首页 > 最新文献

Journal of Fluids and Structures最新文献

英文 中文
Numerical modeling and analysis of fluid-filled truncated conical shells with ring stiffeners 带环形加强筋的充液截顶锥形壳的数值建模与分析
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-23 DOI: 10.1016/j.jfluidstructs.2024.104121
Mohammadamin Esmaeilzadehazimi, Mehrdad Bakhtiari, Mohammad Toorani, Aouni A. Lakis

This study uses a hybrid finite element method to predict dynamic behavior of truncated conical shells with ring stiffeners under fluid loading. The proposed approach combines classical shell theory and the finite element method, making use of displacement functions derived from exact solutions of Sanders’ shell equilibrium equations for conical shells. The analysis of the shell-fluid interface involves leveraging the velocity potential, Bernoulli’s equation, and impermeability conditions to determine an explicit expression for fluid pressure. To the best of our knowledge, this paper is the first to compare the methods applied to ring-stiffened shells against other numerical and experimental findings. Our results on conical shells in various conditions, with and without ring stiffeners, are largely consistent with previous findings. This study also explores the influence of geometric parameters, stiffener quantity, cone angle, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells. The paper concludes with a discussion of several useful implications for further research.

本研究采用混合有限元法预测带有环形加强筋的截顶锥形壳在流体载荷作用下的动态行为。所提出的方法结合了经典壳体理论和有限元方法,利用了从圆锥壳体的桑德斯壳体平衡方程精确解法中导出的位移函数。对壳-流体界面的分析包括利用速度势能、伯努利方程和防渗条件来确定流体压力的明确表达式。据我们所知,本文首次将应用于环形加劲壳的方法与其他数值和实验结果进行了比较。我们对各种条件下的圆锥形壳体(有无环形加强筋)的研究结果与之前的研究结果基本一致。本研究还探讨了几何参数、加劲件数量、锥角和应用边界条件对流体载荷环形加劲锥壳固有频率的影响。论文最后讨论了进一步研究的若干有益启示。
{"title":"Numerical modeling and analysis of fluid-filled truncated conical shells with ring stiffeners","authors":"Mohammadamin Esmaeilzadehazimi,&nbsp;Mehrdad Bakhtiari,&nbsp;Mohammad Toorani,&nbsp;Aouni A. Lakis","doi":"10.1016/j.jfluidstructs.2024.104121","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104121","url":null,"abstract":"<div><p>This study uses a hybrid finite element method to predict dynamic behavior of truncated conical shells with ring stiffeners under fluid loading. The proposed approach combines classical shell theory and the finite element method, making use of displacement functions derived from exact solutions of Sanders’ shell equilibrium equations for conical shells. The analysis of the shell-fluid interface involves leveraging the velocity potential, Bernoulli’s equation, and impermeability conditions to determine an explicit expression for fluid pressure. To the best of our knowledge, this paper is the first to compare the methods applied to ring-stiffened shells against other numerical and experimental findings. Our results on conical shells in various conditions, with and without ring stiffeners, are largely consistent with previous findings. This study also explores the influence of geometric parameters, stiffener quantity, cone angle, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells. The paper concludes with a discussion of several useful implications for further research.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-degree-of-freedom galloping instability of a 3D bluff body pendulum at high Reynolds number 高雷诺数下三维崖体摆的一自由度奔腾不稳定性
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-22 DOI: 10.1016/j.jfluidstructs.2024.104123
Antoine Myskiw , Yann Haffner , François Paillé , Jacques Borée , Christophe Sicot

The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (Re105) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.

For the lowest reduced velocity investigated (U=18.5), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.

在高雷诺数(Re∼105)、低自由流湍流强度的流动中,对立方摆的横流摆动动力学进行了实验研究。观察到了奔腾不稳定性,并导致摆动运动呈指数增长。研究发现,奔腾现象的发生对立方体的静态偏航角非常敏感。尽管立方体具有三维几何形状,但与方形圆柱体类似的流动机制似乎控制着不稳定性的发生。对运动的准稳定线性模型进行了评估,以预测摆锤的稳定性。对于所研究的最低降低速度(U∗=18.5),在摆锤振荡的饱和阶段会出现不稳定现象。通过对立方体表面的非稳态载荷和压力分布进行分析,确定了唤醒和摆锤动力学之间的非稳态相位延迟。它在摆锤运动中产生能量损失,有利于其饱和。
{"title":"One-degree-of-freedom galloping instability of a 3D bluff body pendulum at high Reynolds number","authors":"Antoine Myskiw ,&nbsp;Yann Haffner ,&nbsp;François Paillé ,&nbsp;Jacques Borée ,&nbsp;Christophe Sicot","doi":"10.1016/j.jfluidstructs.2024.104123","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104123","url":null,"abstract":"<div><p>The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.</p><p>For the lowest reduced velocity investigated (<span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>18</mn><mo>.</mo><mn>5</mn></mrow></math></span>), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphing of high-lift wing-flap system with cambering and trailing-edge flapping at high Reynolds number towards a full airplane application 在高雷诺数条件下,具有外倾和后缘拍打功能的高升力翼面襟翼系统的变形,实现全机应用
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-15 DOI: 10.1016/j.jfluidstructs.2024.104111
Abderahmane Marouf , Dominique Charbonnier , Jan B. Vos , Rajaa El Akoury , Yannick Hoarau , Marianna Braza

