Pub Date : 2024-08-30DOI: 10.1016/j.jctb.2024.08.001
László Lovász
Graphings serve as limit objects for bounded-degree graphs. We define the “cycle matroid” of a graphing as a submodular setfunction, with values in , which generalizes (up to normalization) the cycle matroid of finite graphs. We prove that for a Benjamini–Schramm convergent sequence of graphs, the total rank, normalized by the number of nodes, converges to the total rank of the limit graphing.
{"title":"The matroid of a graphing","authors":"László Lovász","doi":"10.1016/j.jctb.2024.08.001","DOIUrl":"10.1016/j.jctb.2024.08.001","url":null,"abstract":"<div><p>Graphings serve as limit objects for bounded-degree graphs. We define the “cycle matroid” of a graphing as a submodular setfunction, with values in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which generalizes (up to normalization) the cycle matroid of finite graphs. We prove that for a Benjamini–Schramm convergent sequence of graphs, the total rank, normalized by the number of nodes, converges to the total rank of the limit graphing.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000674/pdfft?md5=528a3e8bac91d6edbcc14e05198c5db4&pid=1-s2.0-S0095895624000674-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.jctb.2024.08.006
Tom Kelly , Alp Müyesser , Alexey Pokrovskiy
Let G and H be hypergraphs on n vertices, and suppose H has large enough minimum degree to necessarily contain a copy of G as a subgraph. We give a general method to randomly embed G into H with good “spread”. More precisely, for a wide class of G, we find a randomised embedding with the following property: for every s, for any partial embedding of s vertices of G into H, the probability that f extends is at most . This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.
For example, setting , we obtain an asymptotically tight lower bound on the number of embeddings of G into H. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning G still embeds into H after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.
Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.
假设 G 和 H 是 n 个顶点上的超图,又假设 H 的最小度数足够大,必然包含 G 的子图副本。我们给出了一种将 G 随机嵌入 H 且 "传播 "良好的通用方法。更确切地说,对于一类广泛的 G,我们可以找到具有以下性质的随机嵌入 f:GH:对于每 s,对于 G 的 s 个顶点的任何部分嵌入 f′ 到 H,f 扩展 f′ 的概率至多为 O(1/n)s。这是对围绕经典狄拉克型问题的若干研究流的共同概括。例如,设定 s=n,我们得到了 G 嵌入 H 的数量的渐近紧密下限。这恢复并扩展了格洛克、古尔德、约斯、库恩和奥斯特胡斯以及蒙哥马利和帕维斯-西涅关于列举狄拉克超图中的汉密尔顿循环的最新结果。此外,利用围绕卡恩-卡莱猜想(Kahn-Kalai conjecture)的最新进展,这一结果意味着许多狄拉克类型的结果稳健地成立,也就是说,在对 G 的边集进行随机稀疏化之后,G 仍然嵌入 H 中。这使我们能够恢复 Kang、Kelly、Kühn、Osthus 和 Pfenninger 以及 Pham、Sah、Sawhney 和 Simkin 最近关于完全匹配的结果,并获得关于 Dirac 超图中汉密尔顿循环和因子的新结果。
{"title":"Optimal spread for spanning subgraphs of Dirac hypergraphs","authors":"Tom Kelly , Alp Müyesser , Alexey Pokrovskiy","doi":"10.1016/j.jctb.2024.08.006","DOIUrl":"10.1016/j.jctb.2024.08.006","url":null,"abstract":"<div><p>Let <em>G</em> and <em>H</em> be hypergraphs on <em>n</em> vertices, and suppose <em>H</em> has large enough minimum degree to necessarily contain a copy of <em>G</em> as a subgraph. We give a general method to randomly embed <em>G</em> into <em>H</em> with good “spread”. More precisely, for a wide class of <em>G</em>, we find a randomised embedding <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>↪</mo><mi>H</mi></math></span> with the following property: for every <em>s</em>, for any partial embedding <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>s</em> vertices of <em>G</em> into <em>H</em>, the probability that <em>f</em> extends <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is at most <span><math><mi>O</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>. This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.</p><p>For example, setting <span><math><mi>s</mi><mo>=</mo><mi>n</mi></math></span>, we obtain an asymptotically tight lower bound on the number of embeddings of <em>G</em> into <em>H</em>. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning <em>G</em> still embeds into <em>H</em> after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.</p><p>Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000728/pdfft?md5=533c17ed0f6d70854b2dd9d401343fd1&pid=1-s2.0-S0095895624000728-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.jctb.2024.08.003
Ting-Wei Chao , Hung-Hsun Hans Yu
In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with R red, G green, B blue edges, the number of rainbow triangles is at most , which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.
