首页 > 最新文献

Journal of Computing and Information Science in Engineering最新文献

英文 中文
What's in a Name? Evaluating Assembly-Part Semantic Knowledge in Language Models through User-Provided Names in CAD Files 名字里有什么?通过CAD文件中用户提供的名称评估语言模型中的装配件语义知识
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-25 DOI: 10.48550/arXiv.2304.14275
Peter Meltzer, J. Lambourne, Daniele Grandi
Semantic knowledge of part-part and part-whole relationships in assemblies is useful for a variety of tasks from searching design repositories to the construction of engineering knowledge bases. In this work we propose that the natural language names designers use in Computer Aided Design (CAD) software are a valuable source of such knowledge, and that Large Language Models (LLMs) contain useful domain-specific information for working with this data as well as other CAD and engineering-related tasks. In particular we extract and clean a large corpus of natural language part, feature and document names and use this to quantitatively demonstrate that a pre-trained language model can outperform numerous benchmarks on three self-supervised tasks, without ever having seen this data before. Moreover, we show that fine-tuning on the text data corpus further boosts the performance on all tasks, thus demonstrating the value of the text data which until now has been largely ignored. We also identify key limitations to using LLMs with text data alone, and our findings provide a strong motivation for further work into multi-modal text-geometry models. To aid and encourage further work in this area we make all our data and code publicly available.
装配体中部分-部分和部分-整体关系的语义知识对于从搜索设计库到构建工程知识库的各种任务都是有用的。在这项工作中,我们提出设计人员在计算机辅助设计(CAD)软件中使用的自然语言名称是这些知识的宝贵来源,并且大型语言模型(llm)包含有用的领域特定信息,用于处理这些数据以及其他CAD和工程相关任务。特别是,我们提取并清理了大量自然语言部分、特征和文档名称的语料库,并使用它来定量地证明,预训练的语言模型可以在三个自监督任务上优于许多基准测试,而之前从未见过这些数据。此外,我们表明对文本数据语料库的微调进一步提高了所有任务的性能,从而展示了迄今为止在很大程度上被忽视的文本数据的价值。我们还确定了仅使用文本数据的llm的关键限制,我们的发现为进一步研究多模态文本几何模型提供了强大的动力。为了帮助和鼓励这一领域的进一步工作,我们公开了所有的数据和代码。
{"title":"What's in a Name? Evaluating Assembly-Part Semantic Knowledge in Language Models through User-Provided Names in CAD Files","authors":"Peter Meltzer, J. Lambourne, Daniele Grandi","doi":"10.48550/arXiv.2304.14275","DOIUrl":"https://doi.org/10.48550/arXiv.2304.14275","url":null,"abstract":"\u0000 Semantic knowledge of part-part and part-whole relationships in assemblies is useful for a variety of tasks from searching design repositories to the construction of engineering knowledge bases. In this work we propose that the natural language names designers use in Computer Aided Design (CAD) software are a valuable source of such knowledge, and that Large Language Models (LLMs) contain useful domain-specific information for working with this data as well as other CAD and engineering-related tasks. In particular we extract and clean a large corpus of natural language part, feature and document names and use this to quantitatively demonstrate that a pre-trained language model can outperform numerous benchmarks on three self-supervised tasks, without ever having seen this data before. Moreover, we show that fine-tuning on the text data corpus further boosts the performance on all tasks, thus demonstrating the value of the text data which until now has been largely ignored. We also identify key limitations to using LLMs with text data alone, and our findings provide a strong motivation for further work into multi-modal text-geometry models. To aid and encourage further work in this area we make all our data and code publicly available.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85029106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying Latent Dirichlet Allocation and Support Vector Regression to the Aesthetic Design of Medical Nursing Beds 潜在狄利克雷分配与支持向量回归在医疗护理床美学设计中的应用
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-19 DOI: 10.1115/1.4062350
Bingkun Yuan, Junnan Ye, Xinying Wu, Chaoxiang Yang
With the development of social productivity and the improvement in material living standards, emotional value has become the core driver of the enhancement of product market competitiveness. A medical nursing bed, one of the most typical types of medical devices, is designed with little attention to the emotional experience of the users. Therefore, this paper proposes an innovative perceptual design approach under the Kansei engineering (KE) framework for resource-limited and information-poor companies. It guides the aesthetic design of medical nursing beds by constructing a mapping relationship between users' perceptual needs and the design characteristics of medical nursing beds to maximize users' emotions. First, latent Dirichlet allocation (LDA) is used to extract usable Kansei semantics from big data, compensating for the subjectivity of traditional KE data input. Then, the design characteristics obtained after deconstructing a medical nursing bed are simplified with rough set theory (RST). Finally, a mapping model between users' perceptual needs and the core design characteristics of nursing beds is established through support vector regression (SVR), and the optimal design solution is obtained by weighting calculation. The optimal combination of design characteristics for medical nursing beds is finally obtained. The results suggest that the design method proposed in this paper can help designers accurately grasp users' emotional perceptions in terms of aesthetic design and scientifically guide and complete the design of new medical nursing beds, verifying the feasibility and scientificity of the proposed method in terms of aesthetic design.
