首页 > 最新文献

Journal of Combinatorial Theory Series B最新文献

英文 中文
Crux, space constraints and subdivisions 核心、空间限制和分区
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-19 DOI: 10.1016/j.jctb.2024.08.005
Seonghyuk Im , Jaehoon Kim , Younjin Kim , Hong Liu

For a given graph H, its subdivisions carry the same topological structure. The existence of H-subdivisions within a graph G has deep connections with topological, structural and extremal properties of G. One prominent example of such a connection, due to Bollobás and Thomason and independently Komlós and Szemerédi, asserts that the average degree of G being d ensures a KΩ(d)-subdivision in G. Although this square-root bound is best possible, various results showed that much larger clique subdivisions can be found in a graph for many natural classes. We investigate the connection between crux, a notion capturing the essential order of a graph, and the existence of large clique subdivisions. This reveals the unifying cause underpinning all those improvements for various classes of graphs studied. Roughly speaking, when embedding subdivisions, natural space constraints arise; and such space constraints can be measured via crux.

Our main result gives an asymptotically optimal bound on the size of a largest clique subdivision in a generic graph G, which is determined by both its average degree and its crux size. As corollaries, we obtain

  • a characterization of extremal graphs for which the square-root bound above is tight: they are essentially disjoint unions of graphs having crux size linear in d;

  • a unifying approach to find a clique subdivision of almost optimal size in graphs which do not contain a fixed bipartite graph as a subgraph;

  • and that the clique subdivision size in random graphs G(n,p) witnesses a dichotomy: when p=ω(n1/2), the barrier is the space, while when p=o(n1/2), the bottleneck is the density.

对于给定的图 H,其细分图具有相同的拓扑结构。图 G 中 H 细分的存在与 G 的拓扑、结构和极值特性有着深刻的联系。这种联系的一个突出例子是由 Bollobás 和 Thomason 以及 Komlós 和 Szemerédi 提出的,他们断言 G 的平均度数为 d 可以确保 G 中存在 KΩ(d)-细分。我们研究了crux(一种捕捉图的基本顺序的概念)与大簇细分的存在之间的联系。这揭示了所研究的各类图中所有这些改进的统一原因。我们的主要结果给出了通用图 G 中最大簇细分大小的渐近最优约束,该约束由其平均度和簇大小共同决定。作为推论,我们得到了极值图的特征,对于这些极值图,上述平方根约束是紧密的:它们本质上是轴心大小与 d 成线性关系的图的不相交联合体;- 在不包含固定二方图作为子图的图中找到几乎最优大小的簇细分的统一方法;- 随机图 G(n,p) 中的簇细分大小呈现二分法:当 p=ω(n-1/2) 时,障碍是空间,而当 p=o(n-1/2) 时,瓶颈是密度。
{"title":"Crux, space constraints and subdivisions","authors":"Seonghyuk Im ,&nbsp;Jaehoon Kim ,&nbsp;Younjin Kim ,&nbsp;Hong Liu","doi":"10.1016/j.jctb.2024.08.005","DOIUrl":"10.1016/j.jctb.2024.08.005","url":null,"abstract":"<div><p>For a given graph <em>H</em>, its subdivisions carry the same topological structure. The existence of <em>H</em>-subdivisions within a graph <em>G</em> has deep connections with topological, structural and extremal properties of <em>G</em>. One prominent example of such a connection, due to Bollobás and Thomason and independently Komlós and Szemerédi, asserts that the average degree of <em>G</em> being <em>d</em> ensures a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>d</mi></mrow></msqrt><mo>)</mo></mrow></msub></math></span>-subdivision in <em>G</em>. Although this square-root bound is best possible, various results showed that much larger clique subdivisions can be found in a graph for many natural classes. We investigate the connection between crux, a notion capturing the essential order of a graph, and the existence of large clique subdivisions. This reveals the unifying cause underpinning all those improvements for various classes of graphs studied. Roughly speaking, when embedding subdivisions, natural space constraints arise; and such space constraints can be measured via crux.</p><p>Our main result gives an asymptotically optimal bound on the size of a largest clique subdivision in a generic graph <em>G</em>, which is determined by both its average degree and its crux size. As corollaries, we obtain</p><ul><li><span>•</span><span><p>a characterization of extremal graphs for which the square-root bound above is tight: they are essentially disjoint unions of graphs having crux size linear in <em>d</em>;</p></span></li><li><span>•</span><span><p>a unifying approach to find a clique subdivision of almost optimal size in graphs which do not contain a fixed bipartite graph as a subgraph;</p></span></li><li><span>•</span><span><p>and that the clique subdivision size in random graphs <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> witnesses a dichotomy: when <span><math><mi>p</mi><mo>=</mo><mi>ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, the barrier is the space, while when <span><math><mi>p</mi><mo>=</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, the bottleneck is the density.</p></span></li></ul></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"170 ","pages":"Pages 82-127"},"PeriodicalIF":1.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On graph classes with minor-universal elements 关于具有小通用元素的图类
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-19 DOI: 10.1016/j.jctb.2024.09.001
Agelos Georgakopoulos