This study concerns a numerical investigation of new morphing concepts by means of high-fidelity simulation around a high-lift wing-flap system and a real scale Airbus A320 airplane. A new designed hybrid morphing flap is proposed based on cambering at high deformation amplitudes associated with trailing-edge flapping at an actuation frequency in the order of 300 Hz. The numerical results are obtained using the code NSMB (Navier–Stokes Multi-Block) with adapted turbulence modeling over a generated Chimera grid and dynamic grid deformations. Optimal shapes of the cambering are studied in respect of the aerodynamic performance increase based on a quasi-static approach with a parametric study of different angles of attack, Reynolds numbers and cambering positions in addition to the dynamic cambering effects. Hybrid morphing is then examined using an AIRBUS A320 airplane with morphing high-lift flaps. An increase of the aerodynamic performance is obtained using these novel designs compared to the baseline configuration.

本研究通过对高升力翼面襟翼系统和真实比例的空客 A320 飞机进行高保真模拟,对新的变形概念进行了数值研究。提出了一种新设计的混合变形襟翼,其基础是在致动频率为 300 Hz 的情况下,与尾翼拍打相关的高变形幅度下的外倾角。数值结果是使用 NSMB(Navier-Stokes Multi-Block)代码,在生成的 Chimera 网格和动态网格变形上进行湍流建模后得出的。在准静态方法的基础上,通过对不同攻角、雷诺数和外倾角位置的参数研究,以及动态外倾角效应,研究了外倾角的最佳形状对提高气动性能的影响。然后,使用带有变形高升力襟翼的 AIRBUS A320 飞机对混合变形进行了研究。与基线配置相比,这些新颖的设计提高了气动性能。
{"title":"Morphing of high-lift wing-flap system with cambering and trailing-edge flapping at high Reynolds number towards a full airplane application","authors":"Abderahmane Marouf ,&nbsp;Dominique Charbonnier ,&nbsp;Jan B. Vos ,&nbsp;Rajaa El Akoury ,&nbsp;Yannick Hoarau ,&nbsp;Marianna Braza","doi":"10.1016/j.jfluidstructs.2024.104111","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104111","url":null,"abstract":"<div><p>This study concerns a numerical investigation of new morphing concepts by means of high-fidelity simulation around a high-lift wing-flap system and a real scale Airbus A320 airplane. A new designed hybrid morphing flap is proposed based on cambering at high deformation amplitudes associated with trailing-edge flapping at an actuation frequency in the order of 300 Hz. The numerical results are obtained using the code NSMB (Navier–Stokes Multi-Block) with adapted turbulence modeling over a generated Chimera grid and dynamic grid deformations. Optimal shapes of the cambering are studied in respect of the aerodynamic performance increase based on a quasi-static approach with a parametric study of different angles of attack, Reynolds numbers and cambering positions in addition to the dynamic cambering effects. Hybrid morphing is then examined using an AIRBUS A320 airplane with morphing high-lift flaps. An increase of the aerodynamic performance is obtained using these novel designs compared to the baseline configuration.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully coupled forced response analysis of nonlinear turbine blade vibrations in the frequency domain 频域内非线性涡轮叶片振动的完全耦合强迫响应分析
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-15 DOI: 10.1016/j.jfluidstructs.2024.104112
Christian Berthold , Johann Gross , Christian Frey , Malte Krack

For the first time, a fully-coupled Harmonic Balance method is developed for the forced response of turbomachinery blades. The method is applied to a state-of-the-art model of a turbine bladed disk with interlocked shrouds subjected to wake-induced loading. The recurrent partial opening and closing of the pre-loaded shroud contact causes a softening effect, leading to turning points in the amplitude–frequency curve near resonance. Therefore, the coupled solver is embedded into a numerical path continuation framework. Two variants are developed: the coupled continuation of the solution path, and the coupled re-iteration of selected solution points. While the re-iteration variant is slightly more costly per solution point, it has the important advantage that it can be run completely in parallel, which substantially reduces the wall clock time. It is shown that wake- and vibration-induced flow fields do not linearly superimpose, leading to a severe under-/overestimation of the resonant vibration level by the influence-coefficient-based state-of-the-art methods (which rely on this linearity assumption).