随着社会生产力的发展和物质生活水平的提高,情感价值已经成为提升产品市场竞争力的核心驱动力。医疗护理床作为最典型的医疗器械之一,其设计很少关注用户的情感体验。因此,本文提出了一种基于感性工学(KE)框架的创新感知设计方法,用于资源有限和信息贫乏的公司。通过构建用户感知需求与医疗护理床设计特征之间的映射关系,引导医疗护理床的美学设计,实现用户情感最大化。首先,利用潜在狄利克雷分配(latent Dirichlet allocation, LDA)从大数据中提取可用的感性语义,弥补传统KE数据输入的主观性;然后,利用粗糙集理论(RST)对解构后得到的医疗护理床设计特征进行简化。最后,通过支持向量回归(SVR)建立用户感知需求与护理床核心设计特征之间的映射模型,并通过加权计算得到最优设计解。最终得到了医疗护理床设计特点的最佳组合。结果表明,本文提出的设计方法可以帮助设计师在美学设计方面准确把握用户的情感感知,科学地指导和完成新型医疗护理床的设计,验证了本文提出的方法在美学设计方面的可行性和科学性。
{"title":"Applying Latent Dirichlet Allocation and Support Vector Regression to the Aesthetic Design of Medical Nursing Beds","authors":"Bingkun Yuan, Junnan Ye, Xinying Wu, Chaoxiang Yang","doi":"10.1115/1.4062350","DOIUrl":"https://doi.org/10.1115/1.4062350","url":null,"abstract":"\u0000 With the development of social productivity and the improvement in material living standards, emotional value has become the core driver of the enhancement of product market competitiveness. A medical nursing bed, one of the most typical types of medical devices, is designed with little attention to the emotional experience of the users. Therefore, this paper proposes an innovative perceptual design approach under the Kansei engineering (KE) framework for resource-limited and information-poor companies. It guides the aesthetic design of medical nursing beds by constructing a mapping relationship between users' perceptual needs and the design characteristics of medical nursing beds to maximize users' emotions. First, latent Dirichlet allocation (LDA) is used to extract usable Kansei semantics from big data, compensating for the subjectivity of traditional KE data input. Then, the design characteristics obtained after deconstructing a medical nursing bed are simplified with rough set theory (RST). Finally, a mapping model between users' perceptual needs and the core design characteristics of nursing beds is established through support vector regression (SVR), and the optimal design solution is obtained by weighting calculation. The optimal combination of design characteristics for medical nursing beds is finally obtained. The results suggest that the design method proposed in this paper can help designers accurately grasp users' emotional perceptions in terms of aesthetic design and scientifically guide and complete the design of new medical nursing beds, verifying the feasibility and scientificity of the proposed method in terms of aesthetic design.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89095496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Comparison of Graph-Theoretic Approaches for Resilient System of Systems Design 系统设计中弹性系统的图论方法比较
3区 工程技术 Q1 Computer Science Pub Date : 2023-04-19 DOI: 10.1115/1.4062231
Abheek Chatterjee, Cade Helbig, Richard Malak, Astrid Layton
Abstract System of systems (SoS) are networked integration of constituent systems that together achieve new capabilities not possible through the operation of any single system. SoS can be found across all aspects of modern life such as power grids, supply chains, and disaster monitoring and tracking services. Their resilience (being able to withstand and recover from disruptions) is a critical attribute whose evaluation is nontrivial and requires detailed disruption models. Engineers rely on heuristics (such as redundancy and localized capacity) for achieving resilience. However, excessive reliance on these qualitative guidelines can result in unacceptable operation costs, erosion of profits, over-consumption of natural resources, or unacceptable levels of waste or emissions. Graph-theoretic approaches provide a potential solution to this challenge as they can evaluate architectural characteristics without needing detailed performance simulations, supporting their use in early stage SoS architecture selection. However, no consensus exists as to which graph-theoretic metrics are most valuable for SoS design and how they should be included in the design process. In this work, multiple graph-theoretic approaches are analyzed and compared, on a common platform, for their use as design tools for resilient SoS. The metrics central point dominance, modularity, specialized predator ratio, generalization, vulnerability, and degree of system order are found to be viable options for the development of early stage decision-support tools for resilient SoS design.