A graph U is universal for a graph class CU, if every GC is a minor of U. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding K5, or K3,3, or K as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that do not have a universal element.

Some of our results and questions may be of interest from the finite graph perspective. In particular, one of our side-results is that every K5-minor-free graph is a minor of a K5-minor-free graph of maximum degree 22.

如果每个 G∈C 都是 U 的次要元素,那么对于图类 C∋U,图 U 就是普遍图。我们证明了几个自然图类中普遍图的存在与否,包括可分量嵌入曲面的图,以及禁止 K5、K3,3 或 K∞ 作为次要元素的图。我们证明了存在着不可计数的、没有普遍元素的可数图的小封闭类。特别是,我们的一个附带结果是,每个无 K5 次要图都是最大阶数为 22 的无 K5 次要图的次要图。
{"title":"On graph classes with minor-universal elements","authors":"Agelos Georgakopoulos","doi":"10.1016/j.jctb.2024.09.001","DOIUrl":"10.1016/j.jctb.2024.09.001","url":null,"abstract":"<div><p>A graph <em>U</em> is universal for a graph class <span><math><mi>C</mi><mo>∋</mo><mi>U</mi></math></span>, if every <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span> is a minor of <em>U</em>. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that do not have a universal element.</p><p>Some of our results and questions may be of interest from the finite graph perspective. In particular, one of our side-results is that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-minor-free graph is a minor of a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-minor-free graph of maximum degree 22.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"170 ","pages":"Pages 56-81"},"PeriodicalIF":1.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000741/pdfft?md5=b5bdf1f35e156e3581f5a8ffea761652&pid=1-s2.0-S0095895624000741-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lift theorems for representations of matroids over pastures 牧场矩阵表征的提升定理
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-05 DOI: 10.1016/j.jctb.2024.08.004
Matthew Baker , Oliver Lorscheid

Pastures are a class of field-like algebraic objects which include both partial fields and hyperfields and have nice categorical properties. We prove several lift theorems for representations of matroids over pastures, including a generalization of Pendavingh and van Zwam's Lift Theorem for partial fields. By embedding the earlier theory into a more general framework, we are able to establish new results even in the case of lifts of partial fields, for example the conjecture of Pendavingh–van Zwam that their lift construction is idempotent. We give numerous applications to matroid representations, e.g. we show that, up to projective equivalence, every pair consisting of a hexagonal representation and an orientation lifts uniquely to a near-regular representation. The proofs are different from the arguments used by Pendavingh and van Zwam, relying instead on a result of Gelfand–Rybnikov–Stone inspired by Tutte's homotopy theorem.

