首页 > 最新文献

Journal of Combinatorial Theory Series B最新文献

英文 中文
Closure property of contraction-depth of matroids 拟阵收缩深度的闭包性
IF 1.4 1区 数学 Q1 MATHEMATICS Pub Date : 2025-08-08 DOI: 10.1016/j.jctb.2025.07.006
Marcin Briański, Daniel Král', Ander Lamaison
Contraction-depth is a matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph G is the minimum height of a rooted forest whose closure contains G by proving the following for every matroid M (except the trivial case when M consists of loops and coloops only): the contraction-depth of M plus one is equal to the minimum contraction-depth of a matroid containing M as a restriction.
收缩-depth是一个矩阵深度参数,类似于图的树深度。我们通过对每个矩阵M(除了M只由环和圈组成的平凡情况外)证明以下内容,建立了经典图论结果的拟阵模拟,该结果断言图G的树深是闭包包含G的根森林的最小高度:M + 1的收缩深度等于包含M作为约束的矩阵的最小收缩深度。
{"title":"Closure property of contraction-depth of matroids","authors":"Marcin Briański, Daniel Král', Ander Lamaison","doi":"10.1016/j.jctb.2025.07.006","DOIUrl":"https://doi.org/10.1016/j.jctb.2025.07.006","url":null,"abstract":"Contraction<ce:sup loc=\"post\">⁎</ce:sup>-depth is a matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph <ce:italic>G</ce:italic> is the minimum height of a rooted forest whose closure contains <ce:italic>G</ce:italic> by proving the following for every matroid <ce:italic>M</ce:italic> (except the trivial case when <ce:italic>M</ce:italic> consists of loops and coloops only): the contraction<ce:sup loc=\"post\">⁎</ce:sup>-depth of <ce:italic>M</ce:italic> plus one is equal to the minimum contraction-depth of a matroid containing <ce:italic>M</ce:italic> as a restriction.","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"53 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144900112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The codegree Turán density of 3-uniform tight cycles 3均匀紧循环的余度Turán密度
IF 1.4 1区 数学 Q1 MATHEMATICS Pub Date : 2025-08-07 DOI: 10.1016/j.jctb.2025.07.007
Simón Piga, Nicolás Sanhueza-Matamala, Mathias Schacht
Given any ε>0 we prove that every sufficiently large n-vertex 3-graph H where every pair of vertices is contained in at least (1/3+ε)n edges contains a copy of C10, i.e. the tight cycle on 10 vertices. In fact we obtain the same conclusion for every cycle C with 19.
给定任意ε>;0,我们证明了每一个足够大的n顶点3-图H,其中每一对顶点至少包含(1/3+ε)n条边,其中包含C10的一个副本,即10个顶点上的紧环。事实上,对于每一个循环,我们都得到了相同的结论。
{"title":"The codegree Turán density of 3-uniform tight cycles","authors":"Simón Piga, Nicolás Sanhueza-Matamala, Mathias Schacht","doi":"10.1016/j.jctb.2025.07.007","DOIUrl":"https://doi.org/10.1016/j.jctb.2025.07.007","url":null,"abstract":"Given any <mml:math altimg=\"si1.svg\"><mml:mi>ε</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:math> we prove that every sufficiently large <ce:italic>n</ce:italic>-vertex 3-graph <ce:italic>H</ce:italic> where every pair of vertices is contained in at least <mml:math altimg=\"si2.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">/</mml:mo><mml:mn>3</mml:mn><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>ε</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mi>n</mml:mi></mml:math> edges contains a copy of <mml:math altimg=\"si3.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub></mml:math>, i.e. the tight cycle on 10 vertices. In fact we obtain the same conclusion for every cycle <mml:math altimg=\"si36.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:msub></mml:math> with <mml:math altimg=\"si5.svg\"><mml:mi>ℓ</mml:mi><mml:mo>≥</mml:mo><mml:mn>19</mml:mn></mml:math>.","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"27 1","pages":"1-6"},"PeriodicalIF":1.4,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144901792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability in Bondy's theorem on paths and cycles 路径和循环上邦迪定理的稳定性
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-08-04 DOI: 10.1016/j.jctb.2025.07.004
Bo Ning , Long-Tu Yuan
In this paper, we study the stability result of a well-known theorem of Bondy. We prove that for any 2-connected non-hamiltonian graph, if every vertex except for at most one vertex has degree at least k, then it contains a cycle of length at least 2k+2 except for some special families of graphs. Our results imply several previous classical theorems including a deep and old result by Voss. We point out our result on stability in Bondy's theorem can directly imply a positive solution (in a slight stronger form) to the following problem: Is there a polynomial time algorithm to decide whether a 2-connected graph G on n vertices has a cycle of length at least min{2δ(G)+2,n}? This problem originally motivates the recent study on algorithmic aspects of Dirac's theorem by Fomin, Golovach, Sagunov, and Simonov, although a stronger problem was solved by them by completely different methods. Our theorem can also help us to determine all extremal graphs for wheels on odd number of vertices. We also discuss the relationship between our results and some previous problems and theorems in spectral graph theory and generalized Turán problems.
