Pub Date : 2025-01-01Epub Date: 2024-11-15DOI: 10.1016/j.jgg.2024.11.003
Shirong Jin, Hongfei Zhang, Jia Li, Huaxing Zi, Jiulin Du, Hongyu Li
{"title":"Zebrafish cartilage development atlas generated by longitudinal in vivo imaging.","authors":"Shirong Jin, Hongfei Zhang, Jia Li, Huaxing Zi, Jiulin Du, Hongyu Li","doi":"10.1016/j.jgg.2024.11.003","DOIUrl":"10.1016/j.jgg.2024.11.003","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"124-127"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies. Histone modifications act as the key factors to modulate the chromatin accessibility. Different histone modifications are strongly associated with the localization of chromatin. Heterochromatin primarily localizes at the nuclear periphery, where it interacts with lamina proteins to suppress gene expression. In this review, we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery. We use lamina-associated domains (LADs) as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development. In the end, we highlight the technologies that are currently used to identify and visualize histone modifications and LADs, which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.
{"title":"The interplay between histone modifications and nuclear lamina in genome regulation.","authors":"Chang Sun, Yanjing Zhao, Liping Guo, Juhui Qiu, Qin Peng","doi":"10.1016/j.jgg.2024.10.005","DOIUrl":"10.1016/j.jgg.2024.10.005","url":null,"abstract":"<p><p>Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies. Histone modifications act as the key factors to modulate the chromatin accessibility. Different histone modifications are strongly associated with the localization of chromatin. Heterochromatin primarily localizes at the nuclear periphery, where it interacts with lamina proteins to suppress gene expression. In this review, we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery. We use lamina-associated domains (LADs) as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development. In the end, we highlight the technologies that are currently used to identify and visualize histone modifications and LADs, which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"24-38"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1016/j.jgg.2024.12.016
Xingyan Ye, Kezhen Qin, Alisdair R Fernie, Youjun Zhang
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
{"title":"Prospects for synthetic biology in 21<sup>st</sup> Century agriculture.","authors":"Xingyan Ye, Kezhen Qin, Alisdair R Fernie, Youjun Zhang","doi":"10.1016/j.jgg.2024.12.016","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.12.016","url":null,"abstract":"<p><p>Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-28DOI: 10.1016/j.jgg.2024.12.015
Jie Liu, Boming Yang, Xunji Chen, Tengfei Zhang, Huairen Zhang, Yimo Du, Qian Zhao, Zhaogui Zhang, Darun Cai, Juan Liu, Huabang Chen, Li Zhao
Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize. We identify s75, a natural maize mutant that cannot survive under moderate saline-alkali soil conditions or establish AM symbioses. The saline-alkali hypersensitive phenotype of s75 is caused by a 1340-bp deletion in Zm00001d033915, designated as ZmL75. This gene encodes a glycerol-3-phosphate acyltransferase localized in the endoplasmic reticulum, and is responsible for AMF colonization. ZmL75 expression levels in roots correspond with the root length colonization (RLC) rate during early vegetative development. Notably, the s75 mutant line shows a complete loss of AMF colonization, along with alterations in the diversity and structure of its root fungal microbiota. Conversely, overexpression of ZmL75 increases the RLC rate and enhances tolerance to saline-alkali soil conditions. These results suggest that ZmL75 is required for symbiosis with AMF, which directly improves saline-alkali tolerance. Our findings provide insights into maize-AMF interactions and offer a potential strategy for maize improvement.