牧场是一类类似于场的代数对象,包括部分场和超场,具有很好的分类性质。我们证明了牧场上矩阵表示的几个提升定理,包括 Pendavingh 和 van Zwam 的部分域提升定理的一般化。通过将先前的理论嵌入到一个更一般的框架中,我们甚至能够在部分域的提升情况下建立新的结果,例如 Pendavingh-van Zwam 的猜想,即他们的提升构造是幂等的。我们给出了许多关于矩阵表示的应用,例如,我们证明了在投影等价性范围内,由六边形表示和方向组成的每一对都能唯一地提升到近规则表示。证明与彭达文和范兹瓦姆使用的论证不同,而是依赖于格尔方-里布尼科夫-斯通受图特同调定理启发而得出的结果。
{"title":"Lift theorems for representations of matroids over pastures","authors":"Matthew Baker ,&nbsp;Oliver Lorscheid","doi":"10.1016/j.jctb.2024.08.004","DOIUrl":"10.1016/j.jctb.2024.08.004","url":null,"abstract":"<div><p>Pastures are a class of field-like algebraic objects which include both partial fields and hyperfields and have nice categorical properties. We prove several lift theorems for representations of matroids over pastures, including a generalization of Pendavingh and van Zwam's Lift Theorem for partial fields. By embedding the earlier theory into a more general framework, we are able to establish new results even in the case of lifts of partial fields, for example the conjecture of Pendavingh–van Zwam that their lift construction is idempotent. We give numerous applications to matroid representations, e.g. we show that, up to projective equivalence, every pair consisting of a hexagonal representation and an orientation lifts uniquely to a near-regular representation. The proofs are different from the arguments used by Pendavingh and van Zwam, relying instead on a result of Gelfand–Rybnikov–Stone inspired by Tutte's homotopy theorem.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"170 ","pages":"Pages 1-55"},"PeriodicalIF":1.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure of quasi-transitive graphs avoiding a minor with applications to the domino problem 避开未成年人的准传递图的结构及其在多米诺骨牌问题中的应用
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-02 DOI: 10.1016/j.jctb.2024.08.002
Louis Esperet , Ugo Giocanti , Clément Legrand-Duchesne

An infinite graph is quasi-transitive if its vertex set has finitely many orbits under the action of its automorphism group. In this paper we obtain a structure theorem for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally finite quasi-transitive graph G avoiding a minor has a tree-decomposition whose torsos are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under the action of the automorphism group of G. As applications of this result, we prove the following.

  • Every locally finite quasi-transitive graph attains its Hadwiger number, that is, if such a graph contains arbitrarily large clique minors, then it contains an infinite clique minor. This extends a result of Thomassen (1992) [38] who proved it in the (quasi-)4-connected case and suggested that this assumption could be omitted. In particular, this shows that a Cayley graph excludes a finite minor if and only if it avoids the countable clique as a minor.

  • Locally finite quasi-transitive graphs avoiding a minor are accessible (in the sense of Thomassen and Woess), which extends known results on planar graphs to any proper minor-closed family.

  • Minor-excluded finitely generated groups are accessible (in the group-theoretic sense) and finitely presented, which extends classical results on planar groups.

  • The domino problem is decidable in a minor-excluded finitely generated group if and only if the group is virtually free, which proves the minor-excluded case of a conjecture of Ballier and Stein (2018) [7].

