Pub Date : 2024-11-12DOI: 10.1016/j.jgg.2024.11.001
Fangzhou Luo, Luwei Sui, Ying Sun, Zhixian Lai, Chengcheng Zhang, Gaoqun Zhang, Bing Bi, Shichao Yu, Li Hua Jin
Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and altered progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin was dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.
{"title":"Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila.","authors":"Fangzhou Luo, Luwei Sui, Ying Sun, Zhixian Lai, Chengcheng Zhang, Gaoqun Zhang, Bing Bi, Shichao Yu, Li Hua Jin","doi":"10.1016/j.jgg.2024.11.001","DOIUrl":"10.1016/j.jgg.2024.11.001","url":null,"abstract":"<p><p>Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and altered progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin was dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jgg.2024.10.014
Chen Qi, Xuechun Shen, Baitao Li, Chuan Liu, Lei Huang, Hongxia Lan, Donglong Chen, Yuan Jiang, Dan Wang
The CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms, evolving from a singular Cas9 model to a diverse CRISPR toolbox. A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif (PAM) sequences. Due to the limitations of experimental methods, bioinformatics approaches have become essential. However, existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems, resulting in low accuracy. To address this, we develop PAMPHLET, a novel pipeline that uses homology searches to identify additional spacers, significantly increasing the number of spacers up to 18-fold. PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers. These predictions are further validated using the DocMF platform, which characterizes protein-DNA recognition patterns via next-generation sequencing. The high consistency between PAMPHLET predictions and DocMF results for novel Cas proteins demonstrates potential of PAMPHLET to enhance PAM sequence prediction accuracy, expedite the discovery process, and accelerate the development of CRISPR tools.
{"title":"PAMPHLET: PAM Prediction HomoLogous-Enhancement Toolkit for precise PAM prediction in CRISPR-Cas systems.","authors":"Chen Qi, Xuechun Shen, Baitao Li, Chuan Liu, Lei Huang, Hongxia Lan, Donglong Chen, Yuan Jiang, Dan Wang","doi":"10.1016/j.jgg.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.014","url":null,"abstract":"<p><p>The CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms, evolving from a singular Cas9 model to a diverse CRISPR toolbox. A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif (PAM) sequences. Due to the limitations of experimental methods, bioinformatics approaches have become essential. However, existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems, resulting in low accuracy. To address this, we develop PAMPHLET, a novel pipeline that uses homology searches to identify additional spacers, significantly increasing the number of spacers up to 18-fold. PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers. These predictions are further validated using the DocMF platform, which characterizes protein-DNA recognition patterns via next-generation sequencing. The high consistency between PAMPHLET predictions and DocMF results for novel Cas proteins demonstrates potential of PAMPHLET to enhance PAM sequence prediction accuracy, expedite the discovery process, and accelerate the development of CRISPR tools.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jgg.2024.10.011
Jiawen Lu, Yuxin Xie, Chunhui Li, Jinliang Yang, Junjie Fu
When plants respond to drought stress, dynamic cellular changes occur, accompanied by alterations in gene expression, which often act through trans-regulation. However, the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers. Using a tensor decomposition method, we identify trans-acting expression quantitative trait loci (trans-eQTLs) linked to gene modules, rather than individual genes, which were associated with maize drought response. Module-to-trait association analysis demonstrates that half of the modules were relevant to drought-related traits. Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules, the majority of which cannot be detected based on individual gene expression. Notably, the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection. We further prioritize the genes that affected the transcriptional regulation of multiple genes in trans, as exemplified by two transcription factor genes. Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.
{"title":"Tensor decomposition reveals trans-regulated gene modules in maize drought response.","authors":"Jiawen Lu, Yuxin Xie, Chunhui Li, Jinliang Yang, Junjie Fu","doi":"10.1016/j.jgg.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.011","url":null,"abstract":"<p><p>When plants respond to drought stress, dynamic cellular changes occur, accompanied by alterations in gene expression, which often act through trans-regulation. However, the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers. Using a tensor decomposition method, we identify trans-acting expression quantitative trait loci (trans-eQTLs) linked to gene modules, rather than individual genes, which were associated with maize drought response. Module-to-trait association analysis demonstrates that half of the modules were relevant to drought-related traits. Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules, the majority of which cannot be detected based on individual gene expression. Notably, the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection. We further prioritize the genes that affected the transcriptional regulation of multiple genes in trans, as exemplified by two transcription factor genes. Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jgg.2024.10.012
Yuan Liu, Ying Liu, Yunji Zhu, Di Hu, Hu Nie, Yali Xie, Rongrong Sun, Jin He, Honglian Zhang, Falong Lu
In the mammalian genome, most CpGs are methylated. However, CpGs within the CpG islands (CGIs) are largely unmethylated, which are important for gene expression regulation. The mechanism underlying the low methylation levels at CGIs remains largely elusive. KDM2 proteins (KDM2A and KDM2B) are H3K36me2 demethylases known to bind specifically at CGIs. Here, we report that depletion of each or both KDM2 proteins, or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity, leads to an increase in DNA methylation at selective CGIs. The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared to the single mutant of Kdm2a or Kdm2b, indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs. In addition, the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment. Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner.
