Due to the complexity of fluid–structure interactions (FSI), the majority of studies in the literature dealing with the sloshing problem are restricted to rigid tanks. This paper is devoted to a numerical investigation of the liquid sloshing behavior in a flexible tank subjected to external loading. A numerical methodology is proposed, taking into account the FSI problem by coupling two open-source codes: OpenFOAM for the fluid and FEniCS for the solid, using the preCICE library, a free library for fluid–structure interaction. The Arbitrary Lagrangian–Eulerian formulation is used for the two-phase flow system to solve the Navier–Stokes equations in the fluid domain using the finite volume method. Simultaneously, the linear-elastic equation of the structure is solved using the finite element method. An implicit coupling scheme is considered at the fluid–structure interface. The numerical methodology is validated by the results given in literature for harmonic excitation at different frequencies. Subsequently, an analysis of complex external loading, such as Gabor wavelets and earthquake ground motion, is conducted to highlight the significant impact of the wall flexibility on sloshing, as well as the influence of hydrodynamic forces on the structure’s deformation. The proposed coupling methodology is robust and effective, it can be applied to all types of liquids and materials. A dataset of one of the studied cases is given as a supplement to the paper (Kha et al., 2024).
{"title":"Numerical investigation of liquid sloshing in 2D flexible tanks subjected to complex external loading","authors":"Kim Q.N. Kha , Mustapha Benaouicha , Sylvain Guillou , Abdelghani Seghir","doi":"10.1016/j.jfluidstructs.2024.104077","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104077","url":null,"abstract":"<div><p><span>Due to the complexity of fluid–structure interactions (FSI), the majority of studies in the literature dealing with the sloshing problem are restricted to rigid tanks. This paper is devoted to a numerical investigation of the liquid sloshing behavior in a flexible tank subjected to external loading. A numerical methodology is proposed, taking into account the FSI problem by coupling two open-source codes: OpenFOAM for the fluid and FEniCS for the solid, using the preCICE library, a free library for fluid–structure interaction. The Arbitrary Lagrangian–Eulerian formulation is used for the two-phase flow system to solve the Navier–Stokes equations in the fluid domain using the finite volume method. Simultaneously, the linear-elastic equation of the structure is solved using the finite element method. An implicit coupling scheme is considered at the fluid–structure interface. The numerical methodology is validated by the results given in literature for </span>harmonic excitation<span><span><span> at different frequencies. Subsequently, an analysis of complex external loading, such as Gabor wavelets and </span>earthquake ground motion, is conducted to highlight the significant impact of the wall flexibility on sloshing, as well as the influence of </span>hydrodynamic forces on the structure’s deformation. The proposed coupling methodology is robust and effective, it can be applied to all types of liquids and materials. A dataset of one of the studied cases is given as a supplement to the paper (Kha et al., 2024).</span></p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139549630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-20DOI: 10.1016/j.jfluidstructs.2023.104049
Yong Yang , Aaron English , Benedict D. Rogers , Peter K. Stansby , Dimitris Stagonas , Eugeny Buldakov , Samuel Draycott
Highly nonlinear near-breaking and spilling breaking wave groups are common extreme events in the ocean. Accurate force prediction on offshore and ocean structures in these extreme wave conditions based on numerical approaches remains a problem of great practical importance. Most previous numerical studies have concentrated on non-breaking wave forces on rigid structures. Taking advantage of the smoothed particle hydrodynamics (SPH) method, this paper addresses this problem and presents the development and validation of a numerical model for highly nonlinear hydrodynamics of near-breaking and spilling breaking waves interacting with a vertical cylindrical structure using the SPH-based DualSPHysics solver. Open boundaries are applied for the generation of extreme wave conditions. The free-surface elevation and flow kinematics pre-computed within another numerical model are used as boundary conditions at the inlet of a smaller 3-D SPH-based numerical model to replicate the near-breaking and spilling breaking waves generated in a physical wave flume. A damping zone used for wave absorption is arranged at the end of the domain before the outlet. Numerical results are validated against experimental measurements of surface elevation and horizontal force on the vertical cylinder, demonstrating an agreement. After validation using a fixed model for the cylinder, a dynamic model is used to study the response to extreme wave events. Numerical results have also shown that the spilling breaking wave forces are significantly larger compared with near-breaking wave forces, and the secondary load cycle phenomenon becomes larger with dynamic response included in the present study.