在本文中,我们研究了几个极值组合问题,这些问题要求在给定边数的情况下,求出固定子图的最大副本数。我们称这类问题为 Kruskal-Katona-type 问题。本文将要讨论的大多数问题都与关节问题有关。本文有两个主要结果。首先,我们证明了在一个红边为 R、绿边为 G、蓝边为 B 的三边彩色图中,彩虹三角形的数量最多为 2RGB,这是一个尖锐的结果。其次,我们给出了对 Kruskal-Katona 定理的概括,其中隐含了许多之前的概括。这两个论证都使用了熵方法,主要的创新在于一个更巧妙的论证,改进了希勒不等式给出的界限。
{"title":"Kruskal–Katona-type problems via the entropy method","authors":"Ting-Wei Chao , Hung-Hsun Hans Yu","doi":"10.1016/j.jctb.2024.08.003","DOIUrl":"10.1016/j.jctb.2024.08.003","url":null,"abstract":"<div><p>In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with <em>R</em> red, <em>G</em> green, <em>B</em> blue edges, the number of rainbow triangles is at most <span><math><msqrt><mrow><mn>2</mn><mi>R</mi><mi>G</mi><mi>B</mi></mrow></msqrt></math></span>, which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1016/j.jctb.2024.07.007
Lele Liu
<div><p>Let <em>G</em> be a graph attaining the maximum spectral radius among all connected nonregular graphs of order <em>n</em> with maximum degree Δ. Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the spectral radius of <em>G</em>. A nice conjecture due to Liu et al. (2007) <span><span>[19]</span></span> asserts that<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> for each fixed Δ. Concerning an important structural property of the extremal graphs <em>G</em>, Liu and Li (2008) <span><span>[17]</span></span> put forward another conjecture which states that <em>G</em> has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> by showing that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>≤</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></math></span></span></span> For small Δ, we determine the precise asymptotic behavior of <span><math><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>; and <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>=</mo><msup><
设 G 是最大阶数为 Δ 的所有 n 阶连通非规则图中光谱半径最大的图。Liu 等人(2007)[19] 提出了一个很好的猜想,即对于每个固定的 Δ,limn→∞n2(Δ-λ1(G))Δ-1=π2。关于极值图 G 的一个重要结构性质,刘和李(2008)[17] 提出了另一个猜想,即 G 恰好有一个顶点的度严格小于 Δ。确切地说,我们通过证明limsupn→∞n2(Δ-λ1(G))Δ-1≤π22,推翻了所有Δ≥3 的第一个猜想。对于小 Δ,我们确定了 Δ-λ1(G) 的精确渐近行为。特别是,我们证明了如果Δ=3,limn→∞n2(Δ-λ1(G))/(Δ-1)=π2/4;如果Δ=4,limn→∞n2(Δ-λ1(G))/(Δ-2)=π2/2。我们还通过确定极值图的精确结构,证实了 Δ=3 和 Δ=4 时的第二个猜想。此外,我们还证明了Δ∈{3,4} 的极值图必须具有由特定图块构建的类似路径的结构。
{"title":"Extremal spectral radius of nonregular graphs with prescribed maximum degree","authors":"Lele Liu","doi":"10.1016/j.jctb.2024.07.007","DOIUrl":"10.1016/j.jctb.2024.07.007","url":null,"abstract":"<div><p>Let <em>G</em> be a graph attaining the maximum spectral radius among all connected nonregular graphs of order <em>n</em> with maximum degree Δ. Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the spectral radius of <em>G</em>. A nice conjecture due to Liu et al. (2007) <span><span>[19]</span></span> asserts that<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> for each fixed Δ. Concerning an important structural property of the extremal graphs <em>G</em>, Liu and Li (2008) <span><span>[17]</span></span> put forward another conjecture which states that <em>G</em> has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> by showing that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>≤</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></math></span></span></span> For small Δ, we determine the precise asymptotic behavior of <span><math><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>; and <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>=</mo><msup><","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jctb.2024.07.004
Marko Orel
Given a finite simple graph Γ on n vertices its complementary prism is the graph that is obtained from Γ and its complement by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and . It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of and Γ can attain only the values 1, 2, 4, and 12. It is shown that is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever .
{"title":"The automorphism group of a complementary prism","authors":"Marko Orel","doi":"10.1016/j.jctb.2024.07.004","DOIUrl":"10.1016/j.jctb.2024.07.004","url":null,"abstract":"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.jctb.2024.07.005
Ming Chen , Jie Han , Guanghui Wang , Donglei Yang
Let H be an h-vertex graph. The vertex arboricity of H is the least integer r such that can be partitioned into r parts and each part induces a forest in H. We show that for sufficiently large , every n-vertex graph G with and contains an H-factor, where or . The result can be viewed an analogue of the Alon–Yuster theorem [1] in Ramsey–Turán theory, which generalizes the results of Balogh–Molla–Sharifzadeh [2] and Knierim–Su [21] on clique factors. In particular the degree conditions are asymptotically sharp for infinitely many graphs H which are not cliques.
设 H 是一个 h 顶点图。H 的顶点嵌套度 ar(H) 是最小整数 r,使得 V(H) 可以被分割成 r 部分,且每个部分都在 H 中诱导出一个森林。我们证明,对于足够大的 n∈hN,δ(G)≥max{(1-2f(H)+o(1))n,(12+o(1))n} 且 α(G)=o(n)的每个 n 顶点图 G 都包含一个 H 因子,其中 f(H)=2ar(H) 或 2ar(H)-1。这一结果可以看作是拉姆齐-图兰理论中的阿隆-尤斯特定理[1],它概括了巴洛格-莫拉-谢里夫扎德[2]和克尼林-苏[21]关于簇因子的结果。特别是,对于无限多的非小块图 H 来说,度条件是渐近尖锐的。
{"title":"H-factors in graphs with small independence number","authors":"Ming Chen , Jie Han , Guanghui Wang , Donglei Yang","doi":"10.1016/j.jctb.2024.07.005","DOIUrl":"10.1016/j.jctb.2024.07.005","url":null,"abstract":"<div><p>Let <em>H</em> be an <em>h</em>-vertex graph. The vertex arboricity <span><math><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of <em>H</em> is the least integer <em>r</em> such that <span><math><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> can be partitioned into <em>r</em> parts and each part induces a forest in <em>H</em>. We show that for sufficiently large <span><math><mi>n</mi><mo>∈</mo><mi>h</mi><mi>N</mi></math></span>, every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>,</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>}</mo></mrow></math></span> and <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contains an <em>H</em>-factor, where <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> or <span><math><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The result can be viewed an analogue of the Alon–Yuster theorem <span><span>[1]</span></span> in Ramsey–Turán theory, which generalizes the results of Balogh–Molla–Sharifzadeh <span><span>[2]</span></span> and Knierim–Su <span><span>[21]</span></span> on clique factors. In particular the degree conditions are asymptotically sharp for infinitely many graphs <em>H</em> which are not cliques.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.jctb.2024.07.006
Patrick Chervet , Roland Grappe
A graph G is called perfect if for every induced subgraph H of G, where is the clique number of H and its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph G is perfect if and only if its complement is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.