本文研究了Bondy的一个著名定理的稳定性结果。证明了对于任意2连通非哈密顿图,如果除最多一个顶点以外的每个顶点度数都至少为k,则除了某些特殊的图族外,它包含一个长度至少为2k+2的循环。我们的结果暗示了几个以前的经典定理,包括沃斯的一个深刻而古老的结果。我们指出Bondy定理稳定性的结果可以直接暗示以下问题的正解(以稍微强一点的形式):是否存在多项式时间算法来确定n个顶点上的2连通图G是否具有长度至少为min (2δ(G)+2,n})的循环?这个问题最初激发了Fomin、Golovach、Sagunov和Simonov最近对Dirac定理算法方面的研究,尽管他们用完全不同的方法解决了一个更强大的问题。我们的定理还可以帮助我们确定奇数顶点上的车轮的所有极值图。我们还讨论了我们的结果与谱图理论中的一些问题和定理以及广义Turán问题之间的关系。
{"title":"Stability in Bondy's theorem on paths and cycles","authors":"Bo Ning ,&nbsp;Long-Tu Yuan","doi":"10.1016/j.jctb.2025.07.004","DOIUrl":"10.1016/j.jctb.2025.07.004","url":null,"abstract":"<div><div>In this paper, we study the stability result of a well-known theorem of Bondy. We prove that for any 2-connected non-hamiltonian graph, if every vertex except for at most one vertex has degree at least <em>k</em>, then it contains a cycle of length at least <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> except for some special families of graphs. Our results imply several previous classical theorems including a deep and old result by Voss. We point out our result on stability in Bondy's theorem can directly imply a positive solution (in a slight stronger form) to the following problem: Is there a polynomial time algorithm to decide whether a 2-connected graph <em>G</em> on <em>n</em> vertices has a cycle of length at least <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mn>2</mn><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>}</mo></math></span>? This problem originally motivates the recent study on algorithmic aspects of Dirac's theorem by Fomin, Golovach, Sagunov, and Simonov, although a stronger problem was solved by them by completely different methods. Our theorem can also help us to determine all extremal graphs for wheels on odd number of vertices. We also discuss the relationship between our results and some previous problems and theorems in spectral graph theory and generalized Turán problems.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 213-239"},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144772391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate packing of independent transversals in locally sparse graphs 局部稀疏图中独立截线的近似填充
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-07-31 DOI: 10.1016/j.jctb.2025.07.005
Debsoumya Chakraborti , Tuan Tran
Fix ε>0 and consider a multipartite graph G with maximum degree at most (1ε)n, parts V1,,Vk of the same size n, and where every vertex has at most o(n) neighbors in any part Vi. Loh and Sudakov proved that any such G has an independent transversal. They further conjectured that the vertex set of G can be decomposed into pairwise disjoint independent transversals. In the present paper, we resolve this conjecture approximately by showing that G contains (1ε)n pairwise disjoint independent transversals. As applications, we give approximate answers to questions of Yuster, and of Fischer, Kühn, and Osthus.