{"title":"Numerical modelling of a vertical cylinder with dynamic response in steep and breaking waves using smoothed particle hydrodynamics","authors":"Yong Yang , Aaron English , Benedict D. Rogers , Peter K. Stansby , Dimitris Stagonas , Eugeny Buldakov , Samuel Draycott","doi":"10.1016/j.jfluidstructs.2023.104049","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2023.104049","url":null,"abstract":"<div><p>Highly nonlinear near-breaking and spilling breaking wave groups are common extreme events in the ocean. Accurate force prediction on offshore and ocean structures in these extreme wave conditions based on numerical approaches remains a problem of great practical importance. Most previous numerical studies have concentrated on non-breaking wave forces on rigid structures. Taking advantage of the smoothed particle hydrodynamics (SPH) method, this paper addresses this problem and presents the development and validation of a numerical model for highly nonlinear hydrodynamics of near-breaking and spilling breaking waves interacting with a vertical cylindrical structure using the SPH-based DualSPHysics solver. Open boundaries are applied for the generation of extreme wave conditions. The free-surface elevation and flow kinematics pre-computed within another numerical model are used as boundary conditions at the inlet of a smaller 3-D SPH-based numerical model to replicate the near-breaking and spilling breaking waves generated in a physical wave flume. A damping zone used for wave absorption is arranged at the end of the domain before the outlet. Numerical results are validated against experimental measurements of surface elevation and horizontal force on the vertical cylinder, demonstrating an agreement. After validation using a fixed model for the cylinder, a dynamic model is used to study the response to extreme wave events. Numerical results have also shown that the spilling breaking wave forces are significantly larger compared with near-breaking wave forces, and the secondary load cycle phenomenon becomes larger with dynamic response included in the present study.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974623002177/pdfft?md5=4874304b73171f3bb182b5e87a9f296a&pid=1-s2.0-S0889974623002177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1016/j.jfluidstructs.2024.104074
Alexandre Villié , Mauricio C. Vanzulli , Jorge M. Pérez Zerpa , Jérôme Vétel , Stéphane Etienne , Frédérick P. Gosselin
Branched structures are present in a diverse set of problems, from modeling branch pipe connections to simulating tree dynamics. Soft corals like the Bipinnate sea plume, have a branched geometry and are soft enough to bend under the waves. Due to their circular cross section, a vortex street forms in the coral’s wake inducing vibrations of its branches. Despite extensive studies on VIV in straight geometries, the three-dimensional (3D) dynamics of flexible branched structures remains uninvestigated. In this numerical and experimental study, we develop a novel formulation for the accurate computation of in-line and cross-flow VIV of frame structures undergoing large deformation. The finite element approach is used to model arbitrarily complex geometries of branched frame structures. Our formulation allows to model complex geometries with forks or sharp angles. The consistent 3D corotational formulation for frame elements computes the internal, inertial and hydrodynamic forces. A wake-oscillator approach models the near wake dynamics with fluctuating fluid forces on the structure in the in-line and cross-flow directions. The drag and lift coefficients follow distributed Van der Pol oscillators. Moreover, we implement the numerical resolution procedure in the open-source library ONSAS. The present formulation and numerical resolution procedure is validated by solving three examples, including comparisons with an analytical solution, a wake-oscillator, and experimental data from the literature. We also conduct experiments of a flexible and elastic cylinder clamped inside a water tunnel under a constant uniform flow. Amplitudes and power spectral density of the tip transverse displacements are compared with the model prediction. Finally, the proposed formulation is applied on a cylinder with two branches. The simulations demonstrate a multi-frequency response with higher amplitudes of displacements when additional branches are incorporated onto the cylinder, emphasizing the significance of considering VIV in nature and engineering applications for such geometries.