如果一个无限图在其自变群的作用下,其顶点集有有限多个轨道,那么这个无限图就是准遍历图。在本文中,我们得到了局部有限准传递图的结构定理,它与罗伯逊-塞缪尔图次要结构定理相似。作为这一结果的应用,我们证明了以下几点:每个局部有限准遍历图 G 都有一个树形分解,它的顶点是有限的或平面的;此外,该树形分解是典型的,即在 G 的自变群作用下不变。这扩展了托马森(Thomassen)(1992 年)[38] 的结果,他在(准)4 连接情况下证明了这一点,并建议可以省略这一假设。特别是,这表明当且仅当一个 Cayley 图避免可数小群作为小群时,它就排除了一个有限小群。-当且仅当一个排除次要因素的有限生成群实际上是自由的时候,多米诺问题在该群中是可解的,这证明了 Ballier 和 Stein (2018) [7] 的猜想的排除次要因素的情况。
{"title":"The structure of quasi-transitive graphs avoiding a minor with applications to the domino problem","authors":"Louis Esperet ,&nbsp;Ugo Giocanti ,&nbsp;Clément Legrand-Duchesne","doi":"10.1016/j.jctb.2024.08.002","DOIUrl":"10.1016/j.jctb.2024.08.002","url":null,"abstract":"<div><p>An infinite graph is quasi-transitive if its vertex set has finitely many orbits under the action of its automorphism group. In this paper we obtain a structure theorem for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally finite quasi-transitive graph <em>G</em> avoiding a minor has a tree-decomposition whose torsos are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under the action of the automorphism group of <em>G</em>. As applications of this result, we prove the following.</p><ul><li><span>•</span><span><p>Every locally finite quasi-transitive graph attains its Hadwiger number, that is, if such a graph contains arbitrarily large clique minors, then it contains an infinite clique minor. This extends a result of Thomassen (1992) <span><span>[38]</span></span> who proved it in the (quasi-)4-connected case and suggested that this assumption could be omitted. In particular, this shows that a Cayley graph excludes a finite minor if and only if it avoids the countable clique as a minor.</p></span></li><li><span>•</span><span><p>Locally finite quasi-transitive graphs avoiding a minor are accessible (in the sense of Thomassen and Woess), which extends known results on planar graphs to any proper minor-closed family.</p></span></li><li><span>•</span><span><p>Minor-excluded finitely generated groups are accessible (in the group-theoretic sense) and finitely presented, which extends classical results on planar groups.</p></span></li><li><span>•</span><span><p>The domino problem is decidable in a minor-excluded finitely generated group if and only if the group is virtually free, which proves the minor-excluded case of a conjecture of Ballier and Stein (2018) <span><span>[7]</span></span>.</p></span></li></ul></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 561-613"},"PeriodicalIF":1.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The matroid of a graphing 图形的矩阵
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-30 DOI: 10.1016/j.jctb.2024.08.001
László Lovász

Graphings serve as limit objects for bounded-degree graphs. We define the “cycle matroid” of a graphing as a submodular setfunction, with values in [0,1], which generalizes (up to normalization) the cycle matroid of finite graphs. We prove that for a Benjamini–Schramm convergent sequence of graphs, the total rank, normalized by the number of nodes, converges to the total rank of the limit graphing.

图形是有界度图形的极限对象。我们将图形的 "循环矩阵 "定义为一个亚模态集合函数,其值在 [0,1] 范围内,它概括了有限图形的循环矩阵(直到归一化)。我们证明,对于本杰明-施拉姆收敛图序列,按节点数归一化的总秩收敛于极限图的总秩。
{"title":"The matroid of a graphing","authors":"László Lovász","doi":"10.1016/j.jctb.2024.08.001","DOIUrl":"10.1016/j.jctb.2024.08.001","url":null,"abstract":"<div><p>Graphings serve as limit objects for bounded-degree graphs. We define the “cycle matroid” of a graphing as a submodular setfunction, with values in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which generalizes (up to normalization) the cycle matroid of finite graphs. We prove that for a Benjamini–Schramm convergent sequence of graphs, the total rank, normalized by the number of nodes, converges to the total rank of the limit graphing.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 542-560"},"PeriodicalIF":1.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000674/pdfft?md5=528a3e8bac91d6edbcc14e05198c5db4&pid=1-s2.0-S0095895624000674-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal spread for spanning subgraphs of Dirac hypergraphs 狄拉克超图的跨度子图的最佳展布
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-26 DOI: 10.1016/j.jctb.2024.08.006
Tom Kelly , Alp Müyesser , Alexey Pokrovskiy

Let G and H be hypergraphs on n vertices, and suppose H has large enough minimum degree to necessarily contain a copy of G as a subgraph. We give a general method to randomly embed G into H with good “spread”. More precisely, for a wide class of G, we find a randomised embedding f:GH with the following property: for every s, for any partial embedding f of s vertices of G into H, the probability that f extends f is at most O(1/n)s. This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.

For example, setting s=n, we obtain an asymptotically tight lower bound on the number of embeddings of G into H. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning G still embeds into H after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.

Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.