首次针对涡轮机械叶片的强制响应开发了全耦合谐波平衡方法。该方法被应用于带有联锁护罩的涡轮叶盘的最新模型,该模型受到尾流诱导载荷的影响。预加载护罩接触的反复部分打开和关闭会产生软化效应,导致振幅-频率曲线在共振附近出现转折点。因此,耦合求解器被嵌入到数值路径延续框架中。开发了两种变体:求解路径的耦合延续和选定求解点的耦合再迭代。虽然重新迭代变体每个求解点的成本略高,但它有一个重要优势,即可以完全并行运行,从而大大减少了壁钟时间。研究表明,唤醒流场和振动诱导流场并不是线性叠加的,这导致基于影响系数的最新方法(依赖于这种线性假设)严重低估/高估了共振振动水平。
{"title":"Fully coupled forced response analysis of nonlinear turbine blade vibrations in the frequency domain","authors":"Christian Berthold ,&nbsp;Johann Gross ,&nbsp;Christian Frey ,&nbsp;Malte Krack","doi":"10.1016/j.jfluidstructs.2024.104112","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104112","url":null,"abstract":"<div><p>For the first time, a fully-coupled Harmonic Balance method is developed for the forced response of turbomachinery blades. The method is applied to a state-of-the-art model of a turbine bladed disk with interlocked shrouds subjected to wake-induced loading. The recurrent partial opening and closing of the pre-loaded shroud contact causes a softening effect, leading to turning points in the amplitude–frequency curve near resonance. Therefore, the coupled solver is embedded into a numerical path continuation framework. Two variants are developed: the coupled continuation of the solution path, and the coupled re-iteration of selected solution points. While the re-iteration variant is slightly more costly per solution point, it has the important advantage that it can be run completely in parallel, which substantially reduces the wall clock time. It is shown that wake- and vibration-induced flow fields do not linearly superimpose, leading to a severe under-/overestimation of the resonant vibration level by the influence-coefficient-based state-of-the-art methods (which rely on this linearity assumption).</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974624000471/pdfft?md5=ae82e838f321cdeaa6b028c56c3567e8&pid=1-s2.0-S0889974624000471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow-induced vibration of an S-shaped bluff elastic sheet S 形崖状弹性片的流动诱导振动
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-15 DOI: 10.1016/j.jfluidstructs.2024.104120
Junkyu Ham, Minho Song, Janggon Yoo, Daegyoum Kim

The dynamics of an S-shaped elastic sheet, in which the inclination angles of two clamped ends are normal to the direction of uniform flow and opposite to each other, are experimentally investigated. Flow-induced vibrations are ensured in this novel configuration by the substantial area perpendicular to the flow and the bluff shape. The motions of the sheet can be divided into three modes depending on the trends of the oscillation amplitude and frequency with respect to the flow velocity. At low flow velocities, the sheet undergoes small-amplitude oscillations with a nearly constant frequency. Beyond a certain threshold of flow velocity, the amplitude increases rapidly while the frequency declines. The dimensionless critical flow velocity is almost independent of the ratio between the clamp distance and sheet length, as predicted by simple scaling analysis. As the flow velocity increases further, the amplitude becomes saturated, while the frequency becomes almost proportional to the flow velocity. The most notable features of the sheet are the temporal and spatial distributions of its bending energy. The bending energy exhibits negligible fluctuations over time, and despite changes in the flow velocity, the time-averaged bending energy remains almost constant. However, by dividing the sheet into front, center, and rear parts, significant variations in the bending energy are found, and these are intensified at higher flow velocities. The S-shaped sheet exhibits more pronounced variations in local bending energy at lower flow velocities compared with a snap-through sheet model clamped at both ends.