系统的系统(so)是组成系统的网络集成,它们共同实现任何单一系统无法实现的新功能。SoS可以在现代生活的各个方面找到,例如电网,供应链以及灾难监测和跟踪服务。它们的弹性(能够承受中断并从中断中恢复)是一个关键属性,其评估是非平凡的,需要详细的中断模型。工程师依靠启发式(例如冗余和局部容量)来实现弹性。然而,过度依赖这些质量准则可能导致不可接受的业务成本、利润的侵蚀、自然资源的过度消耗或不可接受的废物或排放水平。图论方法为这一挑战提供了一个潜在的解决方案,因为它们可以在不需要详细的性能模拟的情况下评估体系结构特征,支持它们在早期SoS体系结构选择中的使用。然而,对于哪种图论指标对SoS设计最有价值,以及如何将它们包含在设计过程中,目前还没有达成共识。在这项工作中,多种图论方法在一个共同的平台上进行了分析和比较,以用作弹性SoS的设计工具。研究发现,中心点优势度、模块化、专业化捕食者比例、通用性、脆弱性和系统有序度等指标是弹性SoS设计早期决策支持工具开发的可行选择。
{"title":"A Comparison of Graph-Theoretic Approaches for Resilient System of Systems Design","authors":"Abheek Chatterjee, Cade Helbig, Richard Malak, Astrid Layton","doi":"10.1115/1.4062231","DOIUrl":"https://doi.org/10.1115/1.4062231","url":null,"abstract":"Abstract System of systems (SoS) are networked integration of constituent systems that together achieve new capabilities not possible through the operation of any single system. SoS can be found across all aspects of modern life such as power grids, supply chains, and disaster monitoring and tracking services. Their resilience (being able to withstand and recover from disruptions) is a critical attribute whose evaluation is nontrivial and requires detailed disruption models. Engineers rely on heuristics (such as redundancy and localized capacity) for achieving resilience. However, excessive reliance on these qualitative guidelines can result in unacceptable operation costs, erosion of profits, over-consumption of natural resources, or unacceptable levels of waste or emissions. Graph-theoretic approaches provide a potential solution to this challenge as they can evaluate architectural characteristics without needing detailed performance simulations, supporting their use in early stage SoS architecture selection. However, no consensus exists as to which graph-theoretic metrics are most valuable for SoS design and how they should be included in the design process. In this work, multiple graph-theoretic approaches are analyzed and compared, on a common platform, for their use as design tools for resilient SoS. The metrics central point dominance, modularity, specialized predator ratio, generalization, vulnerability, and degree of system order are found to be viable options for the development of early stage decision-support tools for resilient SoS design.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Adaptive Job Shop Scheduling Mechanism for Disturbances by Running Reinforcement Learning in Digital Twin Environment 数字孪生环境下基于强化学习的自适应作业车间调度机制
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-19 DOI: 10.1115/1.4062349
Weiguang Fang, Hao Zhang, Weiwei Qian, Yuhao Guo, Shaoxun Li, Zeqing Liu, Chenning Liu, Dongpao Hong
Practical manufacturing system operates in highly dynamic and uncertain environments, where stochastic disturbances disrupt the execution of production schedule as originally developed. Previous dynamic scheduling mainly focuses on the constructing predictive models for machine unavailability, with little studies on the adaptive and self-learning capacities for changing scheduling environments. Therefore, a digital twin (DT) driven scheduling with dynamic feedback mechanism is proposed, in which a reinforcement learning (RL) based adaptive scheduling is developed in DT to make corrective decisions for the disturbances during production runs. In the proposed architecture, the happening disturbance is firstly detected in the virtual layer by the status continuously updating in accordance with the physical workshop. Furthermore, the reschedule triggering condition is determined in real-time through quantization of the progress deviations resulting from disturbances. For the scheduling approach, the multi-agents RL (MARL) based adaptive scheduling method is built to perceive the dynamic production status from virtual environment and implement corrective strategies to hedge against the occurred disturbances. Finally, the proposed method is verified by a practical job shop case and the corresponding DT system is developed to show the effectiveness and advantages after a practical implementation.
