of Chinese HSP patients. Three homozygous variants (p.L604W, p.S517F, and p.T984A) within the sterol regulatory element-binding factor 2 (SREBF2) gene are identified in one autosomal recessive family and two sporadic patients, respectively. Co-segregation is confirmed by Sanger sequencing in all available members. The three variants are rare in the public or in-house database and are predicted to be damaging. The biological impacts of variants in SREBF2 are examined by functional experiments in patient-derived fibroblasts and Drosophila. We find that the variants upregulate cellular cholesterol due to the overactivation of SREBP2, eventually impairing the autophagosomal and lysosomal functions. The overexpression of the mature form of SREBP2 leads to locomotion defects in Drosophila. Our findings identify SREBF2 as a causative gene for HSP and highlight the impairment of cholesterol as a critical pathway for HSP.

遗传性痉挛性截瘫(HSPs)是指以运动神经元变性为特征的一组遗传和临床异质性的神经退行性疾病。迄今为止,仍有相当数量的患者没有得到明确的基因诊断。因此,识别未报告的致病基因仍然非常重要。在这里,我们对中国HSP患者进行了全外显子组测序。甾醇调节元件结合因子2 (SREBF2)基因的三个纯合变异体(p.L604W, p.S517F和p.T984A)分别在一个常染色体隐性家族和两个散发患者中被鉴定出来。所有可用成员的Sanger测序证实了共分离。这三种变体在公共或内部数据库中都是罕见的,预计将具有破坏性。在患者来源的成纤维细胞和果蝇的功能实验中,研究了SREBF2变异的生物学影响。我们发现,由于SREBP2的过度激活,这些变异上调了细胞胆固醇,最终损害了自噬体和溶酶体的功能。成熟形式的SREBP2过表达导致果蝇运动缺陷。我们的研究结果确定SREBF2是热休克的致病基因,并强调胆固醇损伤是热休克的关键途径。
{"title":"Biallelic variants in SREBF2 cause autosomal recessive spastic paraplegia.","authors":"Qiao Wei, Wenlu Fan, Hong-Fu Li, Pei-Shan Wang, Man Xu, Hai-Lin Dong, Hao Yu, Jialan Lyu, Wen-Jiao Luo, Dian-Fu Chen, Wanzhong Ge, Zhi-Ying Wu","doi":"10.1016/j.jgg.2025.01.004","DOIUrl":"10.1016/j.jgg.2025.01.004","url":null,"abstract":"<p><p>Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance. Here, we perform whole exome sequencing in a cohort of Chinese HSP patients. Three homozygous variants (p.L604W, p.S517F, and p.T984A) within the sterol regulatory element-binding factor 2 (SREBF2) gene are identified in one autosomal recessive family and two sporadic patients, respectively. Co-segregation is confirmed by Sanger sequencing in all available members. The three variants are rare in the public or in-house database and are predicted to be damaging. The biological impacts of variants in SREBF2 are examined by functional experiments in patient-derived fibroblasts and Drosophila. We find that the variants upregulate cellular cholesterol due to the overactivation of SREBP2, eventually impairing the autophagosomal and lysosomal functions. The overexpression of the mature form of SREBP2 leads to locomotion defects in Drosophila. Our findings identify SREBF2 as a causative gene for HSP and highlight the impairment of cholesterol as a critical pathway for HSP.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of QTL-by-environment interaction by controlling polygenic background effect. 通过控制多基因背景效应鉴定环境互作qtl。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-11 DOI: 10.1016/j.jgg.2025.01.003
Fuping Zhao, Lixian Wang, Shizhong Xu

The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects. Simulation studies demonstrate that our approach is more powerful than the meta-analysis and inclusive composite interval mapping methods. We further analyze four agronomic traits of rice across four environments. A main effect QTL is identified for 1000-grain weight (KGW), while no QTLs are found for tiller number. Additionally, a large QTL with a significant Q×E interaction is detected on chromosome 7 affecting grain number, yield, and KGW. This region harbors two important genes, PROG1 and Ghd7. Furthermore, we apply our mixed model to analyze lodging in barley across six environments. The six regions exhibiting Q×E interaction effects identified by our approach overlap with the SNPs previously identified using EM and MCMC-based Bayesian methods, further validating the robustness of our approach. Both simulation studies and empirical data analyses show that our method outperformed all other methods compared.