实验研究了 S 形弹性片的动力学,其中两个夹持端面的倾斜角与均匀流动方向的法线方向相反。在这种新颖的构造中,垂直于流动的大面积区域和崖壁形状确保了流动引起的振动。根据振幅和频率随流速变化的趋势,薄片的运动可分为三种模式。在低流速条件下,薄片以几乎恒定的频率进行小振幅振荡。当流速超过某一临界值时,振幅迅速增大,而频率则逐渐减小。正如简单的比例分析所预测的那样,无量纲临界流速几乎与夹持距离和薄片长度之间的比率无关。随着流速的进一步增加,振幅趋于饱和,而频率则几乎与流速成正比。薄片最显著的特征是其弯曲能的时间和空间分布。弯曲能随时间的波动可以忽略不计,尽管流速发生了变化,但时间平均弯曲能几乎保持不变。然而,如果将薄片分为前部、中部和后部,就会发现弯曲能有明显的变化,而且在流速较高时,这种变化会加剧。与两端夹紧的卡入式薄片模型相比,S 形薄片在较低流速下的局部弯曲能变化更为明显。
{"title":"Flow-induced vibration of an S-shaped bluff elastic sheet","authors":"Junkyu Ham,&nbsp;Minho Song,&nbsp;Janggon Yoo,&nbsp;Daegyoum Kim","doi":"10.1016/j.jfluidstructs.2024.104120","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104120","url":null,"abstract":"<div><p>The dynamics of an S-shaped elastic sheet, in which the inclination angles of two clamped ends are normal to the direction of uniform flow and opposite to each other, are experimentally investigated. Flow-induced vibrations are ensured in this novel configuration by the substantial area perpendicular to the flow and the bluff shape. The motions of the sheet can be divided into three modes depending on the trends of the oscillation amplitude and frequency with respect to the flow velocity. At low flow velocities, the sheet undergoes small-amplitude oscillations with a nearly constant frequency. Beyond a certain threshold of flow velocity, the amplitude increases rapidly while the frequency declines. The dimensionless critical flow velocity is almost independent of the ratio between the clamp distance and sheet length, as predicted by simple scaling analysis. As the flow velocity increases further, the amplitude becomes saturated, while the frequency becomes almost proportional to the flow velocity. The most notable features of the sheet are the temporal and spatial distributions of its bending energy. The bending energy exhibits negligible fluctuations over time, and despite changes in the flow velocity, the time-averaged bending energy remains almost constant. However, by dividing the sheet into front, center, and rear parts, significant variations in the bending energy are found, and these are intensified at higher flow velocities. The S-shaped sheet exhibits more pronounced variations in local bending energy at lower flow velocities compared with a snap-through sheet model clamped at both ends.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flexible sheet in the wake of a cylinder forced to rotate 气缸尾部的柔性片材被迫旋转
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-10 DOI: 10.1016/j.jfluidstructs.2024.104110
Adrian Carleton, Yahya Modarres-Sadeghi

We discuss the behavior of a flexible sheet placed in the wake of a cylinder that is forced to rotate periodically. This is done through a series of experiments conducted in a water tunnel and by simultaneously visualizing the flow behavior and tracking the motion of the flexible sheet in the wake of the cylinder. We show how the response of a flexible sheet in the wake of a fixed cylinder, which is the result of the sheet’s interaction with the vortices that are shed at a frequency predicted by the Strouhal law can be changed to a “desired” response by forcing the upstream cylinder to rotate periodically. Large-amplitude oscillations at a frequency different from the Strouhal frequency can be imposed on the flexible sheet, and the sheet’s oscillations can be suppressed if the cylinder is forced to rotate at a higher frequency. The flexible sheet finds its way in between the vortices that are shed in the wake of the cylinder, and by controlling the frequency and location of the shed vortices in the wake of the cylinder, one can impose a desired motion on the sheet. Besides imposing a symmetric oscillatory response on the sheet, we show that asymmetric responses can be imposed on the sheet when an asymmetric waveform is used to force the upstream cylinder.