{"title":"KDM2A and KDM2B protect a subset of CpG Islands from DNA methylation.","authors":"Yuan Liu, Ying Liu, Yunji Zhu, Di Hu, Hu Nie, Yali Xie, Rongrong Sun, Jin He, Honglian Zhang, Falong Lu","doi":"10.1016/j.jgg.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.012","url":null,"abstract":"<p><p>In the mammalian genome, most CpGs are methylated. However, CpGs within the CpG islands (CGIs) are largely unmethylated, which are important for gene expression regulation. The mechanism underlying the low methylation levels at CGIs remains largely elusive. KDM2 proteins (KDM2A and KDM2B) are H3K36me2 demethylases known to bind specifically at CGIs. Here, we report that depletion of each or both KDM2 proteins, or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity, leads to an increase in DNA methylation at selective CGIs. The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared to the single mutant of Kdm2a or Kdm2b, indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs. In addition, the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment. Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jgg.2024.10.010
Alex Z Zaccaron, Ioannis Stergiopoulos
Fungi are a diverse kingdom, characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variation in size, gene content, and structural features such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicide. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
{"title":"The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance.","authors":"Alex Z Zaccaron, Ioannis Stergiopoulos","doi":"10.1016/j.jgg.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.010","url":null,"abstract":"<p><p>Fungi are a diverse kingdom, characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variation in size, gene content, and structural features such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicide. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Programmed silencing of γ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes, which determine the stage-specific genome architecture in this region. Identification of cis- or trans-acting mutations contributing to the diverse extent of Hb F might illustrate the underlying mechanism of γ-β globin switching. Here, we recruit a cohort of 1142 β-thalassemia patients and dissect the natural variants in the whole β-globin gene cluster through a targeted next-generation sequencing panel. A previously unreported SNP rs7948668, predicted to disrupt the binding motif of IKAROS as a key component of chromatin remodeling complexes, is identified to be significantly associated with higher levels of Hb F and age at onset. Gene-editing on this SNP leads to elevation of Hb F in both HUDEP-2 and primary CD34+ cells while the extent of elevation is amplified in the context of β-thalassemia mutations, indicating epistasis effects of the SNP in the regulation of Hb F. Finally, we perform ChIP-qPCR and 4C assays to prove that this variant disrupts the binding motif of IKAROS, leading to enhanced competitiveness of HBG promoters to locus control regions. This study highlights the significance of common regulatory SNPs and provides potential targets for treating of β-hemoglobinopathy.