由于没有有效的方法控制基因组背景,环境互作效应(Q×E) QTL难以检测。在这项研究中,我们提出了一种新的线性混合模型,可以同时分析来自多个环境的数据以检测Q×E相互作用。该模型结合了来自全基因组标记的两种不同的亲缘关系矩阵,以控制主要和相互作用的多基因背景效应。模拟研究表明,我们的方法比元分析和包含复合区间映射方法更强大。我们进一步分析了4种环境下水稻的4个农艺性状。鉴定出千粒重的主效QTL,分蘖数的主效QTL未发现。此外,在7号染色体上检测到一个与Q×E互作显著的大QTL,影响粒数、产量和KGW。这个区域包含两个重要的基因,PROG1和Ghd7。此外,我们应用我们的混合模型分析了大麦在六种环境下的倒伏。通过我们的方法确定的具有Q×E相互作用效应的六个区域与先前使用EM和基于mcmc的贝叶斯方法确定的snp重叠,进一步验证了我们方法的稳健性。仿真研究和实证数据分析表明,该方法优于其他方法。
{"title":"Identification of QTL-by-environment interaction by controlling polygenic background effect.","authors":"Fuping Zhao, Lixian Wang, Shizhong Xu","doi":"10.1016/j.jgg.2025.01.003","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.003","url":null,"abstract":"<p><p>The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects. Simulation studies demonstrate that our approach is more powerful than the meta-analysis and inclusive composite interval mapping methods. We further analyze four agronomic traits of rice across four environments. A main effect QTL is identified for 1000-grain weight (KGW), while no QTLs are found for tiller number. Additionally, a large QTL with a significant Q×E interaction is detected on chromosome 7 affecting grain number, yield, and KGW. This region harbors two important genes, PROG1 and Ghd7. Furthermore, we apply our mixed model to analyze lodging in barley across six environments. The six regions exhibiting Q×E interaction effects identified by our approach overlap with the SNPs previously identified using EM and MCMC-based Bayesian methods, further validating the robustness of our approach. Both simulation studies and empirical data analyses show that our method outperformed all other methods compared.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing crop yields to ensure food security by optimizing photosynthesis. 通过优化光合作用,提高作物产量,保障粮食安全。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1016/j.jgg.2025.01.002
Chunrong Li, Xuejia Du, Cuimin Liu

The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO2 concentrating mechanisms (CCMs) in C3 plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.

通过传统植物育种技术获得的作物产量似乎已接近平稳期。因此,为了进一步提高作物产量,必须加快光合作用的进展,光合作用是植物将光能转化为化学能的基本过程。专注于改善光合作用的研究对提高可持续农业生产力和解决与全球粮食安全相关的挑战具有重大希望。本文综述了通过提高光合效率来提高作物产量的最新进展和策略。通过传统育种方法选择的历史释放种质的产量多年来呈线性增长,这种增长伴随着光合作用的改善。我们探索了旨在提高作物产量的光反应的各个方面,包括通过智能冠层系统提高光收获效率,扩大吸收光谱以包括远红光,优化非光化学猝灭和加速电子传递通量。同时,我们还研究了可以提高作物产量的碳反应,如调节Rubisco活性,改善Calvin-Benson-Bassham (CBB)循环,在C3植物中引入CO2浓缩机制(CCMs),以及优化碳分配。这些策略可以显著提高作物产量,并有助于弥合产量差距。
{"title":"Enhancing crop yields to ensure food security by optimizing photosynthesis.","authors":"Chunrong Li, Xuejia Du, Cuimin Liu","doi":"10.1016/j.jgg.2025.01.002","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.002","url":null,"abstract":"<p><p>The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO<sub>2</sub> concentrating mechanisms (CCMs) in C<sub>3</sub> plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic characterization reveals distinct mutational landscape of acral melanoma in East Asian. 基因组特征揭示了东亚肢端黑色素瘤不同的突变景观。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.1016/j.jgg.2024.12.018
Fenghao Zhang, Xiaowen Wu, Tao Jiao, Haizhen Dua, Qian Guo, Chuanliang Cui, Zhihong Chi, Xinan Sheng, Dezhi Jiang, Yuhong Zhang, Jiayan Wu, Yan Kong, Lu Si

