Pub Date : 2024-09-30DOI: 10.1016/j.jgg.2024.09.014
Aiting Wang, Yanwen Wang, Rui Liang, Bin Li, Fan Pan
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
{"title":"Improving regulatory T cell-based therapy: insights into post-translational modification regulation.","authors":"Aiting Wang, Yanwen Wang, Rui Liang, Bin Li, Fan Pan","doi":"10.1016/j.jgg.2024.09.014","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.09.014","url":null,"abstract":"<p><p>Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.jgg.2024.09.011
Yayue Chen, Delai Huang, Aixuan Xie, Ying Shan, Shuyi Zhao, Ce Gao, Jun Chen, Hui Shi, Weihuan Fang, Jinrong Peng
Mutations in calcium-dependent papain-like protease CALPAIN3 (CAPN3) cause Limb-Girdle Muscular Dystrophy Recessive Type 1 (LGMDR1), the most common limb-girdle muscular dystrophy in humans. In addition to progressive muscle weakness, persistent inflammatory infiltration is also a feature of LGMDR1. Despite the underlying mechanism remaining poorly understood, we consider that it may relate to the newly defined role of CAPN3/Capn3b in the nucleolus. Here, we report that the loss-of-function of zebrafish capn3b, the counterpart of human CAPN3, induces an autoimmune response akin to that in LGMDR1 patients. Mutant capn3b larvae are more susceptible to Listeria monocytogenes injection, characterized by recruiting more macrophages. Under germ-free conditions, transcriptome analysis of the capn3b mutant muscle reveals a significant upregulation of the chemokine-production-related genes. Coincidently, more neutrophils are recruited to the injury site imposed by either muscle stabbing or tail fin amputation. Nucleolar proteomic analysis and enzymatic assays reveal NKAP, an activating factor of the NF-κB pathway, to be a target of CAPN3. We conclude that the accumulation of Nkap and other factors in the capn3b mutant may be involved in the over-activation of innate immunity. Our studies indicate that the zebrafish capn3b mutant is a powerful model for studying the immunity-related progression of human LGMDR1.
{"title":"Capn3b-deficient zebrafish model reveals a key role of autoimmune response in LGMDR1.","authors":"Yayue Chen, Delai Huang, Aixuan Xie, Ying Shan, Shuyi Zhao, Ce Gao, Jun Chen, Hui Shi, Weihuan Fang, Jinrong Peng","doi":"10.1016/j.jgg.2024.09.011","DOIUrl":"10.1016/j.jgg.2024.09.011","url":null,"abstract":"<p><p>Mutations in calcium-dependent papain-like protease CALPAIN3 (CAPN3) cause Limb-Girdle Muscular Dystrophy Recessive Type 1 (LGMDR1), the most common limb-girdle muscular dystrophy in humans. In addition to progressive muscle weakness, persistent inflammatory infiltration is also a feature of LGMDR1. Despite the underlying mechanism remaining poorly understood, we consider that it may relate to the newly defined role of CAPN3/Capn3b in the nucleolus. Here, we report that the loss-of-function of zebrafish capn3b, the counterpart of human CAPN3, induces an autoimmune response akin to that in LGMDR1 patients. Mutant capn3b larvae are more susceptible to Listeria monocytogenes injection, characterized by recruiting more macrophages. Under germ-free conditions, transcriptome analysis of the capn3b mutant muscle reveals a significant upregulation of the chemokine-production-related genes. Coincidently, more neutrophils are recruited to the injury site imposed by either muscle stabbing or tail fin amputation. Nucleolar proteomic analysis and enzymatic assays reveal NKAP, an activating factor of the NF-κB pathway, to be a target of CAPN3. We conclude that the accumulation of Nkap and other factors in the capn3b mutant may be involved in the over-activation of innate immunity. Our studies indicate that the zebrafish capn3b mutant is a powerful model for studying the immunity-related progression of human LGMDR1.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.jgg.2024.09.012
Yumin Zhang, Sihan Zhen, Chunxia Zhang, Jie Zhang, Xiaoqing Shangguan, Jiawen Lu, Qingyu Wu, Lynnette M A Dirk, A Bruce Downie, Guoying Wang, Tianyong Zhao, Junjie Fu
Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel. Up to the present, only a few genes have been characterized affecting the maize embryo/kernel ratio. Here, we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study (GWAS). The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2 (CT2), encoding the heterotrimeric G protein α subunit, is significantly associated with the Embryo/Kernel Weight Ratio (EKWR). Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR. The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants, for which EKWR is significantly decreased. Subsequently, the key downstream genes of CT2 are identified by combining the differential expression analysis (DEG) of the ct2 mutant and quantitative trait transcript analysis in the GWAS population. In addition, the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication. This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio, which could be applied in future maize breeding programs to improve grain yield and nutritional content.
