Pub Date : 2026-02-05DOI: 10.1016/j.jctb.2026.01.006
Kaizhe Chen, Jie Ma
{"title":"A problem of Erdős and Hajnal on paths with equal-degree endpoints","authors":"Kaizhe Chen, Jie Ma","doi":"10.1016/j.jctb.2026.01.006","DOIUrl":"https://doi.org/10.1016/j.jctb.2026.01.006","url":null,"abstract":"","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"95 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-02DOI: 10.1016/j.jctb.2026.01.005
Takahiro Matsushita
{"title":"Hom complexes of graphs whose codomains are square-free","authors":"Takahiro Matsushita","doi":"10.1016/j.jctb.2026.01.005","DOIUrl":"https://doi.org/10.1016/j.jctb.2026.01.005","url":null,"abstract":"","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"233 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-28DOI: 10.1016/j.jctb.2026.01.004
Noga Alon , Natalie Dodson , Carmen Jackson , Rose McCarty , Rajko Nenadov , Lani Southern
A graph G is universal for a (finite) family of graphs if every is a subgraph of G. For a given family , the goal is to determine the smallest number of edges an -universal graph can have. With the aim of unifying a number of recent results, we consider a family of graphs with bounded density. In particular, we construct a graph with edges which contains every n-vertex graph with density at most (), which is close to a lower bound obtained by counting lifts of a carefully chosen (small) graph. When restricting the maximum degree of such graphs to be constant, we obtain near-optimal universality. If we further assume , we get an asymptotically optimal construction.
{"title":"Universality for graphs with bounded density","authors":"Noga Alon , Natalie Dodson , Carmen Jackson , Rose McCarty , Rajko Nenadov , Lani Southern","doi":"10.1016/j.jctb.2026.01.004","DOIUrl":"10.1016/j.jctb.2026.01.004","url":null,"abstract":"<div><div>A graph <em>G</em> is <em>universal</em> for a (finite) family <span><math><mi>H</mi></math></span> of graphs if every <span><math><mi>H</mi><mo>∈</mo><mi>H</mi></math></span> is a subgraph of <em>G</em>. For a given family <span><math><mi>H</mi></math></span>, the goal is to determine the smallest number of edges an <span><math><mi>H</mi></math></span>-universal graph can have. With the aim of unifying a number of recent results, we consider a family of graphs with bounded density. In particular, we construct a graph with<span><span><span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mo>(</mo><mo>⌈</mo><mi>d</mi><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></mrow></math></span></span></span> edges which contains every <em>n</em>-vertex graph with density at most <span><math><mi>d</mi><mo>∈</mo><mi>Q</mi></math></span> (<span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>), which is close to a <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> lower bound obtained by counting lifts of a carefully chosen (small) graph. When restricting the maximum degree of such graphs to be constant, we obtain near-optimal universality. If we further assume <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>, we get an asymptotically optimal construction.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"178 ","pages":"Pages 245-266"},"PeriodicalIF":1.2,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-20DOI: 10.1016/j.jctb.2026.01.002
Neil Robertson, Paul Seymour
{"title":"Excluding disjoint Kuratowski graphs","authors":"Neil Robertson, Paul Seymour","doi":"10.1016/j.jctb.2026.01.002","DOIUrl":"https://doi.org/10.1016/j.jctb.2026.01.002","url":null,"abstract":"","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"12 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146014241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-19DOI: 10.1016/j.jctb.2026.01.001
Neil Robertson, Paul Seymour
{"title":"Excluding sums of Kuratowski graphs","authors":"Neil Robertson, Paul Seymour","doi":"10.1016/j.jctb.2026.01.001","DOIUrl":"https://doi.org/10.1016/j.jctb.2026.01.001","url":null,"abstract":"","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"9 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146000857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jctb.2026.01.003
Dániel Garamvölgyi
A graph matroid family is a family of matroids defined on the edge set of each finite graph G in a compatible and isomorphism-invariant way. We say that has the Whitney property if there is a constant c such that every c-connected graph G is uniquely determined by . Similarly, has the Lovász-Yemini property if there is a constant c such that for every c-connected graph G, has maximal rank among graphs on the same number of vertices.
We show that if is unbounded (that is, there is no absolute constant bounding the rank of for every G), then has the Whitney property if and only if it has the Lovász-Yemini property. We also give a complete characterization of these properties in the bounded case. As an application, we show that if some graph matroid families have the Whitney property, then so does their union. Finally, we show that every 1-extendable graph matroid family has the Lovász-Yemini (and thus the Whitney) property. These results unify and extend a number of earlier results about graph reconstruction from an underlying matroid.