{"title":"ZmL75 is required for colonization by arbuscular mycorrhizal fungi and for saline-alkali tolerance in maize.","authors":"Jie Liu, Boming Yang, Xunji Chen, Tengfei Zhang, Huairen Zhang, Yimo Du, Qian Zhao, Zhaogui Zhang, Darun Cai, Juan Liu, Huabang Chen, Li Zhao","doi":"10.1016/j.jgg.2024.12.015","DOIUrl":"10.1016/j.jgg.2024.12.015","url":null,"abstract":"<p><p>Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize. We identify s75, a natural maize mutant that cannot survive under moderate saline-alkali soil conditions or establish AM symbioses. The saline-alkali hypersensitive phenotype of s75 is caused by a 1340-bp deletion in Zm00001d033915, designated as ZmL75. This gene encodes a glycerol-3-phosphate acyltransferase localized in the endoplasmic reticulum, and is responsible for AMF colonization. ZmL75 expression levels in roots correspond with the root length colonization (RLC) rate during early vegetative development. Notably, the s75 mutant line shows a complete loss of AMF colonization, along with alterations in the diversity and structure of its root fungal microbiota. Conversely, overexpression of ZmL75 increases the RLC rate and enhances tolerance to saline-alkali soil conditions. These results suggest that ZmL75 is required for symbiosis with AMF, which directly improves saline-alkali tolerance. Our findings provide insights into maize-AMF interactions and offer a potential strategy for maize improvement.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.jgg.2024.12.014
Roman O Cherezov, Julia E Vorontsova, Elena E Kuvaeva, Angelina A Akishina, Ekaterina L Zavoloka, Olga B Simonova
It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms. De novo genes frequently emerge in proximity to existing genes, forming gene overlaps. Here, we present an analysis of the evolutionary history of a putative de novo gene, lawc, which overlaps with the conserved Trf2 gene, which encodes a general transcription factor in Drosophila melanogaster. We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region (UTR) of Trf2 and displays an extensive spatiotemporal expression pattern. One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short, highly conserved regions located in Trf2 introns. This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes. The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2. This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.
{"title":"The lawc gene emerged de novo from conserved genomic elements and acquired a broad expression pattern in Drosophila.","authors":"Roman O Cherezov, Julia E Vorontsova, Elena E Kuvaeva, Angelina A Akishina, Ekaterina L Zavoloka, Olga B Simonova","doi":"10.1016/j.jgg.2024.12.014","DOIUrl":"10.1016/j.jgg.2024.12.014","url":null,"abstract":"<p><p>It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms. De novo genes frequently emerge in proximity to existing genes, forming gene overlaps. Here, we present an analysis of the evolutionary history of a putative de novo gene, lawc, which overlaps with the conserved Trf2 gene, which encodes a general transcription factor in Drosophila melanogaster. We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region (UTR) of Trf2 and displays an extensive spatiotemporal expression pattern. One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short, highly conserved regions located in Trf2 introns. This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes. The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2. This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy approach for dominantly inherited ocular disorders.
{"title":"In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa.","authors":"Sihui Hu, Yuxi Chen, Yitong Zhou, Tianqi Cao, Simiao Liu, Chenhui Ding, Dongchun Xie, Puping Liang, Li Huang, Haiying Liu, Junjiu Huang","doi":"10.1016/j.jgg.2024.12.012","DOIUrl":"https://doi.org/10.1016/j.jgg.2024.12.012","url":null,"abstract":"<p><p>Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy approach for dominantly inherited ocular disorders.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1016/j.jgg.2024.12.013
Xiaoyan Liang, Pan Yin, Fenrong Li, Yibo Cao, Caifu Jiang
Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis. Additionally, we show that natural variation in ZmGolS1 transcript levels contributes to the diversity of raffinose content and salt tolerance in maize. We further reveal that ZmRR18, a type-B response regulator transcription factor, binds to the AATC element in the promoter of ZmGolS1, with this binding increases the transcript levels of ZmGolS1 under salt conditions. Moreover, a single nucleotide polymorphism (termed SNP-302T) within the ZmGolS1 promoter significantly reduces its binding affinity for ZmRR18, resulting in decreased ZmGolS1 expression and diminished raffinose content, ultimately leading to a salt-hypersensitive phenotype. Collectively, our findings reveal the molecular mechanisms by which the ZmRR18-ZmGolS1 module enhances raffinose biosynthesis, thereby promoting maize growth under salt conditions. This research provides important insights into salt tolerance mechanisms associated with saccharide biosynthesis and identifies valuable genetic loci for breeding salt-tolerant maize varieties.