{"title":"Natural variation of CT2 affects the embryo/kernel weight ratio in maize.","authors":"Yumin Zhang, Sihan Zhen, Chunxia Zhang, Jie Zhang, Xiaoqing Shangguan, Jiawen Lu, Qingyu Wu, Lynnette M A Dirk, A Bruce Downie, Guoying Wang, Tianyong Zhao, Junjie Fu","doi":"10.1016/j.jgg.2024.09.012","DOIUrl":"10.1016/j.jgg.2024.09.012","url":null,"abstract":"<p><p>Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel. Up to the present, only a few genes have been characterized affecting the maize embryo/kernel ratio. Here, we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study (GWAS). The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2 (CT2), encoding the heterotrimeric G protein α subunit, is significantly associated with the Embryo/Kernel Weight Ratio (EKWR). Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR. The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants, for which EKWR is significantly decreased. Subsequently, the key downstream genes of CT2 are identified by combining the differential expression analysis (DEG) of the ct2 mutant and quantitative trait transcript analysis in the GWAS population. In addition, the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication. This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio, which could be applied in future maize breeding programs to improve grain yield and nutritional content.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
{"title":"Prox1a promotes liver growth and differentiation by repressing cdx1b expression and intestinal fate transition in zebrafish.","authors":"Yingying Hu, Zhou Luo, Meiwen Wang, Zekai Wu, Yunxing Liu, Zhenchao Cheng, Yuhan Sun, Jing-Wei Xiong, Xiangjun Tong, Zuoyan Zhu, Bo Zhang","doi":"10.1016/j.jgg.2024.09.010","DOIUrl":"10.1016/j.jgg.2024.09.010","url":null,"abstract":"<p><p>The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.jgg.2024.09.013
Xinyu Wei, Ming Zhang, Rui Min, Zhilong Jiang, Jiayang Xue, Zhonghua Zhu, Haibing Yuan, Xiaorui Li, Dongyue Zhao, Peng Cao, Feng Liu, Qingyan Dai, Xiaotian Feng, Ruowei Yang, Xiaohong Wu, Changcheng Hu, Minmin Ma, Xu Liu, Yang Wan, Fan Yang, Ranchao Zhou, Lihong Kang, Guanghui Dong, Wanjing Ping, Tianyi Wang, Bo Miao, Fan Bai, Yuxin Zheng, Yuxiao Liu, Melinda A Yang, Wenjun Wang, E Andrew Bennett, Qiaomei Fu
Yunnan in southwest China is a geographically and ethnically complex region at the intersection of southern China and Southeast Asia, and a focal point for human migrations. To clarify its maternal genetic history, we generated 152 complete mitogenomes from 17 Yunnan archaeological sites. Our results reveal distinct genetic histories segregated by geographical regions. Maternal lineages of ancient populations from northwestern and northern Yunnan exhibit closer affinities with past and present-day populations from northern East Asia and Tibet, providing important genetic evidence for the migration and interaction of populations along the Tibetan-Yi corridor since the Neolithic. Between 5500 to 1800 years ago, central Yunnan populations maintained their internal genetic relationships, including a 7000-year-old basal lineage of the rare and widely dispersed haplogroup M61. At the Xingyi site, changes in mitochondrial DNA haplogroups occurred between the Late Neolithic and Bronze Age, with haplogroups shifting from those predominant in the Yellow River region to those predominant in coastal southern China. These results highlight the high diversity of Yunnan populations during the Neolithic to Bronze Age.