固定ε>;0,考虑一个最大度数为(1−ε)n的多部图G,部分V1,…,Vk的大小为相同n,其中每个顶点在任何部分Vi中最多有o(n)个邻居。Loh和Sudakov证明了任何这样的G都有独立的截线。他们进一步推测,G的顶点集可以分解成两两不相交的独立截线。在本文中,我们通过证明G包含(1−ε)n对不相交的独立截线近似地解决了这个猜想。作为应用,我们给出了Yuster、Fischer、k hn和Osthus问题的近似答案。
{"title":"Approximate packing of independent transversals in locally sparse graphs","authors":"Debsoumya Chakraborti ,&nbsp;Tuan Tran","doi":"10.1016/j.jctb.2025.07.005","DOIUrl":"10.1016/j.jctb.2025.07.005","url":null,"abstract":"<div><div>Fix <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> and consider a multipartite graph <em>G</em> with maximum degree at most <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span>, parts <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the same size <em>n</em>, and where every vertex has at most <span><math><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> neighbors in any part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Loh and Sudakov proved that any such <em>G</em> has an independent transversal. They further conjectured that the vertex set of <em>G</em> can be decomposed into pairwise disjoint independent transversals. In the present paper, we resolve this conjecture approximately by showing that <em>G</em> contains <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> pairwise disjoint independent transversals. As applications, we give approximate answers to questions of Yuster, and of Fischer, Kühn, and Osthus.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 187-212"},"PeriodicalIF":1.2,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144738353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degree-truncated choosability of graphs 图的度截断选择能力
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-07-18 DOI: 10.1016/j.jctb.2025.07.003
Huan Zhou, Jialu Zhu, Xuding Zhu
A graph G is called degree-truncated k-choosable if for every list assignment L with |L(v)|min{dG(v),k} for each vertex v, G is L-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family G of graphs, let s be the minimum integer such that Ks,tG for some t, then there is a constant k such that every s-connected graph GG other than a GDP tree is degree-truncated DP-k-colourable (and hence degree-truncated k-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant k such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-k-colourable (and hence degree-truncated k-choosable). The s-connectedness for graphs in G (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer k, Ks1,ks1G (K2,k2 is planar) is not degree-truncated k-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.
图G称为度截断k-可选,如果对于每一个列表赋值L,当|L(v)|≥min (dG(v),k)时,对于每个顶点v, G是L-可着色的。Richter问是否每一个3连通的非完全平面图都是度截断6可选的。通过构造一个不截断7度的3连通非完全平面图,否定地回答了这个问题。然后我们证明了每一个3连通的非完全平面图都是截断度的16- dp可着色的(因此截断度的16- dp是可选择的)。我们进一步证明,对于任意一个图的固有小闭科G,设s为最小整数,使得k,t∈G对于某t,则存在一个常数k,使得除GDP树以外的每一个s连通图G∈G都是截断度的dp -k可着色的(因此是截断度的k可选择的),其中GDP树是其块为完全图或环的图。特别地,对于任意曲面Σ,存在一个常数k,使得每个可嵌入Σ上的3连通非完全图都是度截断的dp -k可着色的(因此度截断的k是可选择的)。G中的图的s连通性(以及可嵌入到Σ上的图的3连通性)是必要的,因为对于任何正整数k, Ks−1,Ks−1∈G (K2, K2是平面的)不是度截断的k可选的。此外,非完备性是一个必要条件,因为完全图是不可度选择的。
{"title":"Degree-truncated choosability of graphs","authors":"Huan Zhou,&nbsp;Jialu Zhu,&nbsp;Xuding Zhu","doi":"10.1016/j.jctb.2025.07.003","DOIUrl":"10.1016/j.jctb.2025.07.003","url":null,"abstract":"<div><div>A graph <em>G</em> is called degree-truncated <em>k</em>-choosable if for every list assignment <em>L</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> for each vertex <em>v</em>, <em>G</em> is <em>L</em>-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family <span><math><mi>G</mi></math></span> of graphs, let <em>s</em> be the minimum integer such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∉</mo><mi>G</mi></math></span> for some <em>t</em>, then there is a constant <em>k</em> such that every <em>s</em>-connected graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> other than a GDP tree is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant <em>k</em> such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable). The <em>s</em>-connectedness for graphs in <span><math><mi>G</mi></math></span> (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer <em>k</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>∈</mo><mi>G</mi></math></span> (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is planar) is not degree-truncated <em>k</em>-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 171-186"},"PeriodicalIF":1.2,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144654393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigid partitions: From high connectivity to random graphs 刚性分区:从高连通性到随机图
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-07-18 DOI: 10.1016/j.jctb.2025.07.001
Michael Krivelevich , Alan Lew , Peleg Michaeli
A graph is called d-rigid if there exists a generic embedding of its vertex set into Rd such that every continuous motion of the vertices that preserves the lengths of all edges actually preserves the distances between all pairs of vertices. The rigidity of a graph is the maximal d such that the graph is d-rigid. We present new sufficient conditions for the d-rigidity of a graph in terms of the existence of “rigid partitions”—partitions of the graph that satisfy certain connectivity properties. This extends previous results by Crapo, Lindemann, and Lew, Nevo, Peled and Raz.