{"title":"ZmGolS1 underlies natural variation of raffinose content and salt tolerance in maize.","authors":"Xiaoyan Liang, Pan Yin, Fenrong Li, Yibo Cao, Caifu Jiang","doi":"10.1016/j.jgg.2024.12.013","DOIUrl":"10.1016/j.jgg.2024.12.013","url":null,"abstract":"<p><p>Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis. Additionally, we show that natural variation in ZmGolS1 transcript levels contributes to the diversity of raffinose content and salt tolerance in maize. We further reveal that ZmRR18, a type-B response regulator transcription factor, binds to the AATC element in the promoter of ZmGolS1, with this binding increases the transcript levels of ZmGolS1 under salt conditions. Moreover, a single nucleotide polymorphism (termed SNP-302T) within the ZmGolS1 promoter significantly reduces its binding affinity for ZmRR18, resulting in decreased ZmGolS1 expression and diminished raffinose content, ultimately leading to a salt-hypersensitive phenotype. Collectively, our findings reveal the molecular mechanisms by which the ZmRR18-ZmGolS1 module enhances raffinose biosynthesis, thereby promoting maize growth under salt conditions. This research provides important insights into salt tolerance mechanisms associated with saccharide biosynthesis and identifies valuable genetic loci for breeding salt-tolerant maize varieties.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1016/j.jgg.2024.12.011
Wenqi Ouyang, Hongda Sun, Yuan Wang
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
{"title":"Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement.","authors":"Wenqi Ouyang, Hongda Sun, Yuan Wang","doi":"10.1016/j.jgg.2024.12.011","DOIUrl":"10.1016/j.jgg.2024.12.011","url":null,"abstract":"<p><p>Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1016/j.jgg.2024.12.010
Damin Yun, Sheng Gao, Xinyao Li, Jie Shi, Lingling Wang, Tiao Bu, Xiwen Yang, Yunhao Wu, Xiaolong Wu, Fei Sun
Spermiogenesis is an indispensable process occurring during the later stages of spermatogenesis. Despite multiple proteins being associated with spermiogenesis, the molecular mechanisms that control spermiogenesis remain poorly characterized. In this study, we show that 1700030J22Rik is exclusively expressed in the testis of mice and investigate its roles in spermiogenesis using genetic and proteomic approaches. The deficiency in 1700030J22Rik in male mice results in severe subfertility, characterized by a substantial decrease in sperm concentration, motility, and abnormalities in the flagella. Furthermore, 1700030J22RIK interacts with the A-kinase-anchoring protein AKAP3, and 1700030J22Rik knockout decreases AKAP3 and AKAP4 protein levels. Additionally, the absence of 1700030J22RIK alters spermatozoal levels of the subunits of protein kinase A, leading to reduced protein phosphorylation and impaired sperm motility. This study reveals that 1700030J22Rik plays a crucial role in the organization of sperm morphology and function in mice.
{"title":"The testis-specific gene 1700030J22Rikis essential for sperm flagellar function and male fertility in mice.","authors":"Damin Yun, Sheng Gao, Xinyao Li, Jie Shi, Lingling Wang, Tiao Bu, Xiwen Yang, Yunhao Wu, Xiaolong Wu, Fei Sun","doi":"10.1016/j.jgg.2024.12.010","DOIUrl":"10.1016/j.jgg.2024.12.010","url":null,"abstract":"<p><p>Spermiogenesis is an indispensable process occurring during the later stages of spermatogenesis. Despite multiple proteins being associated with spermiogenesis, the molecular mechanisms that control spermiogenesis remain poorly characterized. In this study, we show that 1700030J22Rik is exclusively expressed in the testis of mice and investigate its roles in spermiogenesis using genetic and proteomic approaches. The deficiency in 1700030J22Rik in male mice results in severe subfertility, characterized by a substantial decrease in sperm concentration, motility, and abnormalities in the flagella. Furthermore, 1700030J22RIK interacts with the A-kinase-anchoring protein AKAP3, and 1700030J22Rik knockout decreases AKAP3 and AKAP4 protein levels. Additionally, the absence of 1700030J22RIK alters spermatozoal levels of the subunits of protein kinase A, leading to reduced protein phosphorylation and impaired sperm motility. This study reveals that 1700030J22Rik plays a crucial role in the organization of sperm morphology and function in mice.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}