{"title":"Neolithic to Bronze Age human maternal genetic history in Yunnan, China.","authors":"Xinyu Wei, Ming Zhang, Rui Min, Zhilong Jiang, Jiayang Xue, Zhonghua Zhu, Haibing Yuan, Xiaorui Li, Dongyue Zhao, Peng Cao, Feng Liu, Qingyan Dai, Xiaotian Feng, Ruowei Yang, Xiaohong Wu, Changcheng Hu, Minmin Ma, Xu Liu, Yang Wan, Fan Yang, Ranchao Zhou, Lihong Kang, Guanghui Dong, Wanjing Ping, Tianyi Wang, Bo Miao, Fan Bai, Yuxin Zheng, Yuxiao Liu, Melinda A Yang, Wenjun Wang, E Andrew Bennett, Qiaomei Fu","doi":"10.1016/j.jgg.2024.09.013","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.09.013","url":null,"abstract":"<p><p>Yunnan in southwest China is a geographically and ethnically complex region at the intersection of southern China and Southeast Asia, and a focal point for human migrations. To clarify its maternal genetic history, we generated 152 complete mitogenomes from 17 Yunnan archaeological sites. Our results reveal distinct genetic histories segregated by geographical regions. Maternal lineages of ancient populations from northwestern and northern Yunnan exhibit closer affinities with past and present-day populations from northern East Asia and Tibet, providing important genetic evidence for the migration and interaction of populations along the Tibetan-Yi corridor since the Neolithic. Between 5500 to 1800 years ago, central Yunnan populations maintained their internal genetic relationships, including a 7000-year-old basal lineage of the rare and widely dispersed haplogroup M61. At the Xingyi site, changes in mitochondrial DNA haplogroups occurred between the Late Neolithic and Bronze Age, with haplogroups shifting from those predominant in the Yellow River region to those predominant in coastal southern China. These results highlight the high diversity of Yunnan populations during the Neolithic to Bronze Age.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.jgg.2024.09.009
Jieran Chen, Haitao Wang, Yuting Zhang, Yan Chen, Na Zhang, Hengqian Yang, Zhichao Zhang, Ziyuan Duan, Xia Li, Daxiang Wang, Zhixiong He, Fan Hu, Jianfeng Gao, Runlin Z Ma, Xun Huang, Qiuyue Liu
{"title":"Variants within KIF5B are associated with weight loss through mitochondrial transport alteration in sheep.","authors":"Jieran Chen, Haitao Wang, Yuting Zhang, Yan Chen, Na Zhang, Hengqian Yang, Zhichao Zhang, Ziyuan Duan, Xia Li, Daxiang Wang, Zhixiong He, Fan Hu, Jianfeng Gao, Runlin Z Ma, Xun Huang, Qiuyue Liu","doi":"10.1016/j.jgg.2024.09.009","DOIUrl":"10.1016/j.jgg.2024.09.009","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.jgg.2024.09.008
Lijun Ma, Lihe Xing, Zicong Li, Danhua Jiang
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
除遗传信息外,生物还进化出复杂而精密的表观遗传调控,以根据发育和环境信号调整基因表达。主要的表观遗传机制包括 DNA 甲基化、组蛋白修饰和变异、染色质重塑以及 RNA 的化学修饰。表观遗传控制环境响应对植物尤为重要,因为植物是无柄的,无法远离不利环境。除了能让植物快速应对环境胁迫外,一些胁迫诱导的表观遗传变化还能保持,为植物提供一种预适应状态,以应对反复出现的胁迫。了解这些表观遗传机制为开发抗逆性更强的作物品种提供了宝贵的启示。在此,我们将重点关注非生物胁迫,并总结最近在鉴定胁迫诱导的表观遗传变化及其在植物非生物胁迫抗性中的调控机制和作用方面取得的进展。
{"title":"Epigenetic control of plant abiotic stress responses.","authors":"Lijun Ma, Lihe Xing, Zicong Li, Danhua Jiang","doi":"10.1016/j.jgg.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.09.008","url":null,"abstract":"<p><p>On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.jgg.2024.09.003
Conghao Zhong, Xiaochang Li, Dailu Guan, Boxuan Zhang, Xiqiong Wang, Liang Qu, Huaijun Zhou, Lingzhao Fang, Congjiao Sun, Ning Yang
Chicken body weight (BW) is a critical trait in breeding. Although genetic variants associated with BW have been investigated by genome-wide association studies (GWAS), the contributions of causal variants and their molecular mechanisms remain largely unclear in chickens. In this study, we construct a comprehensive genetic atlas of chicken BW by integrative analysis of 30 age points and 5 quantitative trait loci (QTL) across 27 tissues. We find that chicken growth is a cumulative non-linear process, which can be divided into three distinct stages. Our GWAS analysis reveals that BW-related genetic variations show ordered patterns in these three stages. Genetic variations in chromosome 1 may regulate the overall growth process, likely by modulating the hypothalamus-specific expression of SLC25A30 and retina-specific expression of NEK3. Moreover, genetic variations in chromosome 4 and chromosome 27 may play dominant roles in regulating BW during Stage Ⅱ (8-22 weeks) and Stage Ⅲ (23-72 weeks), respectively. In summary, our study presents a comprehensive genetic atlas regulating developmental stage-specific changes in chicken BW, thus providing important resources for genomic selection in breeding programs.