We prove that both G and are box-perfect if and only if is box-perfect, where is obtained by adding a universal vertex to G. Consequently, is box-perfect if and only if is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.
如果对于 G 的每个诱导子图 H,ω(H)=χ(H),其中ω(H) 是 H 的簇数,χ(H) 是色度数,则图 G 称为完美图。洛瓦兹(Lovász)的弱完全图定理指出,当且仅当一个图 G 的补集 G‾ 是完全图时,它才是完全图。我们证明,当且仅当 G‾+ 是盒状完美图时,G 和 G‾ 都是盒状完美图,其中 G+ 是通过在 G 上添加一个通用顶点得到的。作为推论,我们将描述两个图的完全连接是盒状完美的情况。
{"title":"A weak box-perfect graph theorem","authors":"Patrick Chervet , Roland Grappe","doi":"10.1016/j.jctb.2024.07.006","DOIUrl":"10.1016/j.jctb.2024.07.006","url":null,"abstract":"<div><p>A graph <em>G</em> is called <em>perfect</em> if <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em>, where <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the clique number of <em>H</em> and <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph <em>G</em> is perfect if and only if its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.</p><p>We prove that both <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> are box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect, where <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is obtained by adding a universal vertex to <em>G</em>. Consequently, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000650/pdfft?md5=353ef0de641409c4b03042060f5fe02a&pid=1-s2.0-S0095895624000650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.jctb.2024.07.003
Jérémie Chalopin, Victor Chepoi
In this note, we prove that finite CAT(0) cube complexes can be reconstructed from their boundary distances (computed in their 1-skeleta). This result was conjectured by Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex from the boundary distances is the discrete version of the boundary rigidity problem, which is a classical problem from Riemannian geometry. In the proof, we use the bijection between CAT(0) cube complexes and median graphs, and corner peelings of median graphs.
{"title":"Boundary rigidity of CAT(0) cube complexes","authors":"Jérémie Chalopin, Victor Chepoi","doi":"10.1016/j.jctb.2024.07.003","DOIUrl":"10.1016/j.jctb.2024.07.003","url":null,"abstract":"<div><p>In this note, we prove that finite CAT(0) cube complexes can be reconstructed from their boundary distances (computed in their 1-skeleta). This result was conjectured by Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex from the boundary distances is the discrete version of the boundary rigidity problem, which is a classical problem from Riemannian geometry. In the proof, we use the bijection between CAT(0) cube complexes and median graphs, and corner peelings of median graphs.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.jctb.2024.07.002
Tom Kelly , Luke Postle
In a fractional coloring, vertices of a graph are assigned measurable subsets of the real line and adjacent vertices receive disjoint subsets; the fractional chromatic number of a graph is at most k if it has a fractional coloring in which each vertex receives a subset of of measure at least . We introduce and develop the theory of “fractional colorings with local demands” wherein each vertex “demands” a certain amount of color that is determined by local parameters such as its degree or the clique number of its neighborhood. This framework provides the natural setting in which to generalize degree-sequence type bounds on the independence number. Indeed, by Linear Programming Duality, all of the problems we study have an equivalent formulation as a problem concerning weighted independence numbers, and they often imply new bounds on the independence number.
Our results and conjectures are inspired by many of the most classical results and important open problems concerning the independence number and the chromatic number, often simultaneously. We conjecture a local strengthening of both Shearer's bound on the independence number of triangle-free graphs and the fractional relaxation of Molloy's recent bound on their chromatic number, as well as a longstanding problem of Ajtai et al. on the independence number of -free graphs and the fractional relaxations of Reed's Conjecture and the Total Coloring Conjecture. We prove an approximate version of the first two, and we prove “local demands” versions of Vizing's Theorem and of some χ-boundedness results.