As an application, we present new results on the rigidity of highly-connected graphs, random graphs, random bipartite graphs, pseudorandom graphs, and dense graphs. In particular, we prove that random Cdlogd-regular graphs are typically d-rigid, demonstrate the existence of a giant d-rigid component in sparse random binomial graphs, and show that the rigidity of relatively sparse random binomial bipartite graphs is roughly the same as that of the complete bipartite graph, which we consider an interesting phenomenon. Furthermore, we show that a graph admitting (d+12) disjoint connected dominating sets is d-rigid. This implies a weak version of the Lovász–Yemini conjecture on the rigidity of highly-connected graphs. We also present an alternative short proof for a recent result by Lew, Nevo, Peled, and Raz, which asserts that the hitting time for d-rigidity in the random graph process typically coincides with the hitting time for minimum degree d.
一个图被称为d刚性,如果它的顶点集在Rd中有一个一般的嵌入,使得顶点的每一个连续运动都保留了所有边的长度,实际上保留了所有顶点对之间的距离。图的刚性是最大的d,使得图是d刚性的。我们根据“刚性分区”的存在性,给出了图的d-刚性的新充分条件,即图的“刚性分区”满足某些连通性。这扩展了Crapo、Lindemann、Lew、Nevo、Peled和Raz之前的研究结果。作为应用,我们给出了关于高连通图、随机图、随机二部图、伪随机图和密集图的刚性的新结果。特别地,我们证明了随机Cdlog (d-正则图)是典型的d-刚性,证明了稀疏随机二项式图中存在一个巨大的d-刚性分量,并证明了相对稀疏随机二项式二部图的刚性与完全二部图的刚性大致相同,我们认为这是一个有趣的现象。进一步证明了一个包含(d+12)个不相交控制集的图是d刚性的。这意味着关于高连通图的刚性的Lovász-Yemini猜想的一个弱版本。我们还为Lew, Nevo, Peled和Raz最近的结果提供了一个替代的简短证明,该结果断言,随机图过程中d-刚性的命中时间通常与最小度d的命中时间一致。
{"title":"Rigid partitions: From high connectivity to random graphs","authors":"Michael Krivelevich ,&nbsp;Alan Lew ,&nbsp;Peleg Michaeli","doi":"10.1016/j.jctb.2025.07.001","DOIUrl":"10.1016/j.jctb.2025.07.001","url":null,"abstract":"<div><div>A graph is called <em>d</em>-rigid if there exists a generic embedding of its vertex set into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that every continuous motion of the vertices that preserves the lengths of all edges actually preserves the distances between all pairs of vertices. The rigidity of a graph is the maximal <em>d</em> such that the graph is <em>d</em>-rigid. We present new sufficient conditions for the <em>d</em>-rigidity of a graph in terms of the existence of “rigid partitions”—partitions of the graph that satisfy certain connectivity properties. This extends previous results by Crapo, Lindemann, and Lew, Nevo, Peled and Raz.</div><div>As an application, we present new results on the rigidity of highly-connected graphs, random graphs, random bipartite graphs, pseudorandom graphs, and dense graphs. In particular, we prove that random <span><math><mi>C</mi><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>d</mi></math></span>-regular graphs are typically <em>d</em>-rigid, demonstrate the existence of a giant <em>d</em>-rigid component in sparse random binomial graphs, and show that the rigidity of relatively sparse random binomial bipartite graphs is roughly the same as that of the complete bipartite graph, which we consider an interesting phenomenon. Furthermore, we show that a graph admitting <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> disjoint connected dominating sets is <em>d</em>-rigid. This implies a weak version of the Lovász–Yemini conjecture on the rigidity of highly-connected graphs. We also present an alternative short proof for a recent result by Lew, Nevo, Peled, and Raz, which asserts that the hitting time for <em>d</em>-rigidity in the random graph process typically coincides with the hitting time for minimum degree <em>d</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 126-170"},"PeriodicalIF":1.2,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144654392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast algorithms for Vizing's theorem on bounded degree graphs 有界度图上Vizing定理的快速算法
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-07-17 DOI: 10.1016/j.jctb.2025.07.002