实际的制造系统是在高度动态和不确定的环境中运行的,在这种环境中,随机干扰破坏了最初制定的生产计划的执行。以往的动态调度研究主要集中在机器不可用性预测模型的构建上,对调度环境变化的自适应和自学习能力研究较少。为此,提出了一种基于动态反馈机制的数字孪生驱动调度方法,在数字孪生中建立了一种基于强化学习(RL)的自适应调度方法,对生产运行过程中的干扰进行纠偏决策。在该体系结构中,首先在虚拟层检测发生的扰动,并根据物理车间的状态不断更新。此外,通过对扰动引起的进度偏差进行量化,实时确定了重调度触发条件。在调度方法上,建立了基于多智能体RL (MARL)的自适应调度方法,从虚拟环境中感知动态生产状态,并实施纠错策略以对冲发生的干扰。最后,通过一个实际作业车间案例对所提出的方法进行了验证,并开发了相应的DT系统,在实际实施后显示了该方法的有效性和优越性。
{"title":"An Adaptive Job Shop Scheduling Mechanism for Disturbances by Running Reinforcement Learning in Digital Twin Environment","authors":"Weiguang Fang, Hao Zhang, Weiwei Qian, Yuhao Guo, Shaoxun Li, Zeqing Liu, Chenning Liu, Dongpao Hong","doi":"10.1115/1.4062349","DOIUrl":"https://doi.org/10.1115/1.4062349","url":null,"abstract":"\u0000 Practical manufacturing system operates in highly dynamic and uncertain environments, where stochastic disturbances disrupt the execution of production schedule as originally developed. Previous dynamic scheduling mainly focuses on the constructing predictive models for machine unavailability, with little studies on the adaptive and self-learning capacities for changing scheduling environments. Therefore, a digital twin (DT) driven scheduling with dynamic feedback mechanism is proposed, in which a reinforcement learning (RL) based adaptive scheduling is developed in DT to make corrective decisions for the disturbances during production runs. In the proposed architecture, the happening disturbance is firstly detected in the virtual layer by the status continuously updating in accordance with the physical workshop. Furthermore, the reschedule triggering condition is determined in real-time through quantization of the progress deviations resulting from disturbances. For the scheduling approach, the multi-agents RL (MARL) based adaptive scheduling method is built to perceive the dynamic production status from virtual environment and implement corrective strategies to hedge against the occurred disturbances. Finally, the proposed method is verified by a practical job shop case and the corresponding DT system is developed to show the effectiveness and advantages after a practical implementation.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83762917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Framing Supradisciplinary Research for Intellectualized Cyber-Physical Systems: An Unfinished Story 构建智能化信息物理系统的超学科研究:一个未完成的故事
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-17 DOI: 10.1115/1.4062327
I. Horváth
Conceptualization and design of intellectualized, socialized, and personalized cyber-physical systems (CPSs) needs exploration and synthesis of novel knowledge. In turn, it raises the need for a combined use of interdisciplinary, multidisciplinary, and transdisciplinary research. Supradisciplinary research emerged as a new doctrine of combining these research approaches from epistemological, methodological, and procedural perspective. However, no methodology can be found in the literature that could facilitate the practical execution of supradisciplinary research programs and projects. This position paper proposes a conceptual framework that can be used as a blueprint of operationalization of such undertakings. The framework rests on six generic pillars: (i) problematics, (ii) infrastructure, (iii) methodics, (iv) stakeholders, (v) operations, and (vi) knowledge.The framework arranges the concerns in a procedural logic - as they should be considered by the research managers and cyber-physical system developers. In its current form, the framework does not cover the specific societal and personal issues of a successful organization of the inquiry at individual researchers, research teams, and research community levels. Notwithstanding, the framework can facilitate management of research organization tasks, joint formation of shared research infrastructure, setting up concrete research programs, projects, and processes, academic partnering and public stakeholder involvement, process flow management and capacity/competence allocation, and knowledge synthesis, assessment, and consolidation in a holistic manner. Follow up community-based research may focus on the practical application and testing of the framework in concrete cases – a task that an individual researcher cannot address.
智能化、社会化、个性化的信息物理系统(cps)的概念化和设计需要对新知识的探索和综合。反过来,它提出了综合运用跨学科、多学科和跨学科研究的需要。超学科研究作为一种从认识论、方法论和程序角度结合这些研究方法的新学说而出现。然而,在文献中没有找到可以促进实际执行超学科研究计划和项目的方法。本立场文件提出了一个概念性框架,可用作这类行动的运作蓝图。该框架基于六个一般支柱:(i)问题,(ii)基础设施,(iii)方法,(iv)利益相关者,(v)运营和(vi)知识。该框架在程序逻辑中安排关注点,因为它们应该由研究经理和网络物理系统开发人员考虑。在目前的形式下,该框架并没有涵盖在单个研究人员、研究团队和研究社区层面成功组织调查的具体社会和个人问题。尽管如此,该框架可以促进研究组织任务的管理,共同形成共享的研究基础设施,建立具体的研究计划、项目和过程,学术合作和公众利益相关者的参与,过程流管理和能力/能力分配,以及知识的综合、评估和整合。以社区为基础的后续研究可能侧重于在具体案例中对框架的实际应用和测试——这是单个研究人员无法解决的任务。
{"title":"Framing Supradisciplinary Research for Intellectualized Cyber-Physical Systems: An Unfinished Story","authors":"I. Horváth","doi":"10.1115/1.4062327","DOIUrl":"https://doi.org/10.1115/1.4062327","url":null,"abstract":"\u0000 Conceptualization and design of intellectualized, socialized, and personalized cyber-physical systems (CPSs) needs exploration and synthesis of novel knowledge. In turn, it raises the need for a combined use of interdisciplinary, multidisciplinary, and transdisciplinary research. Supradisciplinary research emerged as a new doctrine of combining these research approaches from epistemological, methodological, and procedural perspective. However, no methodology can be found in the literature that could facilitate the practical execution of supradisciplinary research programs and projects. This position paper proposes a conceptual framework that can be used as a blueprint of operationalization of such undertakings. The framework rests on six generic pillars: (i) problematics, (ii) infrastructure, (iii) methodics, (iv) stakeholders, (v) operations, and (vi) knowledge.The framework arranges the concerns in a procedural logic - as they should be considered by the research managers and cyber-physical system developers. In its current form, the framework does not cover the specific societal and personal issues of a successful organization of the inquiry at individual researchers, research teams, and research community levels. Notwithstanding, the framework can facilitate management of research organization tasks, joint formation of shared research infrastructure, setting up concrete research programs, projects, and processes, academic partnering and public stakeholder involvement, process flow management and capacity/competence allocation, and knowledge synthesis, assessment, and consolidation in a holistic manner. Follow up community-based research may focus on the practical application and testing of the framework in concrete cases – a task that an individual researcher cannot address.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79508965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Making Robotic Swarms Trustful: A Blockchain-Based Perspective 使机器人群可信:基于区块链的视角