{"title":"Age-dependent genetic architectures of chicken body weight explored by multidimensional GWAS and molQTL analyses.","authors":"Conghao Zhong, Xiaochang Li, Dailu Guan, Boxuan Zhang, Xiqiong Wang, Liang Qu, Huaijun Zhou, Lingzhao Fang, Congjiao Sun, Ning Yang","doi":"10.1016/j.jgg.2024.09.003","DOIUrl":"10.1016/j.jgg.2024.09.003","url":null,"abstract":"<p><p>Chicken body weight (BW) is a critical trait in breeding. Although genetic variants associated with BW have been investigated by genome-wide association studies (GWAS), the contributions of causal variants and their molecular mechanisms remain largely unclear in chickens. In this study, we construct a comprehensive genetic atlas of chicken BW by integrative analysis of 30 age points and 5 quantitative trait loci (QTL) across 27 tissues. We find that chicken growth is a cumulative non-linear process, which can be divided into three distinct stages. Our GWAS analysis reveals that BW-related genetic variations show ordered patterns in these three stages. Genetic variations in chromosome 1 may regulate the overall growth process, likely by modulating the hypothalamus-specific expression of SLC25A30 and retina-specific expression of NEK3. Moreover, genetic variations in chromosome 4 and chromosome 27 may play dominant roles in regulating BW during Stage Ⅱ (8-22 weeks) and Stage Ⅲ (23-72 weeks), respectively. In summary, our study presents a comprehensive genetic atlas regulating developmental stage-specific changes in chicken BW, thus providing important resources for genomic selection in breeding programs.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
在过去的十年中,纳米孔测序技术经历了重大的进步和变化,从最初的新兴技术过渡到基因组测序领域的重要仪器。然而,随着下一代测序技术的不断进步,纳米孔测序技术也在不断改进。本文回顾了纳米孔测序技术的发展、应用和前景。目前,纳米孔测序支持 DNA 和 RNA 测序,因此可广泛应用于端粒到端粒(T2T)基因组组装、直接 RNA 测序(DRS)和元基因组学等领域。纳米孔测序技术的开放性和多功能性使其成为越来越多研究团队的首选,预示着它将对生命科学研究产生变革性影响。随着纳米孔测序技术的发展,它提供了一种更快、更具成本效益、读取长度更长的方法,在复杂基因组组装、病原体检测、环境监测和人类疾病研究方面展现出巨大的潜力,为测序技术提供了一个全新的视角。
{"title":"Nanopore sequencing: flourishing in its teenage years.","authors":"Tianyuan Zhang,Hanzhou Li,Mian Jiang,Huiyu Hou,Yunyun Gao,Yali Li,Fuhao Wang,Jun Wang,Kai Peng,Yong-Xin Liu","doi":"10.1016/j.jgg.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.09.007","url":null,"abstract":"Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":"1 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.jgg.2024.09.006
Chenyang Bian, Dongyuan Ma, Feng Liu
{"title":"The future of zebrafish research: highlights from the 18th International Zebrafish Conference.","authors":"Chenyang Bian, Dongyuan Ma, Feng Liu","doi":"10.1016/j.jgg.2024.09.006","DOIUrl":"10.1016/j.jgg.2024.09.006","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}