{"title":"Rigidity and reconstruction in matroids of highly connected graphs","authors":"Dániel Garamvölgyi","doi":"10.1016/j.jctb.2026.01.003","DOIUrl":"10.1016/j.jctb.2026.01.003","url":null,"abstract":"<div><div>A <em>graph matroid family</em> <span><math><mi>M</mi></math></span> is a family of matroids <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> defined on the edge set of each finite graph <em>G</em> in a compatible and isomorphism-invariant way. We say that <span><math><mi>M</mi></math></span> has the <em>Whitney property</em> if there is a constant <em>c</em> such that every <em>c</em>-connected graph <em>G</em> is uniquely determined by <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Similarly, <span><math><mi>M</mi></math></span> has the <em>Lovász-Yemini property</em> if there is a constant <em>c</em> such that for every <em>c</em>-connected graph <em>G</em>, <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has maximal rank among graphs on the same number of vertices.</div><div>We show that if <span><math><mi>M</mi></math></span> is unbounded (that is, there is no absolute constant bounding the rank of <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for every <em>G</em>), then <span><math><mi>M</mi></math></span> has the Whitney property if and only if it has the Lovász-Yemini property. We also give a complete characterization of these properties in the bounded case. As an application, we show that if some graph matroid families have the Whitney property, then so does their union. Finally, we show that every 1-extendable graph matroid family has the Lovász-Yemini (and thus the Whitney) property. These results unify and extend a number of earlier results about graph reconstruction from an underlying matroid.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"178 ","pages":"Pages 211-244"},"PeriodicalIF":1.2,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.1016/j.jctb.2025.12.006
Guoli Ding , Rongchuan Tao , Mengxi Yang , Wenan Zang
Let be a graph with four distinguished vertices, two sources and two sinks , let be a capacity function, and let be the set of all simple paths in G from to or from to . A biflow (or 2-commodity flow) in G is an assignment such that for all , whose value is defined to be . A bicut in G is a subset K of E that contains at least one edge from each member of , whose capacity is . In 1977 Seymour characterized, in terms of forbidden structures, all graphs G for which the max-biflow (integral) min-bicut theorem holds true (that is, the maximum value of an integral biflow is equal to the minimum capacity of a bicut for every capacity function c); such a graph G is referred to as a Seymour graph. Nevertheless, his proof is not algorithmic in nature. In this paper we present a combinatorial polynomial-time algorithm for finding maximum integral biflows in Seymour graphs, which relies heavily on a structural description of such graphs.
{"title":"Integral biflow maximization","authors":"Guoli Ding , Rongchuan Tao , Mengxi Yang , Wenan Zang","doi":"10.1016/j.jctb.2025.12.006","DOIUrl":"10.1016/j.jctb.2025.12.006","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a graph with four distinguished vertices, two sources <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and two sinks <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, let <span><math><mi>c</mi><mo>:</mo><mspace></mspace><mi>E</mi><mo>→</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> be a capacity function, and let <span><math><mi>P</mi></math></span> be the set of all simple paths in <em>G</em> from <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or from <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A <em>biflow</em> (or 2<em>-commodity flow</em>) in <em>G</em> is an assignment <span><math><mi>f</mi><mo>:</mo><mspace></mspace><mi>P</mi><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> such that <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>Q</mi><mo>∈</mo><mi>P</mi></mrow></msub><mspace></mspace><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span> for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi></math></span>, whose <em>value</em> is defined to be <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>Q</mi><mo>∈</mo><mi>P</mi></mrow></msub><mspace></mspace><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span>. A <em>bicut</em> in <em>G</em> is a subset <em>K</em> of <em>E</em> that contains at least one edge from each member of <span><math><mi>P</mi></math></span>, whose <em>capacity</em> is <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>K</mi></mrow></msub><mspace></mspace><mi>c</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span>. In 1977 Seymour characterized, in terms of forbidden structures, all graphs <em>G</em> for which the max-biflow (integral) min-bicut theorem holds true (that is, the maximum value of an integral biflow is equal to the minimum capacity of a bicut for every capacity function <em>c</em>); such a graph <em>G</em> is referred to as a Seymour graph. Nevertheless, his proof is not algorithmic in nature. In this paper we present a combinatorial polynomial-time algorithm for finding maximum integral biflows in Seymour graphs, which relies heavily on a structural description of such graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"178 ","pages":"Pages 180-210"},"PeriodicalIF":1.2,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145925956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.1016/j.jctb.2025.12.005
Bojan Mohar
For a graph G, and a nonnegative integer g, let be the number of 2-cell embeddings of G in an orientable surface of genus g (counted up to the combinatorial homeomorphism equivalence). In 1989, Gross, Robbins, and Tucker [21] proposed a conjecture that the sequence is log-concave for every graph G. This conjecture is reminiscent to the Heron–Rota–Welsh Log Concavity Conjecture that was recently resolved in the affirmative by June Huh et al. [24], [1], except that it is closer to the notion of Δ-matroids than to the usual matroids. In this short paper, we disprove the Log Concavity Conjecture of Gross, Robbins, and Tucker by providing examples that show strong deviation from log-concavity at multiple terms of their genus sequences.
