Pub Date : 2024-07-22DOI: 10.1016/j.jctb.2024.07.001
Patrick Bennett , Ryan Cushman , Andrzej Dudek , Paweł Prałat
A -coloring of is an edge-coloring of where every 4-clique spans at least five colors. We show that there exist -colorings of using colors. This settles a disagreement between Erdős and Gyárfás reported in their 1997 paper. Our construction uses a randomized process which we analyze using the so-called differential equation method to establish dynamic concentration. In particular, our coloring process uses random triangle removal, a process first introduced by Bollobás and Erdős, and analyzed by Bohman, Frieze and Lubetzky.
{"title":"The Erdős-Gyárfás function f(n,4,5)=56n+o(n) — So Gyárfás was right","authors":"Patrick Bennett , Ryan Cushman , Andrzej Dudek , Paweł Prałat","doi":"10.1016/j.jctb.2024.07.001","DOIUrl":"10.1016/j.jctb.2024.07.001","url":null,"abstract":"<div><p>A <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> where every 4-clique spans at least five colors. We show that there exist <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-colorings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> using <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> colors. This settles a disagreement between Erdős and Gyárfás reported in their 1997 paper. Our construction uses a randomized process which we analyze using the so-called differential equation method to establish dynamic concentration. In particular, our coloring process uses random triangle removal, a process first introduced by Bollobás and Erdős, and analyzed by Bohman, Frieze and Lubetzky.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1016/j.jctb.2024.06.005
Matthew Jenssen , Viresh Patel , Guus Regts
We prove that for any graph G of maximum degree at most Δ, the zeros of its chromatic polynomial (in ) lie inside the disc of radius 5.94Δ centered at 0. This improves on the previously best known bound of approximately 6.91Δ.
We also obtain improved bounds for graphs of high girth. We prove that for every g there is a constant such that for any graph G of maximum degree at most Δ and girth at least g, the zeros of its chromatic polynomial lie inside the disc of radius centered at 0, where is the solution to a certain optimization problem. In particular, when and when and tends to approximately 3.86 as .
Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph G to the generating function of so-called broken-circuit-free forests in G. We also establish a zero-free disc for the generating function of all forests in G (aka the partition function of the arboreal gas) which may be of independent interest.
我们证明,对于任何最大度为 Δ 的图 G,其色度多项式 χG(x)(C 中)的零点位于以 0 为圆心、半径为 5.94Δ 的圆盘内。我们证明,对于每个 g,都有一个常数 Kg,使得对于最大度至多为 Δ、周长至少为 g 的任何图 G,其色度多项式 χG(x) 的零点都位于以 0 为圆心、半径为 KgΔ 的圆盘内,其中 Kg 是某个优化问题的解。证明的关键是惠特尼的一个经典定理,它使我们能够将图 G 的色度多项式与 G 中所谓无断路森林的生成函数联系起来。我们还为 G 中所有森林的生成函数(又称树气的分割函数)建立了一个无零圆盘,这可能会引起人们的兴趣。
{"title":"Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem","authors":"Matthew Jenssen , Viresh Patel , Guus Regts","doi":"10.1016/j.jctb.2024.06.005","DOIUrl":"10.1016/j.jctb.2024.06.005","url":null,"abstract":"<div><p>We prove that for any graph <em>G</em> of maximum degree at most Δ, the zeros of its chromatic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (in <span><math><mi>C</mi></math></span>) lie inside the disc of radius 5.94Δ centered at 0. This improves on the previously best known bound of approximately 6.91Δ.</p><p>We also obtain improved bounds for graphs of high girth. We prove that for every <em>g</em> there is a constant <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> such that for any graph <em>G</em> of maximum degree at most Δ and girth at least <em>g</em>, the zeros of its chromatic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> lie inside the disc of radius <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>Δ</mi></math></span> centered at 0, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is the solution to a certain optimization problem. In particular, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mo><</mo><mn>5</mn></math></span> when <span><math><mi>g</mi><mo>≥</mo><mn>5</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mo><</mo><mn>4</mn></math></span> when <span><math><mi>g</mi><mo>≥</mo><mn>25</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> tends to approximately 3.86 as <span><math><mi>g</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph <em>G</em> to the generating function of so-called broken-circuit-free forests in <em>G</em>. We also establish a zero-free disc for the generating function of all forests in <em>G</em> (aka the partition function of the arboreal gas) which may be of independent interest.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009589562400056X/pdfft?md5=75decf318d359a608bc9f520805078ff&pid=1-s2.0-S009589562400056X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1016/j.jctb.2024.06.006
Xiying Du, Yanjia Li, Shijie Xie , Xingxing Yu
A graph G is -linked if, for any distinct vertices in G, there exist disjoint connected subgraphs of G such that and . A fundamental result in structural graph theory is the characterization of -linked graphs. It appears to be difficult to characterize -linked graphs for . In this paper, we provide a partial characterization of -linked graphs. This implies that every -connected graphs G is -linked and for any distinct vertices of G, there is a path P in G between and and avoiding such that is connected, improving a previous connectivity bound of 10m.