{"title":"Modeling vortex-induced vibrations of branched structures by coupling a 3D-corotational frame finite element formulation with wake-oscillators","authors":"Alexandre Villié , Mauricio C. Vanzulli , Jorge M. Pérez Zerpa , Jérôme Vétel , Stéphane Etienne , Frédérick P. Gosselin","doi":"10.1016/j.jfluidstructs.2024.104074","DOIUrl":"10.1016/j.jfluidstructs.2024.104074","url":null,"abstract":"<div><p><span>Branched structures are present in a diverse set of problems, from modeling branch pipe connections to simulating tree dynamics. Soft corals like the Bipinnate sea plume, have a branched geometry and are soft enough to bend under the waves. Due to their circular cross section<span><span>, a vortex street forms in the coral’s wake inducing vibrations of its branches. Despite extensive studies on </span>VIV in straight geometries, the three-dimensional (3D) dynamics of flexible branched structures remains uninvestigated. In this numerical and experimental study, we develop a novel formulation for the accurate computation of in-line and cross-flow VIV of frame structures undergoing </span></span>large deformation<span><span>. The finite element approach is used to model arbitrarily complex geometries of branched frame structures. Our formulation allows to model complex geometries with forks or sharp angles. The consistent 3D corotational formulation for frame elements computes the internal, inertial and hydrodynamic forces. A wake-oscillator approach models the near wake dynamics with fluctuating fluid forces on the structure in the in-line and cross-flow directions. The drag and lift coefficients follow distributed </span>Van der Pol oscillators<span>. Moreover, we implement the numerical resolution procedure in the open-source library ONSAS. The present formulation and numerical resolution procedure is validated by solving three examples, including comparisons with an analytical solution, a wake-oscillator, and experimental data from the literature. We also conduct experiments of a flexible and elastic cylinder<span> clamped inside a water tunnel<span><span> under a constant uniform flow. Amplitudes and power spectral density of the tip transverse displacements are compared with the model prediction. Finally, the proposed formulation is applied on a cylinder with two branches. The simulations demonstrate a multi-frequency response with higher amplitudes of displacements when additional branches are incorporated onto the cylinder, emphasizing the significance of considering VIV in nature and </span>engineering applications for such geometries.</span></span></span></span></p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139496743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1016/j.jfluidstructs.2023.104065
Alaa-Eddine Ennazii , A. Beaudoin , A. Fatu , P. Doumalin , J. Bouyer , P. Jolly , Y. Henry , E. Laçaj , B. Couderc
eX-Poro-HydroDynamic (XPHD) lubrication presents a different scientific approach to dealing with tribological problems. It is an innovative inter- and multidisciplinary research topic which offers a promising sliding solution for various applications, such as thrust bearings, various guide components and in terms of load capacity and damping. XPHD lubrication is a lubrication mechanism of biomimetic inspiration which features an additional parameter to the system “the porous media”. It consists of self-sustained fluid films generated within compressible porous layers imbibed with liquids in replacement for using the fluid film only as in the classic lubrication system. Soft and porous structures imbibed with liquids generate a high load support under compression. The load support is generated through the resistance to flow inside the porous material. During compression, the resistance to flow and load support increases the greater the compression rate. The main objective of this work is then to understand the behavior of the fluid flow inside the porous structures when subjected to axial compression stress. In the scientific literature, the works studying the flow in compressible materials are essentially experimental because of their very complex geometrical shape, the CFD (Computational Fluid Dynamics) simulations offer an economical solution to study the performance of this new concept of lubrication. To create the geometry, the morphological structures of foam samples are reconstructed at different levels of compression rates from 3D (Three Dimensional) X-ray microtomography. This is achieved by using the commercial software Avizo that allows to process 3D images and create 3D meshes suitable for numerical simulations. The numerical simulations of flows will be performed with the solver IcoFoam of the toolbox OpenFOAM for incompressible laminar flows, making it possible to study the pressure drop in these porous structures. The performed simulations were made with a polyurethane foam of 96% porosity using five compression rates for creating the different structures. The analysis of the numerical simulations shows the impact of the polyurethane foam compression on different key parameters such as the decrease in the permeability as function of the compression rate, the anisotropy of the flow within the compressible structure and the actual increase in the tortuosity generated by the compression of the foam and the variation of the porosity.