我们讨论了置于被迫周期性旋转的圆柱体尾流中的柔性片材的行为。为此,我们在水隧道中进行了一系列实验,同时对气缸尾流中柔性片材的流动行为进行了可视化分析和运动跟踪。我们展示了如何通过迫使上游圆柱体周期性旋转,将固定圆柱体尾流中柔性片材的响应(即片材与以斯特劳哈尔定律预测的频率脱落的涡流相互作用的结果)转变为 "期望的 "响应。可以对柔性片材施加不同于斯特劳哈尔频率的大振幅振荡,如果气缸被迫以更高的频率旋转,则可以抑制柔性片材的振荡。柔性薄片位于气缸尾部脱落的漩涡之间,通过控制气缸尾部脱落漩涡的频率和位置,可以在薄片上施加所需的运动。除了在薄片上施加对称振荡响应外,我们还展示了当使用非对称波形来迫使上游圆柱体时,可以在薄片上施加非对称响应。
{"title":"A flexible sheet in the wake of a cylinder forced to rotate","authors":"Adrian Carleton,&nbsp;Yahya Modarres-Sadeghi","doi":"10.1016/j.jfluidstructs.2024.104110","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104110","url":null,"abstract":"<div><p>We discuss the behavior of a flexible sheet placed in the wake of a cylinder that is forced to rotate periodically. This is done through a series of experiments conducted in a water tunnel and by simultaneously visualizing the flow behavior and tracking the motion of the flexible sheet in the wake of the cylinder. We show how the response of a flexible sheet in the wake of a fixed cylinder, which is the result of the sheet’s interaction with the vortices that are shed at a frequency predicted by the Strouhal law can be changed to a “desired” response by forcing the upstream cylinder to rotate periodically. Large-amplitude oscillations at a frequency different from the Strouhal frequency can be imposed on the flexible sheet, and the sheet’s oscillations can be suppressed if the cylinder is forced to rotate at a higher frequency. The flexible sheet finds its way in between the vortices that are shed in the wake of the cylinder, and by controlling the frequency and location of the shed vortices in the wake of the cylinder, one can impose a desired motion on the sheet. Besides imposing a symmetric oscillatory response on the sheet, we show that asymmetric responses can be imposed on the sheet when an asymmetric waveform is used to force the upstream cylinder.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerodynamic interaction between galloping instability and vortices in corner-cut rectangular cylinders 角切矩形圆柱体中奔腾不稳定性与涡流之间的空气动力相互作用
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-08 DOI: 10.1016/j.jfluidstructs.2024.104108
Thinzar Hnin, Tomomi Yagi, Kyohei Noguchi, Manoj Pradhan, Rintaro Kyotani, Hisato Matsumiya

Studies on bluff-body aerodynamics have emphasized that galloping instability is strongly associated with the Kármán vortex. This study discusses the aerodynamic interactions between the galloping instability and Kármán and motion-induced vortices, analyzes the effects of these vortices on vortex-induced vibration and galloping, and investigates the stabilizing effects of various corner cuts on a rectangular cylinder. Wind tunnel tests were performed on a rectangular cylinder with a side ratio of 1.5 under a smooth flow for seven different corner shapes. The rectangular cylinder with cut corners significantly reduced both the aerodynamic force coefficients and the Kármán vortex shedding intensity. Furthermore, spring-supported free vibration tests indicated that the onset reduced wind velocities were high in the response amplitudes of all corner-cut sections that were analyzed despite the significantly low onset reduced wind velocities of the Kármán vortex-induced vibration, which were denoted as the reciprocal of the Strouhal number and closely associated with the onset of galloping. This was attributed to the motion-induced vortex dominating the vibration when the Kármán vortex shedding intensity was reduced. Therefore, this study clarified one of the factors that affected the onset-reduced wind velocity of galloping.

有关崖体空气动力学的研究强调,奔腾不稳定性与卡尔曼涡流密切相关。本研究讨论了奔腾不稳定性与卡曼涡流和运动诱导涡流之间的空气动力学相互作用,分析了这些涡流对涡流诱导振动和奔腾的影响,并研究了矩形圆柱体上各种切角的稳定效果。在流畅的气流条件下,对边长比为 1.5 的矩形圆柱体进行了风洞试验,共采用了七种不同的切角形状。带有切角的矩形圆柱体大大降低了空气动力系数和卡尔曼涡流脱落强度。此外,弹簧支撑自由振动测试表明,尽管卡曼涡流诱导振动的起始降低风速明显较低,但所有切角截面的响应振幅都较高,起始降低风速表示为斯特劳哈尔数的倒数,并与奔腾的起始密切相关。这是因为当卡尔曼涡旋脱落强度降低时,运动诱导涡旋主导了振动。因此,这项研究阐明了影响起始风速降低的奔腾的因素之一。
{"title":"Aerodynamic interaction between galloping instability and vortices in corner-cut rectangular cylinders","authors":"Thinzar Hnin,&nbsp;Tomomi Yagi,&nbsp;Kyohei Noguchi,&nbsp;Manoj Pradhan,&nbsp;Rintaro Kyotani,&nbsp;Hisato Matsumiya","doi":"10.1016/j.jfluidstructs.2024.104108","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104108","url":null,"abstract":"<div><p>Studies on bluff-body aerodynamics have emphasized that galloping instability is strongly associated with the Kármán vortex. This study discusses the aerodynamic interactions between the galloping instability and Kármán and motion-induced vortices, analyzes the effects of these vortices on vortex-induced vibration and galloping, and investigates the stabilizing effects of various corner cuts on a rectangular cylinder. Wind tunnel tests were performed on a rectangular cylinder with a side ratio of 1.5 under a smooth flow for seven different corner shapes. The rectangular cylinder with cut corners significantly reduced both the aerodynamic force coefficients and the Kármán vortex shedding intensity. Furthermore, spring-supported free vibration tests indicated that the onset reduced wind velocities were high in the response amplitudes of all corner-cut sections that were analyzed despite the significantly low onset reduced wind velocities of the Kármán vortex-induced vibration, which were denoted as the reciprocal of the Strouhal number and closely associated with the onset of galloping. This was attributed to the motion-induced vortex dominating the vibration when the Kármán vortex shedding intensity was reduced. Therefore, this study clarified one of the factors that affected the onset-reduced wind velocity of galloping.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and theoretical fluid dynamics of spherical Savonius turbines operated in pipe flows 在管道流中运行的球形萨沃纽斯涡轮机的实验和理论流体动力学
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-04-01 DOI: 10.1016/j.jfluidstructs.2024.104105
Yuichi Murai, Takahiro Umemura, Hyun Jin Park, Yasufumi Horimoto, Yuji Tasaka