在成体红细胞生成过程中,γ-球蛋白基因的程序性沉默是由几种染色质重塑复合物介导的,它们决定了这一区域的阶段性基因组结构。鉴定导致 Hb F 不同程度的顺式或反式作用突变可能会说明 γ-β 球蛋白转换的潜在机制。在这里,我们招募了1142名β地中海贫血患者,并通过有针对性的新一代测序面板分析了整个β球蛋白基因簇中的自然变异。一个以前未报道过的 SNP rs7948668 被认为会破坏染色质重塑复合物的关键成分 IKAROS 的结合基序,该 SNP 与较高水平的 Hb F 和发病年龄显著相关。对该 SNP 进行基因编辑会导致 HUDEP-2 和原代 CD34+ 细胞中 Hb F 的升高,而升高的程度会在β-地中海贫血突变的背景下放大,这表明该 SNP 在 Hb F 的调控中具有表观效应。最后,我们通过 ChIP-qPCR 和 4C 检测证明,该变异破坏了 IKAROS 的结合基序,导致 HBG 启动子对基因座控制区的竞争性增强。这项研究强调了常见调控SNP的重要性,并为治疗β-血红蛋白病提供了潜在靶点。
{"title":"Activation of γ-globin expression by a common variant disrupting IKAROS-binding motif in β-thalassemia.","authors":"Hualei Luo, Jueheng Wang, Lang Qin, Xinhua Zhang, Hailiang Liu, Chao Niu, Mengyang Song, Congwen Shao, Peng Xu, Miao Yu, Haokun Zhang, Yuhua Ye, Xiangmin Xu","doi":"10.1016/j.jgg.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.015","url":null,"abstract":"<p><p>Programmed silencing of γ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes, which determine the stage-specific genome architecture in this region. Identification of cis- or trans-acting mutations contributing to the diverse extent of Hb F might illustrate the underlying mechanism of γ-β globin switching. Here, we recruit a cohort of 1142 β-thalassemia patients and dissect the natural variants in the whole β-globin gene cluster through a targeted next-generation sequencing panel. A previously unreported SNP rs7948668, predicted to disrupt the binding motif of IKAROS as a key component of chromatin remodeling complexes, is identified to be significantly associated with higher levels of Hb F and age at onset. Gene-editing on this SNP leads to elevation of Hb F in both HUDEP-2 and primary CD34<sup>+</sup> cells while the extent of elevation is amplified in the context of β-thalassemia mutations, indicating epistasis effects of the SNP in the regulation of Hb F. Finally, we perform ChIP-qPCR and 4C assays to prove that this variant disrupts the binding motif of IKAROS, leading to enhanced competitiveness of HBG promoters to locus control regions. This study highlights the significance of common regulatory SNPs and provides potential targets for treating of β-hemoglobinopathy.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.jgg.2024.10.013
Jee Young Sung, Ga-Eun Lim, Jarim Goo, Kyung Jin Jung, Jeong Min Chung, Hyun Suk Jung, Yong-Nyun Kim, Jaegal Shim
The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed, and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles. TMEM-39 primarily co-localizes with the coat protein II complex (COPII) in large vesicles rather than small COPII vesicles. These TMEM-39-associated large vesicles (TMEM-39-LVs) form robustly during the molting period and co-localize with various extracellular matrix (ECM) components, including BLI-1 collagen, BLI-3 dual oxidase, and carboxypeptidases. Through immunoprecipitation using TMEM39A-FLAG and proteomics analysis in human sarcoma cells, we identify TMEM39A-associated proteins, including TMEM131. Knockdown of TMEM131 results in reduced TMEM39A-LV formation and collagen secretion in both C. elegans and human sarcoma cells, indicating a cooperative role between TMEM39A and TMEM131 in the secretion of extracellular components through the formation of large COPII vesicles. Given the conservation of TMEM39A and its associated proteins between C. elegans and humans, TMEM39A-LV may represent a fundamental machinery for rapid and extensive secretion across metazoans.
草履虫的生长涉及多个蜕皮过程,在此期间,旧的角质层脱落,新的角质层迅速形成。这一过程需要调节角质层成分的大量分泌。跨膜蛋白-39(TMEM-39)突变体表现出明显的倾倒和破裂表型,其特征是角质层明显变薄。TMEM-39 主要与衣壳蛋白 II 复合物(COPII)共定位在大囊泡中,而不是小 COPII 囊泡中。这些与 TMEM-39 相关的大囊泡(TMEM-39-LVs)在蜕皮期间形成强劲,并与各种细胞外基质(ECM)成分共定位,包括 BLI-1 胶原、BLI-3 双氧化酶和羧肽酶。通过在人肉瘤细胞中使用 TMEM39A-FLAG 进行免疫沉淀和蛋白质组学分析,我们确定了 TMEM39A 相关蛋白,包括 TMEM131。敲除 TMEM131 会导致 TMEM39A-LV 的形成和胶原蛋白在秀丽隐杆线虫和人类肉瘤细胞中的分泌减少,这表明 TMEM39A 和 TMEM131 在通过形成大型 COPII 囊泡分泌细胞外成分方面起着合作作用。鉴于TMEM39A及其相关蛋白在秀丽隐杆线虫和人类之间的保守性,TMEM39A-LV可能代表了一种在类间进行快速和广泛分泌的基本机制。
{"title":"TMEM39A and TMEM131 facilitate bulk transport of ECM proteins through large COPII vesicle formation.","authors":"Jee Young Sung, Ga-Eun Lim, Jarim Goo, Kyung Jin Jung, Jeong Min Chung, Hyun Suk Jung, Yong-Nyun Kim, Jaegal Shim","doi":"10.1016/j.jgg.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.013","url":null,"abstract":"<p><p>The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed, and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles. TMEM-39 primarily co-localizes with the coat protein II complex (COPII) in large vesicles rather than small COPII vesicles. These TMEM-39-associated large vesicles (TMEM-39-LVs) form robustly during the molting period and co-localize with various extracellular matrix (ECM) components, including BLI-1 collagen, BLI-3 dual oxidase, and carboxypeptidases. Through immunoprecipitation using TMEM39A-FLAG and proteomics analysis in human sarcoma cells, we identify TMEM39A-associated proteins, including TMEM131. Knockdown of TMEM131 results in reduced TMEM39A-LV formation and collagen secretion in both C. elegans and human sarcoma cells, indicating a cooperative role between TMEM39A and TMEM131 in the secretion of extracellular components through the formation of large COPII vesicles. Given the conservation of TMEM39A and its associated proteins between C. elegans and humans, TMEM39A-LV may represent a fundamental machinery for rapid and extensive secretion across metazoans.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO3-) and ammonium (NH4+) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant-microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.