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-17 DOI: 10.1115/1.4062326
A. Thakur, Swagatika Sahoo, Arnab Mukherjee, Raju Halder
Lately the importance of swarm robotics has been recognized in a wide range of areas, including logistics, surveillance, disaster management, agriculture, and other industrial applications. The swarm intelligence introduced by the existing paradigm of Artificial Intelligence and Machine Learning often ignores the aspect of providing security and reliability guarantees. Consider a futuristic scenario wherein self-driving cars will transport people, self-driving trucks will carry cargo between warehouses, and a combination of legged robots/drones will ship cargo from warehouses to doorsteps. In the case of such a heterogeneous swarm of robots, it is crucial to ensure a trustful and reliable operating platform for smooth coordination, collaborative decision-making via appropriate consensus, and seamless information sharing while ensuring data security. In this direction, blockchain has been proven to be an effective technology that maintains the transactions (records) in a trustful manner after being validated through consensus. This guarantees accountability, transparency, and trust concerning the storage, safeguarding, and sharing of information among the parties. In this paper, we provide a walkthrough demonstrating the feasibility of using blockchain technology to make the robotic swarm trustful systems in their adoption to critical applications at large-scale. We highlight the pros and cons of the use of cloud vis-a-vis blockchain in swarm robotics. Finally, we present various future research opportunities pertaining to the adoption of blockchain technology in swarm robotics applications.
最近,群体机器人的重要性在广泛的领域得到了认可,包括物流、监视、灾害管理、农业和其他工业应用。现有人工智能和机器学习范式引入的群体智能往往忽略了提供安全可靠保障的方面。设想一个未来的场景,自动驾驶汽车将运送人员,自动驾驶卡车将在仓库之间运送货物,有腿的机器人/无人机将把货物从仓库运送到家门口。在这种异构机器人群的情况下,在确保数据安全的同时,确保一个可信可靠的操作平台,实现顺畅的协调,通过适当的共识进行协同决策,实现无缝的信息共享。在这个方向上,区块链已经被证明是一种有效的技术,在经过共识验证后,以信任的方式维护交易(记录)。这保证了各方在存储、保护和共享信息方面的问责制、透明度和信任。在本文中,我们提供了一个演练,展示了使用区块链技术使机器人群可信系统大规模应用于关键应用的可行性。我们强调了在群体机器人中使用云相对于区块链的利弊。最后,我们提出了在群体机器人应用中采用区块链技术的各种未来研究机会。
{"title":"Making Robotic Swarms Trustful: A Blockchain-Based Perspective","authors":"A. Thakur, Swagatika Sahoo, Arnab Mukherjee, Raju Halder","doi":"10.1115/1.4062326","DOIUrl":"https://doi.org/10.1115/1.4062326","url":null,"abstract":"\u0000 Lately the importance of swarm robotics has been recognized in a wide range of areas, including logistics, surveillance, disaster management, agriculture, and other industrial applications. The swarm intelligence introduced by the existing paradigm of Artificial Intelligence and Machine Learning often ignores the aspect of providing security and reliability guarantees. Consider a futuristic scenario wherein self-driving cars will transport people, self-driving trucks will carry cargo between warehouses, and a combination of legged robots/drones will ship cargo from warehouses to doorsteps. In the case of such a heterogeneous swarm of robots, it is crucial to ensure a trustful and reliable operating platform for smooth coordination, collaborative decision-making via appropriate consensus, and seamless information sharing while ensuring data security. In this direction, blockchain has been proven to be an effective technology that maintains the transactions (records) in a trustful manner after being validated through consensus. This guarantees accountability, transparency, and trust concerning the storage, safeguarding, and sharing of information among the parties. In this paper, we provide a walkthrough demonstrating the feasibility of using blockchain technology to make the robotic swarm trustful systems in their adoption to critical applications at large-scale. We highlight the pros and cons of the use of cloud vis-a-vis blockchain in swarm robotics. Finally, we present various future research opportunities pertaining to the adoption of blockchain technology in swarm robotics applications.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80189293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Towards Data and Model Interoperability for Industrial Extended Reality in Manufacturing 面向制造业工业扩展现实的数据与模型互操作性研究
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-17 DOI: 10.1115/1.4062328
W. Bernstein, Andrew Bowman, R. Durscher, A. Gillman, S. Donegan
Extended reality (XR) technologies have realized significant value for design, manufacturing, and sustainment processes. However, Industrial XR, or XR implemented within industrial applications, suffers from scalability and flexibility challenges due to fundamental gaps with interoperability between data, models, and platforms. Though there has been a number of recent efforts to improve the interoperability of industrial XR technologies, progress has been hindered by an innate separation between the domain-specific models (e.g., manufacturing execution data, material specifications, and product manufacturing information) with XR (often-standard) processes (e.g., multi-scale spatial representations and data formats optimized for run-time presentation). In this paper, we elaborate on promising research directions and opportunities around which the manufacturing and visualization academic community can rally. To establish such research directions, we (1) conducted a meta-review on well-established state-of-the-art review articles that have already presented in-depth surveys on application areas for industrial XR, such as maintenance, assembly and inspection and (2) mapped those findings to publicly published priorities from across the US Department of Defense. We hope that our presented research agenda will spur interdisciplinary work across academic silos, i.e., manufacturing and visualization communities, and engages either community within work groups led by the other, e.g., within standards development organizations.