The performance of Savonius turbines driven by flow in a pipe is experimentally investigated. The turbine is manufactured to have a spherical outline based on the pipe cross section at a small clearance. The torque and power of the turbine are obtained from the time derivative of the rotational speed measured using a high-speed camera and an equation of rotational motion. We find that the idling tip-speed ratio of the turbine exceeds 5, which is much greater than that of a turbine operating in an open free stream. This proves the dominance of pulsatile flow through the gap between two hemispherical blades in torque generation. Widely varying the gap (i.e., the overlap ratio OR of the Savonius turbine) reveals that a turbine with OR = 30 % has the highest power coefficient. The output efficiency exceeds 50 % for a tip-speed ratio of approximately 3. These experimental results are supported by fluid dynamics theory and computational fluid dynamics simulation, which clarify the driving mechanism of the turbine in a pipeline.

实验研究了由管道中的水流驱动的萨沃尼乌斯涡轮机的性能。涡轮机是根据小间隙的管道横截面制造的球形轮廓。涡轮机的扭矩和功率是通过使用高速摄像机测量的转速的时间导数和旋转运动方程获得的。我们发现,涡轮机的空转尖速比超过 5,远大于在开放自由流中运行的涡轮机的尖速比。这证明了通过两个半球形叶片之间的间隙产生的脉动流在产生扭矩方面的主导作用。在很大程度上改变间隙(即萨沃尼乌斯涡轮机的重叠率 OR)可以发现,OR = 30 % 的涡轮机具有最高的功率系数。这些实验结果得到了流体动力学理论和计算流体动力学模拟的支持,从而阐明了管道中涡轮机的驱动机制。
{"title":"Experimental and theoretical fluid dynamics of spherical Savonius turbines operated in pipe flows","authors":"Yuichi Murai,&nbsp;Takahiro Umemura,&nbsp;Hyun Jin Park,&nbsp;Yasufumi Horimoto,&nbsp;Yuji Tasaka","doi":"10.1016/j.jfluidstructs.2024.104105","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104105","url":null,"abstract":"<div><p>The performance of Savonius turbines driven by flow in a pipe is experimentally investigated. The turbine is manufactured to have a spherical outline based on the pipe cross section at a small clearance. The torque and power of the turbine are obtained from the time derivative of the rotational speed measured using a high-speed camera and an equation of rotational motion. We find that the idling tip-speed ratio of the turbine exceeds 5, which is much greater than that of a turbine operating in an open free stream. This proves the dominance of pulsatile flow through the gap between two hemispherical blades in torque generation. Widely varying the gap (i.e., the overlap ratio <em>O<sub>R</sub></em> of the Savonius turbine) reveals that a turbine with <em>O<sub>R</sub></em> = 30 % has the highest power coefficient. The output efficiency exceeds 50 % for a tip-speed ratio of approximately 3. These experimental results are supported by fluid dynamics theory and computational fluid dynamics simulation, which clarify the driving mechanism of the turbine in a pipeline.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Angular vortex-induced vibrations of a cylinder 圆柱体的角涡流诱导振动
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-03-29 DOI: 10.1016/j.jfluidstructs.2024.104087
Adrian Carleton, Yahya Modarres-Sadeghi