{"title":"Pore-scale numerical analysis of fluid flows in compressed polyurethane foams with a workflow of open-cell foams modeling","authors":"Alaa-Eddine Ennazii , A. Beaudoin , A. Fatu , P. Doumalin , J. Bouyer , P. Jolly , Y. Henry , E. Laçaj , B. Couderc","doi":"10.1016/j.jfluidstructs.2023.104065","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2023.104065","url":null,"abstract":"<div><p><span>eX-Poro-HydroDynamic (XPHD) lubrication presents a different scientific approach to dealing with tribological problems. It is an innovative inter- and multidisciplinary research topic which offers a promising sliding solution for various applications, such as </span>thrust bearings<span><span><span>, various guide components and in terms of load capacity and damping. XPHD lubrication is a lubrication mechanism of biomimetic inspiration which features an additional parameter to the system “the porous media”. It consists of self-sustained fluid films generated within compressible </span>porous layers<span> imbibed with liquids in replacement for using the fluid film only as in the classic lubrication system<span>. Soft and porous structures<span> imbibed with liquids generate a high load support under compression. The load support is generated through the resistance to flow inside the porous material. During compression, the resistance to flow and load support increases the greater the compression rate. The main objective of this work is then to understand the behavior of the fluid flow inside the porous structures when subjected to axial compression<span> stress. In the scientific literature, the works studying the flow in compressible materials are essentially experimental because of their very complex geometrical shape, the CFD (Computational Fluid Dynamics) simulations offer an economical solution to study the performance of this new concept of lubrication. To create the geometry, the morphological structures of foam samples are reconstructed at different levels of compression rates from 3D (Three Dimensional) X-ray microtomography. This is achieved by using the commercial software Avizo that allows to process 3D images and create 3D meshes suitable for numerical simulations. The numerical simulations of flows will be performed with the solver IcoFoam of the toolbox OpenFOAM for incompressible </span></span></span></span></span>laminar flows<span>, making it possible to study the pressure drop in these porous structures. The performed simulations were made with a polyurethane foam of 96% porosity using five compression rates for creating the different structures. The analysis of the numerical simulations shows the impact of the polyurethane foam compression on different key parameters such as the decrease in the permeability as function of the compression rate, the anisotropy of the flow within the compressible structure and the actual increase in the tortuosity generated by the compression of the foam and the variation of the porosity.</span></span></p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1016/j.jfluidstructs.2024.104076
A.J. Archer , H.A. Wolgamot , J. Orszaghova , S. Dai , P.H. Taylor
Design standards for drag loading on offshore jacket structures do not presently account for the reduction in forces arising from flow blockage effects in the event of combined waves and current. This force reduction is believed to originate in reduced mean flow velocity through the jacket, but this has never been directly measured. To address this, we conducted physical-model tests which measured the flow adjacent to a jacket structure in combined waves and in-line currents using acoustic Doppler velocimeters. Results confirm a dramatic reduction in the mean flow velocity up-wave and down-wave of a model jacket in waves and current, far greater than the flow reduction observed in current alone. These results unambiguously confirm the significant additional blockage (and hence reduction in structural loads) not captured in current offshore design standards.
{"title":"ADV measurements of blockage flow effects near a model jacket in waves and current","authors":"A.J. Archer , H.A. Wolgamot , J. Orszaghova , S. Dai , P.H. Taylor","doi":"10.1016/j.jfluidstructs.2024.104076","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104076","url":null,"abstract":"<div><p>Design standards for drag loading on offshore jacket structures do not presently account for the reduction in forces arising from flow blockage effects in the event of combined waves and current. This force reduction is believed to originate in reduced mean flow velocity through the jacket, but this has never been directly measured. To address this, we conducted physical-model tests which measured the flow adjacent to a jacket structure in combined waves and in-line currents using acoustic Doppler velocimeters. Results confirm a dramatic reduction in the mean flow velocity up-wave and down-wave of a model jacket in waves and current, far greater than the flow reduction observed in current alone. These results unambiguously confirm the significant additional blockage (and hence reduction in structural loads) not captured in current offshore design standards.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974624000112/pdfft?md5=ecd585045ca48e105c95c7e506559435&pid=1-s2.0-S0889974624000112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-16DOI: 10.1016/j.jfluidstructs.2023.104057
D.J. Pickles , G. Hunt , A.J. Elliott , A. Cammarano , G. Falcone
Multiphase flow inside of pipes occurs in a wide variety of engineering applications, including offshore deep-water oil and gas transport. Vibrations induced by the flow inside of the pipe can lead to its mechanical failure and thus lead to uncontrolled release of the fluids being transported. In subsea applications, flexible J-risers are often employed to deliver the produced fluids from the seafloor to the host platform. Despite the potentially significant liabilities associated with subsea hydrocarbon leaks, there has been a distinct lack of investigations into how flow induced vibrations in large scale, pressurised flexible J-risers can lead to system integrity loss. Previous investigations have generally focused on the response of rigid pipes or small scale, unpressurised flexible risers. This study presents an investigation into the response of a 10 m long, 50.8 mm internal diameter composite riser containing a tensile armour helical structure to a variety of two-phase, water-nitrogen flows at 10.8 barg of pressure and ambient temperature. High speed cameras were used to investigate the structure of the flow at either end of the flexible riser, whilst synchronised surface mounted strain gauges and accelerometers were used to investigate the response of the pipe. Time-averaged data were acquired to assess the general response of the pipe, whilst a statistical analysis of the fluctuations highlighted the movement of the pipe. One-dimensional and computational fluid dynamics simulations were used to define the experimental test matrix and provide further insight into the structure of the flow inside the J-riser. Single-phase gas flow was found not to cause the J-riser to move significantly, whilst multiphase flow led to significant in-plane movement of the pipe. Increasing the liquid flow rate (or decreasing the gas flow rate) increased the mean strain experienced by the pipe. At low gas flow rates, the pipe oscillated smoothly about its mean position, but at higher gas flow rates a violent intermittent whipping motion was observed. The latter produced large in-plane and out-of-plane movement of the pipe which could pose a threat to system integrity. This work offers new insights into fluid-structure interactions in large scale engineering applications, contributing to improved system design and control.