Acral melanoma, the most common melanoma subtype in East Asia, is associated with a poor prognosis. This study aims to comprehensively analyze the genomic characteristics of acral melanoma in East Asians. We conduct whole-genome sequencing of 55 acral melanoma tumors and perform data mining with relevant clinical data. Our findings reveal a unique mutational profile in East Asian acral melanoma, characterized by fewer point mutations and structural variations, a higher prevalence of NRAS mutations, and a lower frequency of BRAF mutations compared to patients of European descent. Notably, we identify previously underestimated ultraviolet radiation signatures and their significant association with BRAF and NRAS mutations. Structural rearrangement signatures indicate distinct mutational processes in BRAF-driven versus NRAS-driven tumors. We also find that homologous recombination deficiency with MAPK pathway mutations correlated with poor prognosis. The structural variations and amplifications in EP300, TERT, RAC1, and LZTR1 point to potential novel therapeutic targets tailored to East Asian populations. The high prevalence of whole-genome duplication events in BRAF/NRAS-mutated tumors suggests a synergistic carcinogenic effect that warrants further investigation. In summary, our study provides important insights into the genetic underpinnings of acral melanoma in East Asians, creating opportunities for targeted therapies.

肢端黑色素瘤是东亚地区最常见的黑色素瘤亚型,其预后较差。本研究旨在全面分析东亚人肢端黑色素瘤的基因组特征。我们对55例肢端黑色素瘤进行全基因组测序,并对相关临床数据进行数据挖掘。我们的研究结果揭示了东亚肢端黑色素瘤的独特突变特征,与欧洲血统的患者相比,其特点是点突变和结构变异较少,NRAS突变的患病率较高,BRAF突变的频率较低。值得注意的是,我们发现了以前被低估的紫外线辐射特征及其与BRAF和NRAS突变的显著关联。结构重排特征表明braf驱动与nras驱动肿瘤的不同突变过程。我们还发现同源重组缺陷与MAPK通路突变与预后不良相关。EP300、TERT、RAC1和LZTR1的结构变异和扩增指向了针对东亚人群的潜在新治疗靶点。在BRAF/ nras突变的肿瘤中,全基因组重复事件的高流行率表明其具有协同致癌作用,值得进一步研究。总之,我们的研究为东亚肢端黑色素瘤的遗传基础提供了重要的见解,为靶向治疗创造了机会。
{"title":"Genomic characterization reveals distinct mutational landscape of acral melanoma in East Asian.","authors":"Fenghao Zhang, Xiaowen Wu, Tao Jiao, Haizhen Dua, Qian Guo, Chuanliang Cui, Zhihong Chi, Xinan Sheng, Dezhi Jiang, Yuhong Zhang, Jiayan Wu, Yan Kong, Lu Si","doi":"10.1016/j.jgg.2024.12.018","DOIUrl":"10.1016/j.jgg.2024.12.018","url":null,"abstract":"<p><p>Acral melanoma, the most common melanoma subtype in East Asia, is associated with a poor prognosis. This study aims to comprehensively analyze the genomic characteristics of acral melanoma in East Asians. We conduct whole-genome sequencing of 55 acral melanoma tumors and perform data mining with relevant clinical data. Our findings reveal a unique mutational profile in East Asian acral melanoma, characterized by fewer point mutations and structural variations, a higher prevalence of NRAS mutations, and a lower frequency of BRAF mutations compared to patients of European descent. Notably, we identify previously underestimated ultraviolet radiation signatures and their significant association with BRAF and NRAS mutations. Structural rearrangement signatures indicate distinct mutational processes in BRAF-driven versus NRAS-driven tumors. We also find that homologous recombination deficiency with MAPK pathway mutations correlated with poor prognosis. The structural variations and amplifications in EP300, TERT, RAC1, and LZTR1 point to potential novel therapeutic targets tailored to East Asian populations. The high prevalence of whole-genome duplication events in BRAF/NRAS-mutated tumors suggests a synergistic carcinogenic effect that warrants further investigation. In summary, our study provides important insights into the genetic underpinnings of acral melanoma in East Asians, creating opportunities for targeted therapies.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Genetics and Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1