{"title":"Fractional coloring with local demands and applications to degree-sequence bounds on the independence number","authors":"Tom Kelly , Luke Postle","doi":"10.1016/j.jctb.2024.07.002","DOIUrl":"10.1016/j.jctb.2024.07.002","url":null,"abstract":"<div><p>In a fractional coloring, vertices of a graph are assigned measurable subsets of the real line and adjacent vertices receive disjoint subsets; the fractional chromatic number of a graph is at most <em>k</em> if it has a fractional coloring in which each vertex receives a subset of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> of measure at least <span><math><mn>1</mn><mo>/</mo><mi>k</mi></math></span>. We introduce and develop the theory of “fractional colorings with local demands” wherein each vertex “demands” a certain amount of color that is determined by local parameters such as its degree or the clique number of its neighborhood. This framework provides the natural setting in which to generalize degree-sequence type bounds on the independence number. Indeed, by Linear Programming Duality, all of the problems we study have an equivalent formulation as a problem concerning weighted independence numbers, and they often imply new bounds on the independence number.</p><p>Our results and conjectures are inspired by many of the most classical results and important open problems concerning the independence number and the chromatic number, often simultaneously. We conjecture a local strengthening of both Shearer's bound on the independence number of triangle-free graphs and the fractional relaxation of Molloy's recent bound on their chromatic number, as well as a longstanding problem of Ajtai et al. on the independence number of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>-free graphs and the fractional relaxations of Reed's <span><math><mi>ω</mi><mo>,</mo><mi>Δ</mi><mo>,</mo><mi>χ</mi></math></span> Conjecture and the Total Coloring Conjecture. We prove an approximate version of the first two, and we prove “local demands” versions of Vizing's Theorem and of some <em>χ</em>-boundedness results.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.jctb.2024.06.008
Andrea Freschi, Allan Lo
The study of graph discrepancy problems, initiated by Erdős in the 1960s, has received renewed attention in recent years. In general, given a 2-edge-coloured graph G, one is interested in embedding a copy of a graph H in G with large discrepancy (i.e. the copy of H contains significantly more than half of its edges in one colour).
Motivated by this line of research, Gishboliner, Krivelevich and Michaeli considered an oriented version of graph discrepancy for Hamilton cycles. In particular, they conjectured the following generalisation of Dirac's theorem: if G is an oriented graph on vertices with , then G contains a Hamilton cycle with at least edges pointing forwards. In this paper, we present a full resolution to this conjecture.
图差异问题的研究由 Erdős 在 20 世纪 60 年代发起,近年来再次受到关注。一般来说,给定一个两边着色的图 G,人们感兴趣的是在 G 中嵌入一个具有较大差异的图 H 副本(即 H 副本含有明显超过一半的边为一种颜色)。特别是,他们猜想了狄拉克定理的以下概括:如果 G 是 n≥3 个顶点上的δ(G)≥n/2 的定向图,那么 G 包含一个至少有 δ(G) 条边指向前方的汉密尔顿循环。在本文中,我们提出了这一猜想的完整解决方案。
{"title":"An oriented discrepancy version of Dirac's theorem","authors":"Andrea Freschi, Allan Lo","doi":"10.1016/j.jctb.2024.06.008","DOIUrl":"10.1016/j.jctb.2024.06.008","url":null,"abstract":"<div><p>The study of graph discrepancy problems, initiated by Erdős in the 1960s, has received renewed attention in recent years. In general, given a 2-edge-coloured graph <em>G</em>, one is interested in embedding a copy of a graph <em>H</em> in <em>G</em> with large discrepancy (i.e. the copy of <em>H</em> contains significantly more than half of its edges in one colour).</p><p>Motivated by this line of research, Gishboliner, Krivelevich and Michaeli considered an oriented version of graph discrepancy for Hamilton cycles. In particular, they conjectured the following generalisation of Dirac's theorem: if <em>G</em> is an oriented graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>/</mo><mn>2</mn></math></span>, then <em>G</em> contains a Hamilton cycle with at least <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> edges pointing forwards. In this paper, we present a full resolution to this conjecture.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000571/pdfft?md5=c4578c27cd9e214edf177c194b1972bb&pid=1-s2.0-S0095895624000571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}