如果对于 G 中任何不同的顶点 a1,...,am,b1,b2,存在 G 的互不相交的连通子图 A,B,使得 a1,...,am∈V(A)和 b1,b2∈V(B),则图 G 是 (2,m)-linked 的。结构图理论的一个基本结果是(2,2)连接图的特征描述。要描述 m≥3 的 (2,m) 链接图似乎很难。本文提供了 (2,m) 链接图的部分特征。这意味着每个 (2m+2)-linkected graphs G 都是 (2,m)-linked 的,并且对于 G 的任何不同顶点 a1,...,am,b1,b2,G 中都存在一条路径 P,该路径 P 位于 b1 和 b2 之间,并避开 {a1,...,am},这样 G-P 就是连通的,从而改善了之前 10m 的连通性约束。
{"title":"Linkages and removable paths avoiding vertices","authors":"Xiying Du, Yanjia Li, Shijie Xie , Xingxing Yu","doi":"10.1016/j.jctb.2024.06.006","DOIUrl":"10.1016/j.jctb.2024.06.006","url":null,"abstract":"<div><p>A graph <em>G</em> is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked if, for any distinct vertices <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in <em>G</em>, there exist disjoint connected subgraphs <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> of <em>G</em> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span>. A fundamental result in structural graph theory is the characterization of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-linked graphs. It appears to be difficult to characterize <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked graphs for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we provide a partial characterization of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked graphs. This implies that every <span><math><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-connected graphs <em>G</em> is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked and for any distinct vertices <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of <em>G</em>, there is a path <em>P</em> in <em>G</em> between <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and avoiding <span><math><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mi>G</mi><mo>−</mo><mi>P</mi></math></span> is connected, improving a previous connectivity bound of 10<em>m</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jctb.2024.06.007
Shaun M. Fallat , H. Tracy Hall , Rupert H. Levene , Seth A. Meyer , Shahla Nasserasr , Polona Oblak , Helena Šmigoc
Given a graph G, consider the family of real symmetric matrices with the property that the pattern of their nonzero off-diagonal entries corresponds to the edges of G. For the past 30 years a central problem has been to determine which spectra are realizable in this matrix class. Using combinatorial methods, we identify a family of graphs and multiplicity lists whose realizable spectra are highly restricted. In particular, we construct trees with multiplicity lists that require a unique spectrum, up to shifting and scaling. This represents the most extreme possible failure of spectral arbitrariness for a multiplicity list, and greatly extends all previously known instances of this phenomenon, in which only single linear constraints on the eigenvalues were observed.
给定一个图 G,考虑实对称矩阵族,其非零对角线项的模式对应于 G 的边。通过组合方法,我们确定了一系列图形和多重性列表,它们的可实现光谱受到了很大限制。特别是,我们构建的树与多重性列表需要唯一的频谱,直至移位和缩放。这代表了多重性列表频谱任意性可能出现的最极端故障,并大大扩展了之前已知的所有这种现象的实例,在这些实例中,只观察到对特征值的单一线性约束。
{"title":"Spectral arbitrariness for trees fails spectacularly","authors":"Shaun M. Fallat , H. Tracy Hall , Rupert H. Levene , Seth A. Meyer , Shahla Nasserasr , Polona Oblak , Helena Šmigoc","doi":"10.1016/j.jctb.2024.06.007","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.06.007","url":null,"abstract":"<div><p>Given a graph <em>G</em>, consider the family of real symmetric matrices with the property that the pattern of their nonzero off-diagonal entries corresponds to the edges of <em>G</em>. For the past 30 years a central problem has been to determine which spectra are realizable in this matrix class. Using combinatorial methods, we identify a family of graphs and multiplicity lists whose realizable spectra are highly restricted. In particular, we construct trees with multiplicity lists that require a unique spectrum, up to shifting and scaling. This represents the most extreme possible failure of spectral arbitrariness for a multiplicity list, and greatly extends all previously known instances of this phenomenon, in which only single linear constraints on the eigenvalues were observed.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.jctb.2024.06.004
Alexander Sidorenko
Let denote an r-uniform hypergraph with k edges and vertices, where (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are for all , and for . We prove that as . In the case , we prove as , and for all r.