Anton Bernshteyn , Abhishek Dhawan
Vizing's theorem states that every graph G of maximum degree Δ can be properly edge-colored using Δ+1 colors. The fastest currently known (Δ+1)-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time O(mn), where n|V(G)| and m|E(G)|. We investigate the case when Δ is constant, i.e., Δ=O(1). In this regime, the runtime of Sinnamon's algorithm is O(n3/2), which can be improved to O(nlogn), as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only O(n), which is obviously best possible. Prior to this work, no linear-time (Δ+1)-edge-coloring algorithm was known for any Δ4. Using some of the same ideas, we also develop new algorithms for (Δ+1)-edge-coloring in the LOCAL model of distributed computation. Namely, when Δ is constant, we design a deterministic LOCAL algorithm with running time O˜(log5n) and a randomized LOCAL algorithm with running time O(log2n). Although our focus is on the constant Δ regime, our results remain interesting for Δ up to logo(1)n, since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.
Vizing定理指出,每个最大次为Δ的图G都可以使用Δ+1种颜色来适当地边缘着色。目前已知的最快(Δ+1)的一般图边着色算法是由Sinnamon提出的,运行时间为O(mn),其中n是对象是|V(G)|, m是对象是|E(G)|。我们研究了Δ为常数的情况,即Δ=O(1)。在这种情况下,Sinnamon算法的运行时间为O(n3/2),可以改进为O(nlog ln n),如Gabow、Nishizeki、Kariv、Leven和Terada所示。这里我们给出一个算法,它的运行时间只有O(n),这显然是最好的可能。在这项工作之前,对于任何Δ大于或等于4的人来说,没有已知的线性时间(Δ+1)边缘着色算法。利用一些相同的思想,我们还在分布式计算的LOCAL模型中开发了(Δ+1)-边缘着色的新算法。即,当Δ为常数时,我们设计了一个运行时间为O ~ (log5 ln)的确定性LOCAL算法和一个运行时间为O(log2 ln)的随机LOCAL算法。虽然我们关注的是常数Δ状态,但我们的结果对于Δ到logo(1) n来说仍然很有趣,因为它们的运行时间对Δ的依赖是多项式的。我们的算法的关键新成分是熵压缩方法的新应用。
{"title":"Fast algorithms for Vizing's theorem on bounded degree graphs","authors":"Anton Bernshteyn ,&nbsp;Abhishek Dhawan","doi":"10.1016/j.jctb.2025.07.002","DOIUrl":"10.1016/j.jctb.2025.07.002","url":null,"abstract":"<div><div>Vizing's theorem states that every graph <em>G</em> of maximum degree Δ can be properly edge-colored using <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> colors. The fastest currently known <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>≔</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><mi>m</mi><mo>≔</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. We investigate the case when Δ is constant, i.e., <span><math><mi>Δ</mi><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this regime, the runtime of Sinnamon's algorithm is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which can be improved to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>, as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which is obviously best possible. Prior to this work, no linear-time <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm was known for any <span><math><mi>Δ</mi><mo>⩾</mo><mn>4</mn></math></span>. Using some of the same ideas, we also develop new algorithms for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring in the <span><math><mi>LOCAL</mi></math></span> model of distributed computation. Namely, when Δ is constant, we design a deterministic <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> and a randomized <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>. Although our focus is on the constant Δ regime, our results remain interesting for Δ up to <span><math><msup><mrow><mi>log</mi></mrow><mrow><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 69-125"},"PeriodicalIF":1.2,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144654391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectoids I: A universal end space theory 连通线I:一个普适的端空间理论
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-06-27 DOI: 10.1016/j.jctb.2025.06.003
Nathan Bowler, Florian Reich
In this series we introduce and investigate the concept of connectoids, which captures the connectivity structure of various discrete objects like undirected graphs, directed graphs, bidirected graphs, hypergraphs or finitary matroids.