假设 G 和 H 是 n 个顶点上的超图,又假设 H 的最小度数足够大,必然包含 G 的子图副本。我们给出了一种将 G 随机嵌入 H 且 "传播 "良好的通用方法。更确切地说,对于一类广泛的 G,我们可以找到具有以下性质的随机嵌入 f:GH:对于每 s,对于 G 的 s 个顶点的任何部分嵌入 f′ 到 H,f 扩展 f′ 的概率至多为 O(1/n)s。这是对围绕经典狄拉克型问题的若干研究流的共同概括。例如,设定 s=n,我们得到了 G 嵌入 H 的数量的渐近紧密下限。这恢复并扩展了格洛克、古尔德、约斯、库恩和奥斯特胡斯以及蒙哥马利和帕维斯-西涅关于列举狄拉克超图中的汉密尔顿循环的最新结果。此外,利用围绕卡恩-卡莱猜想(Kahn-Kalai conjecture)的最新进展,这一结果意味着许多狄拉克类型的结果稳健地成立,也就是说,在对 G 的边集进行随机稀疏化之后,G 仍然嵌入 H 中。这使我们能够恢复 Kang、Kelly、Kühn、Osthus 和 Pfenninger 以及 Pham、Sah、Sawhney 和 Simkin 最近关于完全匹配的结果,并获得关于 Dirac 超图中汉密尔顿循环和因子的新结果。
{"title":"Optimal spread for spanning subgraphs of Dirac hypergraphs","authors":"Tom Kelly ,&nbsp;Alp Müyesser ,&nbsp;Alexey Pokrovskiy","doi":"10.1016/j.jctb.2024.08.006","DOIUrl":"10.1016/j.jctb.2024.08.006","url":null,"abstract":"<div><p>Let <em>G</em> and <em>H</em> be hypergraphs on <em>n</em> vertices, and suppose <em>H</em> has large enough minimum degree to necessarily contain a copy of <em>G</em> as a subgraph. We give a general method to randomly embed <em>G</em> into <em>H</em> with good “spread”. More precisely, for a wide class of <em>G</em>, we find a randomised embedding <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>↪</mo><mi>H</mi></math></span> with the following property: for every <em>s</em>, for any partial embedding <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>s</em> vertices of <em>G</em> into <em>H</em>, the probability that <em>f</em> extends <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is at most <span><math><mi>O</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>. This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.</p><p>For example, setting <span><math><mi>s</mi><mo>=</mo><mi>n</mi></math></span>, we obtain an asymptotically tight lower bound on the number of embeddings of <em>G</em> into <em>H</em>. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning <em>G</em> still embeds into <em>H</em> after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.</p><p>Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 507-541"},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000728/pdfft?md5=533c17ed0f6d70854b2dd9d401343fd1&pid=1-s2.0-S0095895624000728-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kruskal–Katona-type problems via the entropy method 通过熵方法解决克鲁斯卡尔-卡托纳类型问题
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-22 DOI: 10.1016/j.jctb.2024.08.003
Ting-Wei Chao , Hung-Hsun Hans Yu

In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with R red, G green, B blue edges, the number of rainbow triangles is at most 2RGB, which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.