扩展现实(XR)技术已经实现了设计、制造和维护过程的重要价值。然而,由于数据、模型和平台之间的互操作性存在根本差距,工业XR或在工业应用程序中实现的XR在可伸缩性和灵活性方面面临挑战。尽管最近已经有许多努力来提高工业XR技术的互操作性,但领域特定模型(例如,制造执行数据、材料规范和产品制造信息)与XR(通常是标准)过程(例如,多尺度空间表示和为运行时表示优化的数据格式)之间的固有分离阻碍了进展。在本文中,我们详细阐述了制造和可视化学术界可以围绕的有前途的研究方向和机会。为了建立这样的研究方向,我们(1)对已经建立的最先进的综述文章进行了元综述,这些综述文章已经对工业XR的应用领域(如维护、装配和检查)进行了深入调查;(2)将这些发现与美国国防部公开发布的优先事项进行了对比。我们希望我们提出的研究议程能够促进跨学术竖井的跨学科工作,例如,制造和可视化社区,并在由另一个社区领导的工作组中参与其中,例如,在标准开发组织中。
{"title":"Towards Data and Model Interoperability for Industrial Extended Reality in Manufacturing","authors":"W. Bernstein, Andrew Bowman, R. Durscher, A. Gillman, S. Donegan","doi":"10.1115/1.4062328","DOIUrl":"https://doi.org/10.1115/1.4062328","url":null,"abstract":"\u0000 Extended reality (XR) technologies have realized significant value for design, manufacturing, and sustainment processes. However, Industrial XR, or XR implemented within industrial applications, suffers from scalability and flexibility challenges due to fundamental gaps with interoperability between data, models, and platforms. Though there has been a number of recent efforts to improve the interoperability of industrial XR technologies, progress has been hindered by an innate separation between the domain-specific models (e.g., manufacturing execution data, material specifications, and product manufacturing information) with XR (often-standard) processes (e.g., multi-scale spatial representations and data formats optimized for run-time presentation). In this paper, we elaborate on promising research directions and opportunities around which the manufacturing and visualization academic community can rally. To establish such research directions, we (1) conducted a meta-review on well-established state-of-the-art review articles that have already presented in-depth surveys on application areas for industrial XR, such as maintenance, assembly and inspection and (2) mapped those findings to publicly published priorities from across the US Department of Defense. We hope that our presented research agenda will spur interdisciplinary work across academic silos, i.e., manufacturing and visualization communities, and engages either community within work groups led by the other, e.g., within standards development organizations.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87669241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Challenges in Geometry Assurance of Megacasting in the Automotive Industry 汽车工业中大型铸件几何保证的挑战
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-04-05 DOI: 10.1115/1.4062269
Kristina Wärmefjord, Josefin Hansen, R. Söderberg
Megacasting is a new concept in the automotive industry. A large number of sheet metal parts will be replaced with one large aluminum casting, i.e. a megacasting. This helps to reduce weight, opens up for larger design flexibility, allows for a more circular production, and takes away a large number of assembly steps in the production process. However, there are also challenges related to the use of megacastings. This position paper outlines challenges associated with the geometrical quality of the final product. It covers robust design and tolerancing in early product development phases as well as inspection preparation during pre-production and digital twin set-up during full production to ensure the geometrical quality of a product containing a megacasting. Simulations of both part level and assembly level deviation and variation are discussed. The paper outlines a geometry assurance process for products containing megacastings in the automotive industry, and what research challenges that are the most important ones to address in this area. It is concluded that computer-aided tolerancing tools must be able to predict the dimensional effects from joining methods such as flow drill fasteners or self-pierced riveting, to use casting simulation as input, and to handle combinations of solid and surface meshes. Furthermore, there might be a need for adjustments to the joining process based on digital twins to achieve proper quality at a reasonable price. Experiences in using megacastings in the body-in-white are lacking and a fast learning curve is required.