{"title":"Strong log-convexity of genus sequences","authors":"Bojan Mohar","doi":"10.1016/j.jctb.2025.12.005","DOIUrl":"10.1016/j.jctb.2025.12.005","url":null,"abstract":"<div><div>For a graph <em>G</em>, and a nonnegative integer <em>g</em>, let <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the number of 2-cell embeddings of <em>G</em> in an orientable surface of genus <em>g</em> (counted up to the combinatorial homeomorphism equivalence). In 1989, Gross, Robbins, and Tucker <span><span>[21]</span></span> proposed a conjecture that the sequence <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> is log-concave for every graph <em>G</em>. This conjecture is reminiscent to the Heron–Rota–Welsh Log Concavity Conjecture that was recently resolved in the affirmative by June Huh et al. <span><span>[24]</span></span>, <span><span>[1]</span></span>, except that it is closer to the notion of Δ-matroids than to the usual matroids. In this short paper, we disprove the Log Concavity Conjecture of Gross, Robbins, and Tucker by providing examples that show strong deviation from log-concavity at multiple terms of their genus sequences.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"178 ","pages":"Pages 164-179"},"PeriodicalIF":1.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-02DOI: 10.1016/j.jctb.2025.12.004
Yang Huang , Yuejian Peng , Jian Wang
<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, and <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we determine the maximum of <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mr
{"title":"The maximum sum of sizes of non-empty pairwise cross-intersecting families","authors":"Yang Huang , Yuejian Peng , Jian Wang","doi":"10.1016/j.jctb.2025.12.004","DOIUrl":"10.1016/j.jctb.2025.12.004","url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, and <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we determine the maximum of <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mr","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"178 ","pages":"Pages 145-163"},"PeriodicalIF":1.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145884405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1016/j.jctb.2025.12.003
Kristóf Bérczi , Márton Borbényi , László Lovász , László Márton Tóth
A recent line of research has concentrated on exploring the links between analytic and combinatorial theories of submodularity, uncovering several key connections between them. In this context, Lovász initiated the study of matroids from an analytic point of view and introduced the cycle matroid of a graphing [23]. Motivated by the limit theory of graphs, the authors introduced a form of right-convergence, called quotient-convergence, for a sequence of submodular setfunctions, leading to a notion of convergence for matroids through their rank functions [5].
In this paper, we study the connection between local-global convergence of graphs and quotient-convergence of their cycle matroids. We characterize the exposed points of associated convex sets, forming an analytic counterpart of matroid independence- and base-polytopes. Finally, we consider dual planar graphings and show that the cycle matroid of one is the cocycle matroid of its dual if and only if the underlying graphings are hyperfinite.
{"title":"Cycle matroids of graphings: From convergence to duality","authors":"Kristóf Bérczi , Márton Borbényi , László Lovász , László Márton Tóth","doi":"10.1016/j.jctb.2025.12.003","DOIUrl":"10.1016/j.jctb.2025.12.003","url":null,"abstract":"<div><div>A recent line of research has concentrated on exploring the links between analytic and combinatorial theories of submodularity, uncovering several key connections between them. In this context, Lovász initiated the study of matroids from an analytic point of view and introduced the cycle matroid of a graphing <span><span>[23]</span></span>. Motivated by the limit theory of graphs, the authors introduced a form of right-convergence, called quotient-convergence, for a sequence of submodular setfunctions, leading to a notion of convergence for matroids through their rank functions <span><span>[5]</span></span>.</div><div>In this paper, we study the connection between local-global convergence of graphs and quotient-convergence of their cycle matroids. We characterize the exposed points of associated convex sets, forming an analytic counterpart of matroid independence- and base-polytopes. Finally, we consider dual planar graphings and show that the cycle matroid of one is the cocycle matroid of its dual if and only if the underlying graphings are hyperfinite.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"178 ","pages":"Pages 118-144"},"PeriodicalIF":1.2,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}