We consider the response of a flexibly-mounted cylinder placed in flow and free to oscillate on a curved path about a pivot point. The curved path could be concave (i.e., bent toward the incoming flow) or convex (i.e., bent away from the incoming flow). We consider different radii of curvature for both the concave and the convex paths and show that oscillations are observed for radii of curvature larger than one cylinder diameter. In general, we show that the oscillations are of larger amplitudes in the convex orientation, reaching angles of oscillations of up to 38° and normalized (with respect to the cylinder's diameter) amplitudes of oscillations in the transverse and inline directions of up to 1.1 and 0.35, respectively. The oscillations on the concave path are of smaller amplitudes, but last up to higher values of reduced velocities than those in the convex orientation. The shedding and oscillation frequencies increase with increasing reduced velocity for the concave orientation reaching values of around 1.8 times the system's natural frequency in water at the end of the lock-in range, while for the convex orientation, the frequencies stay close to the natural frequency and only jump from values slightly lower than the natural frequency to values slightly higher than the natural frequency when the oscillation amplitude drops from an upper branch to a lower branch in the VIV amplitude response. Two single vortices are observed in the wake when oscillation amplitudes are relatively low, and two pairs of vortices of different sizes are observed in the wake when amplitudes are relatively larger. When two pairs of vortices are observed, the cylinder carries two bound vortices with it during its transverse oscillations and sheds them in the form of a pair of vortices of different sizes at the end of each half cycle. In the cases with the largest amplitudes of oscillations, besides the vortices that are shed synchronized with the oscillation frequency, several smaller-size vortices are shed in the wake as the cylinder traverses its crossflow path. We relate the reason for observing larger amplitudes of oscillations on the convex path to the relative orientation of the fluctuating forces that are exerted on the cylinder due to the shedding of vortices in its wake with respect to its oscillation path.

我们考虑的是一个柔性安装的圆柱体在流动过程中的响应,该圆柱体可以围绕一个支点在弯曲的路径上自由摆动。弯曲路径可以是凹形(即向入流方向弯曲)或凸形(即远离入流方向弯曲)。我们考虑了凹形和凸形路径的不同曲率半径,结果表明,当曲率半径大于一个气缸直径时,就会出现振荡。一般来说,我们发现凸面方向上的振荡幅度更大,振荡角度高达 38°,横向和内向的归一化振荡幅度(相对于圆柱体直径)分别高达 1.1 和 0.35。与凸面方向的振荡相比,凹面方向的振荡幅度较小,但持续的速度降低值较高。凹面方向上的脱落和振荡频率随着降低速度的增加而增加,在锁定范围的末端达到系统在水中固有频率的 1.8 倍左右,而凸面方向上的频率则保持在固有频率附近,只有当振荡振幅从 VIV 振幅响应的上分支降到下分支时,频率才会从略低于固有频率的值跳到略高于固有频率的值。振荡振幅相对较低时,尾流中会出现两个单涡,振幅相对较大时,尾流中会出现两对大小不同的涡。当观测到两对漩涡时,圆柱体在横向振荡过程中会携带两个束缚漩涡,并在每个半周期结束时以一对大小不同的漩涡的形式脱落。在振荡幅度最大的情况下,除了与振荡频率同步脱落的漩涡外,气缸在穿越横流路径时还会在尾流中脱落几个较小尺寸的漩涡。我们将凸面路径上振荡振幅较大的原因与气缸尾流中脱落的涡旋所产生的波动力相对于气缸振荡路径的相对方向联系起来。
{"title":"Angular vortex-induced vibrations of a cylinder","authors":"Adrian Carleton,&nbsp;Yahya Modarres-Sadeghi","doi":"10.1016/j.jfluidstructs.2024.104087","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104087","url":null,"abstract":"<div><p>We consider the response of a flexibly-mounted cylinder placed in flow and free to oscillate on a curved path about a pivot point. The curved path could be concave (i.e., bent toward the incoming flow) or convex (i.e., bent away from the incoming flow). We consider different radii of curvature for both the concave and the convex paths and show that oscillations are observed for radii of curvature larger than one cylinder diameter. In general, we show that the oscillations are of larger amplitudes in the convex orientation, reaching angles of oscillations of up to 38° and normalized (with respect to the cylinder's diameter) amplitudes of oscillations in the transverse and inline directions of up to 1.1 and 0.35, respectively. The oscillations on the concave path are of smaller amplitudes, but last up to higher values of reduced velocities than those in the convex orientation. The shedding and oscillation frequencies increase with increasing reduced velocity for the concave orientation reaching values of around 1.8 times the system's natural frequency in water at the end of the lock-in range, while for the convex orientation, the frequencies stay close to the natural frequency and only jump from values slightly lower than the natural frequency to values slightly higher than the natural frequency when the oscillation amplitude drops from an upper branch to a lower branch in the VIV amplitude response. Two single vortices are observed in the wake when oscillation amplitudes are relatively low, and two pairs of vortices of different sizes are observed in the wake when amplitudes are relatively larger. When two pairs of vortices are observed, the cylinder carries two bound vortices with it during its transverse oscillations and sheds them in the form of a pair of vortices of different sizes at the end of each half cycle. In the cases with the largest amplitudes of oscillations, besides the vortices that are shed synchronized with the oscillation frequency, several smaller-size vortices are shed in the wake as the cylinder traverses its crossflow path. We relate the reason for observing larger amplitudes of oscillations on the convex path to the relative orientation of the fluctuating forces that are exerted on the cylinder due to the shedding of vortices in its wake with respect to its oscillation path.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully Eulerian models for the numerical simulation of capsules with an elastic bulk nucleus 对带有弹性体核的胶囊进行数值模拟的全欧拉模型
IF 3.6 2区 工程技术 Q1 Engineering Pub Date : 2024-03-26 DOI: 10.1016/j.jfluidstructs.2024.104109
Florian Desmons , Thomas Milcent , Anne-Virginie Salsac , Mirco Ciallella