{"title":"An experimental investigation into the effect two-phase flow induced vibrations have on a J-shaped flexible pipe","authors":"D.J. Pickles , G. Hunt , A.J. Elliott , A. Cammarano , G. Falcone","doi":"10.1016/j.jfluidstructs.2023.104057","DOIUrl":"10.1016/j.jfluidstructs.2023.104057","url":null,"abstract":"<div><p>Multiphase flow inside of pipes occurs in a wide variety of engineering applications, including offshore deep-water oil and gas transport. Vibrations induced by the flow inside of the pipe can lead to its mechanical failure and thus lead to uncontrolled release of the fluids being transported. In subsea applications, flexible J-risers are often employed to deliver the produced fluids from the seafloor to the host platform. Despite the potentially significant liabilities associated with subsea hydrocarbon leaks, there has been a distinct lack of investigations into how flow induced vibrations in large scale, pressurised flexible J-risers can lead to system integrity loss. Previous investigations have generally focused on the response of rigid pipes or small scale, unpressurised flexible risers. This study presents an investigation into the response of a 10 m long, 50.8 mm internal diameter composite riser containing a tensile armour helical structure to a variety of two-phase, water-nitrogen flows at 10.8 barg of pressure and ambient temperature. High speed cameras were used to investigate the structure of the flow at either end of the flexible riser, whilst synchronised surface mounted strain gauges and accelerometers were used to investigate the response of the pipe. Time-averaged data were acquired to assess the general response of the pipe, whilst a statistical analysis of the fluctuations highlighted the movement of the pipe. One-dimensional and computational fluid dynamics simulations were used to define the experimental test matrix and provide further insight into the structure of the flow inside the J-riser. Single-phase gas flow was found not to cause the J-riser to move significantly, whilst multiphase flow led to significant in-plane movement of the pipe. Increasing the liquid flow rate (or decreasing the gas flow rate) increased the mean strain experienced by the pipe. At low gas flow rates, the pipe oscillated smoothly about its mean position, but at higher gas flow rates a violent intermittent whipping motion was observed. The latter produced large in-plane and out-of-plane movement of the pipe which could pose a threat to system integrity. This work offers new insights into fluid-structure interactions in large scale engineering applications, contributing to improved system design and control.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974623002256/pdfft?md5=394efbef05aee0bea9b6a718ecaf07e9&pid=1-s2.0-S0889974623002256-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-16DOI: 10.1016/j.jfluidstructs.2023.104058
Weizhen Sun , Yuping Wang , Guoyi He , Qi Wang , Feng Yu , Wei Song
The effects of unsteady motions of flapping flat plates and corrugated structures in different parameters are studied using fluid–solid coupling and overlapping grid methods. Based on the dragonfly’s right forewing and right hindwing model, these actions include sweeping and pitching, take-off acceleration, and tandem wings cruising in the reverse phase at . The results show that when the advance ratio , the “inflow deflection” improves the aerodynamic force in two degrees of freedom compared to simple flapping. When considering only the impact of flexibility, the aerodynamic forces of flexible flat plates and corrugated structures are better than those of the rigid wing models. Considering the effect of corrugated structures, the lift of flexible corrugated wings diminishes, but more thrust is generated. From the perspective of vortex street, vortex rings materialize only in the downstroke stage, while the attachment effect of leading-edge vortices is noticeable in several models. In the same phase flapping, the two wings combine to form a giant wing, which generates significant forward flight momentum. In out-of-phase flapping mode, the series wings generate two lifts and two or three thrust peaks to attain the required forward flight speed while sustaining a high lift.