{"title":"Turán numbers of r-graphs on r + 1 vertices","authors":"Alexander Sidorenko","doi":"10.1016/j.jctb.2024.06.004","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.06.004","url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-uniform hypergraph with <em>k</em> edges and <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices, where <span><math><mi>k</mi><mo>≤</mo><mi>r</mi><mo>+</mo><mn>1</mn></math></span> (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></msup></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>. We prove that <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>. In the case <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>, we prove <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for all <em>r</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1016/j.jctb.2024.06.003
Barnabás Janzer , Oliver Janzer
Given a graph H, let denote the smallest k for which the following holds. We can assign a k-colouring of the edge set of to each vertex v in with the property that for any copy T of H in , there is some such that every edge in T has a different colour in .
The study of this function was initiated by Alon and Ben-Eliezer. They characterized the family of graphs H for which is bounded and asked whether it is true that for every other graph is polynomial. We show that this is not the case and characterize the family of connected graphs H for which grows polynomially. Answering another question of theirs, we also prove that for every , there is some such that for all sufficiently large n.
Finally, we show that the above problem is connected to the Erdős–Gyárfás function in Ramsey Theory, and prove a family of special cases of a conjecture of Conlon, Fox, Lee and Sudakov by showing that for each fixed r the complete r-uniform hypergraph can be edge-coloured using a subpolynomial number of colours in such a way that at least r colours appear among any vertices.
给定一个图 H,让 g(n,H) 表示以下条件成立的最小 k。我们可以为 Kn 中的每个顶点 v 指定 Kn 边集的 k 颜色 fv,其性质是:对于 Kn 中 H 的任意副本 T,存在某个 u∈V(T),使得 T 中的每条边在 fu 中都有不同的颜色。他们描述了 g(n,H) 是有界的图 H 族的特征,并询问对于其他所有图,g(n,H) 是否都是多项式。我们证明情况并非如此,并描述了 g(n,H) 多项式增长的连通图 H 族的特征。为了回答他们的另一个问题,我们还证明了对于每一个 ε>0,存在某个 r=r(ε),使得对于所有足够大的 n,g(n,Kr)≥n1-ε。最后,我们证明了上述问题与拉姆齐理论中的厄尔多斯-吉亚法函数相关联,并证明了康伦、福克斯、李和苏达科夫猜想的一系列特例,即对于每个固定的 r,完整的 r-Uniform 超图 Kn(r) 可以用亚对数个颜色进行边着色,从而在任意 r+1 个顶点中至少出现 r 个颜色。
{"title":"On locally rainbow colourings","authors":"Barnabás Janzer , Oliver Janzer","doi":"10.1016/j.jctb.2024.06.003","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.06.003","url":null,"abstract":"<div><p>Given a graph <em>H</em>, let <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> denote the smallest <em>k</em> for which the following holds. We can assign a <em>k</em>-colouring <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> of the edge set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to each vertex <em>v</em> in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with the property that for any copy <em>T</em> of <em>H</em> in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, there is some <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> such that every edge in <em>T</em> has a different colour in <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span>.</p><p>The study of this function was initiated by Alon and Ben-Eliezer. They characterized the family of graphs <em>H</em> for which <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is bounded and asked whether it is true that for every other graph <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is polynomial. We show that this is not the case and characterize the family of connected graphs <em>H</em> for which <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> grows polynomially. Answering another question of theirs, we also prove that for every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, there is some <span><math><mi>r</mi><mo>=</mo><mi>r</mi><mo>(</mo><mi>ε</mi><mo>)</mo></math></span> such that <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span> for all sufficiently large <em>n</em>.</p><p>Finally, we show that the above problem is connected to the Erdős–Gyárfás function in Ramsey Theory, and prove a family of special cases of a conjecture of Conlon, Fox, Lee and Sudakov by showing that for each fixed <em>r</em> the complete <em>r</em>-uniform hypergraph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></math></span> can be edge-coloured using a subpolynomial number of colours in such a way that at least <em>r</em> colours appear among any <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000546/pdfft?md5=c788a611b09dbcf09c42762059e241f5&pid=1-s2.0-S0095895624000546-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.jctb.2024.06.001
Mario Grobler , Yiting Jiang , Patrice Ossona de Mendez , Sebastian Siebertz , Alexandre Vigny
We study the connections between the notions of combinatorial discrepancy and graph degeneracy. In particular, we prove that the maximum discrepancy over all subgraphs H of a graph G of the neighborhood set system of H is sandwiched between and , where denotes the degeneracy of G. We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers and deduce a new characterization of bounded expansion classes.