In this paper, we present a computational framework based on fully Eulerian models for fluid–structure interaction for the numerical simulation of biological capsules. The flexibility of such models, given by the Eulerian treatment of the interface and deformations, allows us to easily deal with the large deformations experienced by the capsule. The modeling of the membrane is based on a full membrane elasticity Eulerian model that is capable of capturing both area and shear variations thanks to the so-called backward characteristics. In the validation section several test cases are presented with the goal of comparing our results to others present in the literature. In this part, the comparisons are done with different well-known configurations (capsule in shear flow and square-section channel), and by deepening the effect of the elastic constitutive law and capillary number on the membrane dynamics. Finally, to show the potential of this framework we introduce a new test case that describes the relaxation of a capsule in an opening channel. In order to increase the challenges of this test we study the influence of an internal nucleus, modeled as a hyperelastic solid, on the membrane evolution. Several numerical simulations of a 3D relaxation phenomenon are presented to provide characteristic shapes and curves related to the capsule deformations, while also modifying size and stiffness parameter of the nucleus.

在本文中,我们提出了一种基于流固耦合全欧拉模型的计算框架,用于对生物胶囊进行数值模拟。通过对界面和变形的欧拉处理,这种模型的灵活性使我们能够轻松处理胶囊所经历的大变形。膜的建模基于全膜弹性欧拉模型,由于所谓的后向特性,该模型能够捕捉面积和剪切力的变化。验证部分介绍了几个测试案例,目的是将我们的结果与文献中的其他结果进行比较。在这一部分中,比较采用了不同的已知配置(剪切流中的胶囊和方形截面通道),并深化了弹性构成法和毛细管数对膜动力学的影响。最后,为了展示这一框架的潜力,我们引入了一个新的测试案例,描述了开口通道中胶囊的松弛情况。为了增加该测试的挑战性,我们研究了内部核对膜演变的影响,内部核被模拟为超弹性固体。我们对三维弛豫现象进行了多次数值模拟,以提供与胶囊变形有关的特征形状和曲线,同时还修改了核的尺寸和刚度参数。
{"title":"Fully Eulerian models for the numerical simulation of capsules with an elastic bulk nucleus","authors":"Florian Desmons ,&nbsp;Thomas Milcent ,&nbsp;Anne-Virginie Salsac ,&nbsp;Mirco Ciallella","doi":"10.1016/j.jfluidstructs.2024.104109","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104109","url":null,"abstract":"<div><p>In this paper, we present a computational framework based on fully Eulerian models for fluid–structure interaction for the numerical simulation of biological capsules. The flexibility of such models, given by the Eulerian treatment of the interface and deformations, allows us to easily deal with the large deformations experienced by the capsule. The modeling of the membrane is based on a full membrane elasticity Eulerian model that is capable of capturing both area and shear variations thanks to the so-called backward characteristics. In the validation section several test cases are presented with the goal of comparing our results to others present in the literature. In this part, the comparisons are done with different well-known configurations (capsule in shear flow and square-section channel), and by deepening the effect of the elastic constitutive law and capillary number on the membrane dynamics. Finally, to show the potential of this framework we introduce a new test case that describes the relaxation of a capsule in an opening channel. In order to increase the challenges of this test we study the influence of an internal nucleus, modeled as a hyperelastic solid, on the membrane evolution. Several numerical simulations of a 3D relaxation phenomenon are presented to provide characteristic shapes and curves related to the capsule deformations, while also modifying size and stiffness parameter of the nucleus.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140296885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fluids and Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1