{"title":"Effects of kinematic parameters and corrugated structure on the aerodynamic performance of flexible dragonfly wings","authors":"Weizhen Sun , Yuping Wang , Guoyi He , Qi Wang , Feng Yu , Wei Song","doi":"10.1016/j.jfluidstructs.2023.104058","DOIUrl":"10.1016/j.jfluidstructs.2023.104058","url":null,"abstract":"<div><p>The effects of unsteady motions of flapping flat plates and corrugated structures in different parameters are studied using fluid–solid coupling and overlapping grid methods. Based on the dragonfly’s right forewing and right hindwing model, these actions include sweeping and pitching, take-off acceleration, and tandem wings cruising in the reverse phase at <span><math><mrow><mn>180</mn><mo>°</mo></mrow></math></span>. The results show that when the advance ratio <span><math><mrow><mi>J</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>36</mn></mrow></math></span><span>, the “inflow deflection” improves the aerodynamic force<span><span> in two degrees of freedom compared to simple flapping. When considering only the impact of flexibility, the aerodynamic forces of flexible flat plates and corrugated structures are better than those of the </span>rigid wing<span><span> models. Considering the effect of corrugated structures, the lift of flexible corrugated wings diminishes, but more thrust is generated. From the perspective of vortex street, vortex rings materialize only in the </span>downstroke stage, while the attachment effect of leading-edge vortices is noticeable in several models. In the same phase flapping, the two wings combine to form a giant wing, which generates significant forward flight momentum. In out-of-phase flapping mode, the series wings generate two lifts and two or three thrust peaks to attain the required forward flight speed while sustaining a high lift.</span></span></span></p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-16DOI: 10.1016/j.jfluidstructs.2023.104063
Ahmed M. Naguib, Mark A. Feero , Alireza Safaripour , Manoochehr M. Koochesfahani
Forced transverse oscillations are used to investigate the quasi-steady behavior of a rectangular cylinder with a side ratio of 2 at Reynolds numbers less than 10,000 (based on cylinder thickness). To this end, phase-averaged measurements of the transverse force acting on the oscillating cylinder at different phases of motion are compared to the mean force acting on the static cylinder at different angles of attack. The force data are complemented with boundary-layer-resolved measurements of the streamwise velocity using single-component molecular tagging velocimetry. The experiments are conducted for two Reynolds numbers of 2,500 and 7,500, two oscillation amplitudes of 20 % and 50 % of the cylinder thickness, and reduced velocities in the approximate range of 2–30 times the reduced velocity corresponding to the vortex shedding frequency. The results show that the reduced velocity threshold required to attain quasi-steady behavior is strongly dependent on Reynolds number in the investigated range. The effect is such that the lower the Reynolds number, the higher the threshold. This behavior is linked to viscous effects which render the shear layer too slow to adapt to the cylinder motion with decreasing Reynolds number. A most pronounced effect is observed at the lowest reduced velocity and Reynolds number, where the shear layer reattaches on the side of the cylinder during the cycle at an angle of attack less than half that exhibited for the static cylinder. Overall, the study shows that in addition to the time scale associated with vortex shedding, when the Reynolds number is sufficiently low, a viscous time scale characteristic of the shear layer dynamic response should be included in determining the validity of quasi-steadiness.