In this paper we develop a universal end space theory based on connectoids: the end spaces of connectoids unify the existing end spaces of undirected and directed graphs and establish end spaces for bidirected graphs, hypergraphs and finitary matroids.
The main result shows that the tangle-like description of ends in undirected graphs, called directions, extends to connectoids: there is a one-to-one correspondence between the “directions” of a connectoid and its ends. Furthermore, we generalise normal trees of undirected graphs to connectoids and show that normal trees represent the ends of a connectoid as they do for undirected graphs.
在本系列中,我们介绍并研究了连通图的概念,它捕获了各种离散对象的连通性结构,如无向图、有向图、双向图、超图或有限拟阵。
{"title":"Connectoids I: A universal end space theory","authors":"Nathan Bowler,&nbsp;Florian Reich","doi":"10.1016/j.jctb.2025.06.003","DOIUrl":"10.1016/j.jctb.2025.06.003","url":null,"abstract":"<div><div>In this series we introduce and investigate the concept of <em>connectoids</em>, which captures the connectivity structure of various discrete objects like undirected graphs, directed graphs, bidirected graphs, hypergraphs or finitary matroids.</div><div>In this paper we develop a universal end space theory based on connectoids: the end spaces of connectoids unify the existing end spaces of undirected and directed graphs and establish end spaces for bidirected graphs, hypergraphs and finitary matroids.</div><div>The main result shows that the tangle-like description of ends in undirected graphs, called <em>directions</em>, extends to connectoids: there is a one-to-one correspondence between the “directions” of a connectoid and its ends. Furthermore, we generalise normal trees of undirected graphs to connectoids and show that normal trees represent the ends of a connectoid as they do for undirected graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 584-606"},"PeriodicalIF":1.2,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144515440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperbolicity theorems for correspondence colouring 对应着色的双曲性定理
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-06-20 DOI: 10.1016/j.jctb.2025.06.002
Luke Postle , Evelyne Smith-Roberge
We generalize a framework of list colouring results to correspondence colouring. Correspondence colouring is a generalization of list colouring wherein we localize the meaning of the colours available to each vertex. As pointed out by Dvořák and Postle, both of Thomassen's theorems on the 5-choosability of planar graphs and 3-choosability of planar graphs of girth at least five carry over to the correspondence colouring setting. In this paper, we show that the family of graphs that are critical for 5-correspondence colouring as well as the family of graphs of girth at least five that are critical for 3-correspondence colouring form hyperbolic families. Analogous results for list colouring were shown by Postle and Thomas and by Dvořák and Kawarabayashi, respectively. Using results on hyperbolic families due to Postle and Thomas, we show that this implies that there exists a universal constant c such that if Σ is a surface of Euler genus g, every graph of edge-width at least clog(g+1) embedded in Σ is 5-correspondence colourable. This is asymptotically best possible, and improves upon the best known edge-width bound due to Kim, Kostochka, Li, and Zhu. Using results of Dvořák and Kawarabayashi, we show further that there exist linear-time algorithms for the decidability of 5-correspondence colouring for embedded graphs. We show analogous results for 3-correspondence colouring graphs of girth at least five.