{"title":"Genetic and molecular mechanisms underlying nitrogen use efficiency in maize.","authors":"Jianfang Li, Huairong Cao, Shuxin Li, Xiaonan Dong, Zheng Zhao, Zhongtao Jia, Lixing Yuan","doi":"10.1016/j.jgg.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.007","url":null,"abstract":"<p><p>Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO<sub>3</sub><sup>-</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant-microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jgg.2024.10.008
Jing Wang, Wen Yuan, Fang Liu, Guangbo Liu, Xiaoxiong Geng, Chen Li, Chenchen Zhang, Nan Li, Xueling Li
Epigenetic regulation in the rumen, a unique ruminant organ, remains largely unexplored compared with other tissues studied in model species. In this study, we perform an in-depth analysis of the epigenetic and transcriptional landscapes across fetal and adult bovine tissues as well as pluripotent stem cells. Among the extensive methylation differences across various stages and tissues, we identify tissue-specific differentially methylated regions (tsDMRs) unique to the rumen, which are crucial for regulating epithelial development and energy metabolism. These tsDMRs cluster within super-enhancer regions that overlap with transcription factor (TF) binding sites. Regression models indicate that DNA methylation, along with H3K27me3 and H3K27ac, can be used to predict enhancer activity. Key upstream TFs, including SOX2, FOSL1/2, and SMAD2/3, primarily maintain an inhibitory state through bivalent modifications during fetal development. Downstream functional genes are maintained mainly in a stable repressive state via DNA methylation until differentiation is complete. Our study underscores the critical role of tsDMRs in regulating distal components of rumen morphology and function, providing key insights into the epigenetic regulatory mechanisms that may influence bovine production traits.
{"title":"Epigenetic basis for the establishment of ruminal tissue-specific functions in bovine fetuses and adults.","authors":"Jing Wang, Wen Yuan, Fang Liu, Guangbo Liu, Xiaoxiong Geng, Chen Li, Chenchen Zhang, Nan Li, Xueling Li","doi":"10.1016/j.jgg.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.10.008","url":null,"abstract":"<p><p>Epigenetic regulation in the rumen, a unique ruminant organ, remains largely unexplored compared with other tissues studied in model species. In this study, we perform an in-depth analysis of the epigenetic and transcriptional landscapes across fetal and adult bovine tissues as well as pluripotent stem cells. Among the extensive methylation differences across various stages and tissues, we identify tissue-specific differentially methylated regions (tsDMRs) unique to the rumen, which are crucial for regulating epithelial development and energy metabolism. These tsDMRs cluster within super-enhancer regions that overlap with transcription factor (TF) binding sites. Regression models indicate that DNA methylation, along with H3K27me3 and H3K27ac, can be used to predict enhancer activity. Key upstream TFs, including SOX2, FOSL1/2, and SMAD2/3, primarily maintain an inhibitory state through bivalent modifications during fetal development. Downstream functional genes are maintained mainly in a stable repressive state via DNA methylation until differentiation is complete. Our study underscores the critical role of tsDMRs in regulating distal components of rumen morphology and function, providing key insights into the epigenetic regulatory mechanisms that may influence bovine production traits.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}