在本文中,我们研究了几个极值组合问题,这些问题要求在给定边数的情况下,求出固定子图的最大副本数。我们称这类问题为 Kruskal-Katona-type 问题。本文将要讨论的大多数问题都与关节问题有关。本文有两个主要结果。首先,我们证明了在一个红边为 R、绿边为 G、蓝边为 B 的三边彩色图中,彩虹三角形的数量最多为 2RGB,这是一个尖锐的结果。其次,我们给出了对 Kruskal-Katona 定理的概括,其中隐含了许多之前的概括。这两个论证都使用了熵方法,主要的创新在于一个更巧妙的论证,改进了希勒不等式给出的界限。
{"title":"Kruskal–Katona-type problems via the entropy method","authors":"Ting-Wei Chao ,&nbsp;Hung-Hsun Hans Yu","doi":"10.1016/j.jctb.2024.08.003","DOIUrl":"10.1016/j.jctb.2024.08.003","url":null,"abstract":"<div><p>In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with <em>R</em> red, <em>G</em> green, <em>B</em> blue edges, the number of rainbow triangles is at most <span><math><msqrt><mrow><mn>2</mn><mi>R</mi><mi>G</mi><mi>B</mi></mrow></msqrt></math></span>, which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 480-506"},"PeriodicalIF":1.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal spectral radius of nonregular graphs with prescribed maximum degree 具有规定最大度的非规则图形的极谱半径
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-12 DOI: 10.1016/j.jctb.2024.07.007
Lele Liu
<div><p>Let <em>G</em> be a graph attaining the maximum spectral radius among all connected nonregular graphs of order <em>n</em> with maximum degree Δ. Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the spectral radius of <em>G</em>. A nice conjecture due to Liu et al. (2007) <span><span>[19]</span></span> asserts that<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> for each fixed Δ. Concerning an important structural property of the extremal graphs <em>G</em>, Liu and Li (2008) <span><span>[17]</span></span> put forward another conjecture which states that <em>G</em> has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> by showing that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>≤</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></math></span></span></span> For small Δ, we determine the precise asymptotic behavior of <span><math><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>; and <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>=</mo><msup><
设 G 是最大阶数为 Δ 的所有 n 阶连通非规则图中光谱半径最大的图。Liu 等人(2007)[19] 提出了一个很好的猜想,即对于每个固定的 Δ,limn→∞n2(Δ-λ1(G))Δ-1=π2。关于极值图 G 的一个重要结构性质,刘和李(2008)[17] 提出了另一个猜想,即 G 恰好有一个顶点的度严格小于 Δ。确切地说,我们通过证明limsupn→∞n2(Δ-λ1(G))Δ-1≤π22,推翻了所有Δ≥3 的第一个猜想。对于小 Δ,我们确定了 Δ-λ1(G) 的精确渐近行为。特别是,我们证明了如果Δ=3,limn→∞n2(Δ-λ1(G))/(Δ-1)=π2/4;如果Δ=4,limn→∞n2(Δ-λ1(G))/(Δ-2)=π2/2。我们还通过确定极值图的精确结构,证实了 Δ=3 和 Δ=4 时的第二个猜想。此外,我们还证明了Δ∈{3,4} 的极值图必须具有由特定图块构建的类似路径的结构。
{"title":"Extremal spectral radius of nonregular graphs with prescribed maximum degree","authors":"Lele Liu","doi":"10.1016/j.jctb.2024.07.007","DOIUrl":"10.1016/j.jctb.2024.07.007","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Let &lt;em&gt;G&lt;/em&gt; be a graph attaining the maximum spectral radius among all connected nonregular graphs of order &lt;em&gt;n&lt;/em&gt; with maximum degree Δ. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the spectral radius of &lt;em&gt;G&lt;/em&gt;. A nice conjecture due to Liu et al. (2007) &lt;span&gt;&lt;span&gt;[19]&lt;/span&gt;&lt;/span&gt; asserts that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; for each fixed Δ. Concerning an important structural property of the extremal graphs &lt;em&gt;G&lt;/em&gt;, Liu and Li (2008) &lt;span&gt;&lt;span&gt;[17]&lt;/span&gt;&lt;/span&gt; put forward another conjecture which states that &lt;em&gt;G&lt;/em&gt; has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; by showing that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;sup&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; For small Δ, we determine the precise asymptotic behavior of &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. In particular, we show that &lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;; and &lt;span&gt;&lt;math&gt;&lt;munder&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 430-479"},"PeriodicalIF":1.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The automorphism group of a complementary prism 互补棱柱的自形群
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-02 DOI: 10.1016/j.jctb.2024.07.004
Marko Orel

Given a finite simple graph Γ on n vertices its complementary prism is the graph ΓΓ¯ that is obtained from Γ and its complement Γ¯ by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and Γ¯. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of ΓΓ¯ is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of ΓΓ¯ and Γ can attain only the values 1, 2, 4, and 12. It is shown that ΓΓ¯ is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever n>1.