{"title":"On quasi-steadiness of transverse galloping of rectangular cylinders at Reynolds numbers below 10,000","authors":"Ahmed M. Naguib, Mark A. Feero , Alireza Safaripour , Manoochehr M. Koochesfahani","doi":"10.1016/j.jfluidstructs.2023.104063","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2023.104063","url":null,"abstract":"<div><p><span><span>Forced transverse oscillations are used to investigate the quasi-steady behavior of a rectangular cylinder with a side ratio of 2 at Reynolds numbers less than 10,000 (based on cylinder thickness). To this end, phase-averaged measurements of the transverse force acting on the </span>oscillating cylinder<span><span> at different phases of motion are compared to the mean force acting on the static cylinder at different </span>angles of attack<span>. The force data are complemented with boundary-layer-resolved measurements of the streamwise<span><span> velocity using single-component molecular tagging velocimetry. The experiments are conducted for two Reynolds numbers of 2,500 and 7,500, two oscillation amplitudes of 20 % and 50 % of the cylinder thickness, and reduced velocities<span> in the approximate range of 2–30 times the reduced velocity corresponding to the vortex shedding frequency. The results show that the reduced velocity threshold required to attain quasi-steady behavior is strongly dependent on Reynolds number in the investigated range. The effect is such that the lower the Reynolds number, the higher the threshold. This behavior is linked to viscous effects which render the shear layer too slow to adapt to the </span></span>cylinder motion with decreasing Reynolds number. A most </span></span></span></span>pronounced effect is observed at the lowest reduced velocity and Reynolds number, where the shear layer reattaches on the side of the cylinder during the cycle at an angle of attack less than half that exhibited for the static cylinder. Overall, the study shows that in addition to the time scale associated with vortex shedding, when the Reynolds number is sufficiently low, a viscous time scale characteristic of the shear layer dynamic response should be included in determining the validity of quasi-steadiness.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139480025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics informed neural networks (PINNs) have been explored extensively in the recent past for solving various forward and inverse problems for facilitating querying applications in fluid mechanics. However, investigations on PINNs for unsteady flows past moving bodies, such as flapping wings are scarce. Earlier studies mostly relied on transferring the problems to a body-attached frame of reference, which could be restrictive towards handling multiple moving bodies/deforming structures. The present study attempts to couple the benefits of PINNs with a fixed Eulerian frame of reference, and proposes an immersed boundary aware framework for developing surrogate models for unsteady flows past moving bodies. Specifically, high-resolution velocity reconstruction and pressure recovery as a hidden variable are the main goals. The framework has been developed by using downsampled velocity data obtained from prior simulations to train the PINNs model. The efficacy of the velocity reconstruction has been tested against high resolution IBM simulation data, whereas the efficacy of the pressure recovery has been tested against high resolution simulation data from an arbitrary Lagrange Eulerian (ALE) solver. Under the present framework, two PINN variants, (i) a moving-boundary-enabled standard Navier–Stokes based PINN (MB-PINN), and, (ii) a moving-boundary-enabled IBM based PINN (MB-IBM-PINN) have been formulated.
Relaxation of physics constraints in PINNs models has been identified to be a useful strategy in improving the predictions. A fluid-solid partitioning of the physics losses in MB-IBM-PINN has been allowed, in order to investigate the effects of solid body points while training. This strategy enables MB-IBM-PINN to match with the performance of MB-PINN under certain loss-weighting conditions. Interestingly, MB-PINN is found to be superior to MB-IBM-PINN when a priori knowledge of the solid body position and velocity is available. To improve the data efficiency of MB-PINN, a physics based data sampling technique has also been investigated. It is observed that a suitable combination of physics constraint relaxation and physics based sampling can achieve a model performance comparable to the case of using all the data points, under a fixed training budget.
近年来,人们对物理信息神经网络(PINNs)进行了广泛的探索,以解决各种正向和反向问题,促进流体力学的查询应用。然而,针对经过运动体(如拍打翅膀)的非稳态流的 PINNs 研究却很少。早期的研究大多依赖于将问题转移到与机体相连的参照系中,这对于处理多个运动体/变形结构有一定限制。本研究试图将 PINNs 的优点与固定欧拉参照系相结合,并提出了一个沉浸边界感知框架,用于开发经过运动体的非稳态流的代用模型。具体来说,高分辨率速度重建和作为隐藏变量的压力恢复是主要目标。该框架是通过使用从先前模拟中获得的下采样速度数据来训练 PINNs 模型而开发的。根据高分辨率 IBM 仿真数据对速度重建的功效进行了测试,而根据任意拉格朗日欧拉(ALE)求解器的高分辨率仿真数据对压力恢复的功效进行了测试。在本框架下,制定了两种 PINN 变体:(i) 基于移动边界的标准纳维-斯托克斯 PINN(MB-PINN)和 (ii) 基于移动边界的 IBM PINN(MB-IBM-PINN)。在 MB-IBM-PINN 中允许对物理损失进行流体-固体分区,以便在训练时研究固体体点的影响。这种策略使 MB-IBM-PINN 在某些损失加权条件下与 MB-PINN 的性能相匹配。有趣的是,在获得实体位置和速度的先验知识后,发现 MB-PINN 优于 MB-IBM-PINN。为了提高 MB-PINN 的数据效率,还研究了一种基于物理的数据采样技术。结果表明,在固定的训练预算下,物理约束松弛和基于物理的采样的适当结合可以实现与使用所有数据点情况下相当的模型性能。