我们将列表着色结果的框架推广到对应着色。对应着色是列表着色的一种推广,其中我们对每个顶点可用的颜色的含义进行局部化。Dvořák和Postle指出,托马森关于平面图形的5-可选性定理和周长至少为5的平面图形的3-可选性定理都适用于对应着色设置。本文证明了5对应着色的临界图族和周长至少为5的3对应着色的临界图族构成双曲族。Postle和Thomas以及Dvořák和Kawarabayashi分别给出了列表着色的类似结果。利用Postle和Thomas关于双曲族的结果,我们证明了这意味着存在一个普适常数c,使得如果Σ是欧拉属g的曲面,则嵌入Σ中的每个边宽至少为c⋅log (g+1)的图都是5对应可着色的。这是渐近最佳可能,并且改进了Kim、Kostochka、Li和Zhu给出的最著名的边宽界。利用Dvořák和Kawarabayashi的结果,我们进一步证明了嵌入图的5对应着色的可判定性存在线性时间算法。我们给出了周长至少为5的3对应着色图的类似结果。
{"title":"Hyperbolicity theorems for correspondence colouring","authors":"Luke Postle ,&nbsp;Evelyne Smith-Roberge","doi":"10.1016/j.jctb.2025.06.002","DOIUrl":"10.1016/j.jctb.2025.06.002","url":null,"abstract":"<div><div>We generalize a framework of list colouring results to <em>correspondence colouring</em>. Correspondence colouring is a generalization of list colouring wherein we localize the meaning of the colours available to each vertex. As pointed out by Dvořák and Postle, both of Thomassen's theorems on the 5-choosability of planar graphs and 3-choosability of planar graphs of girth at least five carry over to the correspondence colouring setting. In this paper, we show that the family of graphs that are critical for 5-correspondence colouring as well as the family of graphs of girth at least five that are critical for 3-correspondence colouring form <em>hyperbolic families</em>. Analogous results for list colouring were shown by Postle and Thomas and by Dvořák and Kawarabayashi, respectively. Using results on hyperbolic families due to Postle and Thomas, we show that this implies that there exists a universal constant <em>c</em> such that if Σ is a surface of Euler genus <em>g</em>, every graph of edge-width at least <span><math><mi>c</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> embedded in Σ is 5-correspondence colourable. This is asymptotically best possible, and improves upon the best known edge-width bound due to Kim, Kostochka, Li, and Zhu. Using results of Dvořák and Kawarabayashi, we show further that there exist linear-time algorithms for the decidability of 5-correspondence colouring for embedded graphs. We show analogous results for 3-correspondence colouring graphs of girth at least five.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 29-68"},"PeriodicalIF":1.2,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-degenerate hypergraphs with exponentially many extremal constructions 具有指数多极值结构的非退化超图
IF 1.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-06-13 DOI: 10.1016/j.jctb.2025.06.001
József Balogh , Felix Christian Clemen , Haoran Luo
For every integer t0, denote by F5t the hypergraph on vertex set {1,2,,5+t} with hyperedges {123,124}{34k:5k5+t}. We determine ex(n,F5t) for every t0 and sufficiently large n and characterize the extremal F5t-free hypergraphs. In particular, if n satisfies certain divisibility conditions, then the extremal F5t-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts (V1,V2,V3) in the partition; each part Vi spans a (|Vi|,3,2,t)-design. This generalizes earlier work of Frankl and Füredi on the Turán number of F5:=F50.
Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs F56t, for t1, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.
对于每个整数t小于0,用F5t表示顶点集{1,2,…,5+t}上的超图,超边{123,124}∪{34k:5≤k≤5+t}。我们为每个t小于0和足够大的n确定ex(n,F5t),并表征极端无F5t超图。特别地,如果n满足一定的可除性条件,则无f5t极值超图就是分区中三个部分(V1,V2,V3)内各有附加超边的平衡完全三部超图;每个部分Vi跨越一个(|Vi|,3,2,t)-设计。这概括了Frankl和f redi关于F5:=F50的Turán数的早期工作。我们的结果推广了Erdős和Simonovits关于某些固定图的极值结构的理论。特别是,对于t大于或等于1的超图F56t,是具有指数级许多极值结构和正Turán密度的超图的第一个例子。
{"title":"Non-degenerate hypergraphs with exponentially many extremal constructions","authors":"József Balogh ,&nbsp;Felix Christian Clemen ,&nbsp;Haoran Luo","doi":"10.1016/j.jctb.2025.06.001","DOIUrl":"10.1016/j.jctb.2025.06.001","url":null,"abstract":"<div><div>For every integer <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span>, denote by <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> the hypergraph on vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span> with hyperedges <span><math><mo>{</mo><mn>123</mn><mo>,</mo><mn>124</mn><mo>}</mo><mo>∪</mo><mo>{</mo><mn>34</mn><mi>k</mi><mo>:</mo><mn>5</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span>. We determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span> and sufficiently large <em>n</em> and characterize the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs. In particular, if <em>n</em> satisfies certain divisibility conditions, then the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts <span><math><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> in the partition; each part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> spans a <span><math><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-design. This generalizes earlier work of Frankl and Füredi on the Turán number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>.</div><div>Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>6</mn><mi>t</mi></mrow></msubsup></math></span>, for <span><math><mi>t</mi><mo>⩾</mo><mn>1</mn></math></span>, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 1-28"},"PeriodicalIF":1.2,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Combinatorial Theory Series B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1