超级铸造是汽车行业的一个新概念。大量的钣金零件将被一个大型铝铸件取代,即一个巨型铸件。这有助于减轻重量,开辟了更大的设计灵活性,允许更循环的生产,并在生产过程中省去了大量的组装步骤。然而,超大型铸件的使用也存在挑战。这份立场文件概述了与最终产品几何质量相关的挑战。它涵盖了早期产品开发阶段的稳健设计和公差,以及生产前的检查准备和全面生产期间的数字孪生设置,以确保包含巨型铸件的产品的几何质量。讨论了零件水平和装配水平偏差和变化的仿真。本文概述了汽车工业中包含大型铸件的产品的几何保证过程,以及该领域最重要的研究挑战。结论是,计算机辅助公差工具必须能够预测连接方法(如流钻紧固件或自穿孔铆接)的尺寸效应,以铸造模拟为输入,并处理实体和表面网格的组合。此外,可能需要调整基于数字孪生的连接过程,以合理的价格获得适当的质量。在白色车身中使用大型铸件的经验不足,需要快速学习曲线。
{"title":"Challenges in Geometry Assurance of Megacasting in the Automotive Industry","authors":"Kristina Wärmefjord, Josefin Hansen, R. Söderberg","doi":"10.1115/1.4062269","DOIUrl":"https://doi.org/10.1115/1.4062269","url":null,"abstract":"\u0000 Megacasting is a new concept in the automotive industry. A large number of sheet metal parts will be replaced with one large aluminum casting, i.e. a megacasting. This helps to reduce weight, opens up for larger design flexibility, allows for a more circular production, and takes away a large number of assembly steps in the production process. However, there are also challenges related to the use of megacastings. This position paper outlines challenges associated with the geometrical quality of the final product. It covers robust design and tolerancing in early product development phases as well as inspection preparation during pre-production and digital twin set-up during full production to ensure the geometrical quality of a product containing a megacasting. Simulations of both part level and assembly level deviation and variation are discussed. The paper outlines a geometry assurance process for products containing megacastings in the automotive industry, and what research challenges that are the most important ones to address in this area. It is concluded that computer-aided tolerancing tools must be able to predict the dimensional effects from joining methods such as flow drill fasteners or self-pierced riveting, to use casting simulation as input, and to handle combinations of solid and surface meshes. Furthermore, there might be a need for adjustments to the joining process based on digital twins to achieve proper quality at a reasonable price. Experiences in using megacastings in the body-in-white are lacking and a fast learning curve is required.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73068823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Manufacturing Process Classification Based on Distance Rotationally Invariant Convolutions 基于距离旋转不变卷积的制造过程分类
3区 工程技术 Q1 Computer Science Pub Date : 2023-03-29 DOI: 10.1115/1.4056806
Zhichao Wang, David Rosen
Abstract Given a part design, the task of manufacturing process classification identifies an appropriate manufacturing process to fabricate it. Our previous research proposed a large dataset for manufacturing process classification and achieved accurate classification results based on a combination of a convolutional neural network (CNN) and the heat kernel signature for triangle meshes. In this paper, we constructed a classification method based on rotation invariant shape descriptors and a neural network, and it achieved better accuracy than all previous methods. This method uses a point cloud part representation, in contrast to the triangle mesh representation used in our previous work. The first step extracted rotation invariant features consisting of a set of distances between points in the point cloud. Then, the extracted shape descriptors were fed into a CNN for the classification of manufacturing processes. In addition, we provide two visualization methods for interpreting the intermediate layers of the neural network. Last, the performance of the method was tested on some ambiguous examples and their performances were consistent with expectations. In this paper, we have considered only shape information, while non-shape information like materials and tolerances were ignored. Additionally, only parts that require one manufacturing process were considered in this research. Our work demonstrates that part shape attributes alone are adequate for discriminating between different manufacturing processes considered.