{"title":"Physics-informed neural networks modelling for systems with moving immersed boundaries: Application to an unsteady flow past a plunging foil","authors":"Rahul Sundar , Dipanjan Majumdar , Didier Lucor , Sunetra Sarkar","doi":"10.1016/j.jfluidstructs.2024.104066","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2024.104066","url":null,"abstract":"<div><p><span>Physics informed neural networks (PINNs) have been explored extensively in the recent past for solving various forward and inverse problems for facilitating querying applications in fluid mechanics. However, investigations on PINNs for unsteady flows<span> past moving bodies, such as flapping wings are scarce. Earlier studies mostly relied on transferring the problems to a body-attached frame of reference, which could be restrictive towards handling multiple moving bodies/deforming structures. The present study attempts to couple the benefits of PINNs with a fixed Eulerian frame<span> of reference, and proposes an immersed boundary aware framework for developing surrogate models for unsteady flows past moving bodies. Specifically, high-resolution velocity reconstruction and pressure recovery as a hidden variable are the main goals. The framework has been developed by using downsampled velocity data obtained from prior simulations to train the PINNs model. The efficacy of the velocity reconstruction has been tested against high resolution </span></span></span>IBM<span> simulation data, whereas the efficacy of the pressure recovery has been tested against high resolution simulation data from an arbitrary Lagrange Eulerian (ALE) solver. Under the present framework, two PINN variants, (i) a moving-boundary-enabled standard Navier–Stokes based PINN (MB-PINN), and, (ii) a moving-boundary-enabled IBM based PINN (MB-IBM-PINN) have been formulated.</span></p><p>Relaxation of physics constraints in PINNs models has been identified to be a useful strategy in improving the predictions. A fluid-solid partitioning of the physics losses in MB-IBM-PINN has been allowed, in order to investigate the effects of solid body points while training. This strategy enables MB-IBM-PINN to match with the performance of MB-PINN under certain loss-weighting conditions. Interestingly, MB-PINN is found to be superior to MB-IBM-PINN when <em>a priori</em> knowledge of the solid body position and velocity is available. To improve the data efficiency of MB-PINN, a physics based data sampling technique has also been investigated. It is observed that a suitable combination of physics constraint relaxation and physics based sampling can achieve a model performance comparable to the case of using all the data points, under a fixed training budget.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1016/j.jfluidstructs.2023.104064
Akshay S. Desai , Souradip Chattopadhyay , Amar K. Gaonkar
This study aims to analyze the dynamics of a thin Newtonian liquid film on a uniformly heated compliant substrate. We consider the violation of time-reversal symmetry in the liquid, resulting in an additional non-zero term in the liquid stress tensor. Using the long-wave expansion technique, we derive a set of coupled equations governing the film thickness and substrate deformation, accounting for inertia, surface tension, thermocapillarity, and odd viscosity. Through linear stability analysis and spatiotemporal simulations, we observe that the compliant substrate enhances instability, while wall heating exacerbates it. However, the introduction of odd viscosity effectively suppresses these instabilities, as confirmed by the agreement between simulation and theoretical predictions.
{"title":"Falling liquid films on a uniformly heated compliant substrate with broken time-reversal symmetry","authors":"Akshay S. Desai , Souradip Chattopadhyay , Amar K. Gaonkar","doi":"10.1016/j.jfluidstructs.2023.104064","DOIUrl":"https://doi.org/10.1016/j.jfluidstructs.2023.104064","url":null,"abstract":"<div><p>This study aims to analyze the dynamics of a thin Newtonian liquid<span><span> film on a uniformly heated compliant substrate. We consider the violation of time-reversal symmetry in the liquid, resulting in an additional non-zero term in the liquid </span>stress tensor<span>. Using the long-wave expansion technique, we derive a set of coupled equations governing the film thickness and substrate deformation, accounting for inertia, surface tension, thermocapillarity, and odd viscosity. Through linear stability analysis and spatiotemporal simulations, we observe that the compliant substrate enhances instability, while wall heating exacerbates it. However, the introduction of odd viscosity effectively suppresses these instabilities, as confirmed by the agreement between simulation and theoretical predictions.</span></span></p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}