给定 n 个顶点上的有限简单图 Γ,其互补棱图是由Γ 及其互补图 Γ¯ 通过添加完美匹配而得到的图ΓΓ¯,其中每条边都连接 Γ 和 Γ¯ 中相同顶点的两个副本。它概括了彼得森图,如果 Γ 是五边形,就会得到彼得森图。对于任意图形 Γ,描述了 ΓΓ¯ 的自变群。特别是,它证明了 ΓΓ¯ 和 Γ 的自变群的心数之比只能达到 1、2、4 和 12 的值。研究表明,当且仅当Γ 是顶点传递的且自互补时,ΓΓ¯ 才是顶点传递的。此外,当 n>1 时,互补棱镜不是一个 Cayley 图。
{"title":"The automorphism group of a complementary prism","authors":"Marko Orel","doi":"10.1016/j.jctb.2024.07.004","DOIUrl":"10.1016/j.jctb.2024.07.004","url":null,"abstract":"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 406-429"},"PeriodicalIF":1.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H-factors in graphs with small independence number 小独立数图形中的 H 因子
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2024-07-31 DOI: 10.1016/j.jctb.2024.07.005
Ming Chen , Jie Han , Guanghui Wang , Donglei Yang

Let H be an h-vertex graph. The vertex arboricity ar(H) of H is the least integer r such that V(H) can be partitioned into r parts and each part induces a forest in H. We show that for sufficiently large nhN, every n-vertex graph G with δ(G)max{(12f(H)+o(1))n,(12+o(1))n} and α(G)=o(n) contains an H-factor, where f(H)=2ar(H) or 2ar(H)1. The result can be viewed an analogue of the Alon–Yuster theorem [1] in Ramsey–Turán theory, which generalizes the results of Balogh–Molla–Sharifzadeh [2] and Knierim–Su [21] on clique factors. In particular the degree conditions are asymptotically sharp for infinitely many graphs H which are not cliques.

设 H 是一个 h 顶点图。H 的顶点嵌套度 ar(H) 是最小整数 r,使得 V(H) 可以被分割成 r 部分,且每个部分都在 H 中诱导出一个森林。我们证明,对于足够大的 n∈hN,δ(G)≥max{(1-2f(H)+o(1))n,(12+o(1))n} 且 α(G)=o(n)的每个 n 顶点图 G 都包含一个 H 因子,其中 f(H)=2ar(H) 或 2ar(H)-1。这一结果可以看作是拉姆齐-图兰理论中的阿隆-尤斯特定理[1],它概括了巴洛格-莫拉-谢里夫扎德[2]和克尼林-苏[21]关于簇因子的结果。特别是,对于无限多的非小块图 H 来说,度条件是渐近尖锐的。
{"title":"H-factors in graphs with small independence number","authors":"Ming Chen ,&nbsp;Jie Han ,&nbsp;Guanghui Wang ,&nbsp;Donglei Yang","doi":"10.1016/j.jctb.2024.07.005","DOIUrl":"10.1016/j.jctb.2024.07.005","url":null,"abstract":"<div><p>Let <em>H</em> be an <em>h</em>-vertex graph. The vertex arboricity <span><math><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of <em>H</em> is the least integer <em>r</em> such that <span><math><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> can be partitioned into <em>r</em> parts and each part induces a forest in <em>H</em>. We show that for sufficiently large <span><math><mi>n</mi><mo>∈</mo><mi>h</mi><mi>N</mi></math></span>, every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>,</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>}</mo></mrow></math></span> and <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contains an <em>H</em>-factor, where <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> or <span><math><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The result can be viewed an analogue of the Alon–Yuster theorem <span><span>[1]</span></span> in Ramsey–Turán theory, which generalizes the results of Balogh–Molla–Sharifzadeh <span><span>[2]</span></span> and Knierim–Su <span><span>[21]</span></span> on clique factors. In particular the degree conditions are asymptotically sharp for infinitely many graphs <em>H</em> which are not cliques.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 373-405"},"PeriodicalIF":1.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Combinatorial Theory Series B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1