给定零件设计,制造工艺分类的任务是确定合适的制造工艺来制造该零件。我们之前的研究提出了一个用于制造过程分类的大型数据集,并将卷积神经网络(CNN)与三角网格的热核特征相结合,获得了准确的分类结果。本文构造了一种基于旋转不变形状描述子和神经网络的分类方法,该方法的分类精度优于以往的分类方法。该方法使用点云部件表示,与我们之前工作中使用的三角网格表示形成对比。第一步提取由点云中点间距离组成的旋转不变特征。然后,将提取的形状描述符输入到CNN中进行制造过程分类。此外,我们提供了两种可视化方法来解释神经网络的中间层。最后,对一些模糊实例进行了性能测试,结果表明该方法的性能与预期一致。在本文中,我们只考虑了形状信息,而忽略了非形状信息,如材料和公差。此外,本研究只考虑了需要一个制造过程的零件。我们的工作表明,零件形状属性本身就足以区分所考虑的不同制造工艺。
{"title":"Manufacturing Process Classification Based on Distance Rotationally Invariant Convolutions","authors":"Zhichao Wang, David Rosen","doi":"10.1115/1.4056806","DOIUrl":"https://doi.org/10.1115/1.4056806","url":null,"abstract":"Abstract Given a part design, the task of manufacturing process classification identifies an appropriate manufacturing process to fabricate it. Our previous research proposed a large dataset for manufacturing process classification and achieved accurate classification results based on a combination of a convolutional neural network (CNN) and the heat kernel signature for triangle meshes. In this paper, we constructed a classification method based on rotation invariant shape descriptors and a neural network, and it achieved better accuracy than all previous methods. This method uses a point cloud part representation, in contrast to the triangle mesh representation used in our previous work. The first step extracted rotation invariant features consisting of a set of distances between points in the point cloud. Then, the extracted shape descriptors were fed into a CNN for the classification of manufacturing processes. In addition, we provide two visualization methods for interpreting the intermediate layers of the neural network. Last, the performance of the method was tested on some ambiguous examples and their performances were consistent with expectations. In this paper, we have considered only shape information, while non-shape information like materials and tolerances were ignored. Additionally, only parts that require one manufacturing process were considered in this research. Our work demonstrates that part shape attributes alone are adequate for discriminating between different manufacturing processes considered.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135469256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Data Augmentation Method for Data-Driven Component Segmentation of Engineering Drawings 一种数据驱动的工程图纸构件分割的数据增强方法
IF 3.1 3区 工程技术 Q1 Computer Science Pub Date : 2023-03-29 DOI: 10.1115/1.4062233
Wentai Zhang, Joe Joseph, Quan Chen, Can Koz, Liuyue Xie, Amit Regmi, Soji Yamakawa, T. Furuhata, Kenji Shimada, L. Kara
We present a new data generation method to facilitate an automatic machine interpretation of 2D engineering part drawings. While such drawings are a common medium for clients to encode design and manufacturing requirements, a lack of computer support to automatically interpret these drawings necessitates part manufacturers to resort to laborious manual approaches for interpretation which, in turn, severely limits processing capacity. Although recent advances in trainable computer vision methods may enable automatic machine interpretation, it remains challenging to apply such methods to engineering drawings due to a lack of labeled training data. As one step toward this challenge, we propose a constrained data synthesis method to generate an arbitrarily large set of synthetic training drawings using only a handful of labeled examples. Our method is based on the randomization of the dimension sets subject to two major constraints to ensure the validity of the synthetic drawings. The effectiveness of our method is demonstrated in the context of a binary component segmentation task with a proposed list of descriptors. An evaluation of several image segmentation methods trained on our synthetic dataset shows that our approach to new data generation can boost the segmentation accuracy and the generalizability of the machine learning models to unseen drawings.
我们提出了一种新的数据生成方法,以促进二维工程零件图的自动机器解释。虽然这些图纸是客户编码设计和制造要求的常用媒介,但由于缺乏计算机支持来自动解释这些图纸,零件制造商必须采用费力的人工方法进行解释,这反过来又严重限制了处理能力。尽管可训练计算机视觉方法的最新进展可以实现自动机器解释,但由于缺乏标记训练数据,将这些方法应用于工程图纸仍然具有挑战性。作为应对这一挑战的一步,我们提出了一种约束数据合成方法,仅使用少量标记示例生成任意大的合成训练图集。我们的方法是基于尺寸集的随机化,受两个主要约束,以确保合成图的有效性。我们的方法的有效性在一个具有描述符列表的二元成分分割任务的背景下得到了证明。在我们的合成数据集上训练的几种图像分割方法的评估表明,我们的新数据生成方法可以提高分割精度和机器学习模型对未见过的图纸的通用性。
{"title":"A Data Augmentation Method for Data-Driven Component Segmentation of Engineering Drawings","authors":"Wentai Zhang, Joe Joseph, Quan Chen, Can Koz, Liuyue Xie, Amit Regmi, Soji Yamakawa, T. Furuhata, Kenji Shimada, L. Kara","doi":"10.1115/1.4062233","DOIUrl":"https://doi.org/10.1115/1.4062233","url":null,"abstract":"\u0000 We present a new data generation method to facilitate an automatic machine interpretation of 2D engineering part drawings. While such drawings are a common medium for clients to encode design and manufacturing requirements, a lack of computer support to automatically interpret these drawings necessitates part manufacturers to resort to laborious manual approaches for interpretation which, in turn, severely limits processing capacity. Although recent advances in trainable computer vision methods may enable automatic machine interpretation, it remains challenging to apply such methods to engineering drawings due to a lack of labeled training data. As one step toward this challenge, we propose a constrained data synthesis method to generate an arbitrarily large set of synthetic training drawings using only a handful of labeled examples. Our method is based on the randomization of the dimension sets subject to two major constraints to ensure the validity of the synthetic drawings. The effectiveness of our method is demonstrated in the context of a binary component segmentation task with a proposed list of descriptors. An evaluation of several image segmentation methods trained on our synthetic dataset shows that our approach to new data generation can boost the segmentation accuracy and the generalizability of the machine learning models to unseen drawings.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81558278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computing and Information Science in Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1