Then we switch to a model theoretical point of view, introduce pointer structures, and study their relations to graph classes with bounded expansion. We deduce that a monotone class of graphs has bounded expansion if and only if all the set systems definable in this class have bounded hereditary discrepancy.
Using known bounds on the VC-density of set systems definable in nowhere dense classes we also give a characterization of nowhere dense classes in terms of discrepancy.
As consequences of our results, we obtain a corollary on the discrepancy of neighborhood set systems of edge colored graphs, a polynomial-time algorithm to compute ε-approximations of size for set systems definable in bounded expansion classes, an application to clique coloring, and even the non-existence of a quantifier elimination scheme for nowhere dense classes.
我们研究了组合差异和图退化概念之间的联系。特别是,我们证明了 H 的邻集系统图 G 的所有子图 H 的最大差异介于 Ω(logdeg(G)) 和 O(deg(G)) 之间,其中 deg(G) 表示 G 的退化度。我们将这一结果扩展到与弱着色数和图幂差异有关的不等式,并推导出有界扩展类的新特征。然后,我们转换到模型理论的视角,引入指针结构,并研究它们与有界扩展图类的关系。我们推导出,当且仅当一个单调图类中所有可定义的集合系统都具有有界遗传差异时,该类才具有有界扩展。作为我们结果的后果,我们得到了关于边缘着色图的邻域集合系统差异的推论、计算可定义在有界扩展类中的集合系统的大小为 O(1/ε)的ε近似的多项式时间算法、对簇着色的应用,甚至无处密集类的量词消除方案的不存在。
{"title":"Discrepancy and sparsity","authors":"Mario Grobler , Yiting Jiang , Patrice Ossona de Mendez , Sebastian Siebertz , Alexandre Vigny","doi":"10.1016/j.jctb.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.06.001","url":null,"abstract":"<div><p>We study the connections between the notions of combinatorial discrepancy and graph degeneracy. In particular, we prove that the maximum discrepancy over all subgraphs <em>H</em> of a graph <em>G</em> of the neighborhood set system of <em>H</em> is sandwiched between <span><math><mi>Ω</mi><mo>(</mo><mi>log</mi><mo></mo><mrow><mi>deg</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><mrow><mi>deg</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>, where <span><math><mrow><mi>deg</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the degeneracy of <em>G</em>. We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers and deduce a new characterization of bounded expansion classes.</p><p>Then we switch to a model theoretical point of view, introduce pointer structures, and study their relations to graph classes with bounded expansion. We deduce that a monotone class of graphs has bounded expansion if and only if all the set systems definable in this class have bounded hereditary discrepancy.</p><p>Using known bounds on the VC-density of set systems definable in nowhere dense classes we also give a characterization of nowhere dense classes in terms of discrepancy.</p><p>As consequences of our results, we obtain a corollary on the discrepancy of neighborhood set systems of edge colored graphs, a polynomial-time algorithm to compute <em>ε</em>-approximations of size <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><mi>ε</mi><mo>)</mo></math></span> for set systems definable in bounded expansion classes, an application to clique coloring, and even the non-existence of a quantifier elimination scheme for nowhere dense classes.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000479/pdfft?md5=97cbf43709b71d4492c5bca6fe7f4ac7&pid=1-s2.0-S0095895624000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141434512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.jctb.2024.05.006
Simona Boyadzhiyska , Thomas Lesgourgues
A graph G is q-Ramsey for a q-tuple of graphs if for every q-coloring of the edges of G there exists a monochromatic copy of in color i for some . Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are q-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.
如果对于 G 的边的每 q 种颜色,在某个 i∈[q]中都存在 Hi 的单色副本,那么对于图的 q 组(H1,...,Hq)来说,图 G 是 q-Ramsey 图。在过去的几十年里,研究人员研究了许多与这一概念相关的问题,旨在了解对于固定元组而言具有 q-Ramsey 的图的性质。在研究这类问题的过程中开发的工具包括小工具图,即信号发送器和确定器,它们已被证明在构建具有某些属性的拉姆齐图时非常有用。然而,到目前为止,这些小工具主要是在双色或对称多色环境中被证明存在和使用,而我们对多色非对称图元存在的了解极为有限。在本文中,我们为任何元组构建了这种小工具。然后,我们利用这些小工具将这一领域的三个经典定理推广到非对称多色环境中。
{"title":"On the use of senders for asymmetric tuples of cliques in Ramsey theory","authors":"Simona Boyadzhiyska , Thomas Lesgourgues","doi":"10.1016/j.jctb.2024.05.006","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.05.006","url":null,"abstract":"<div><p>A graph <em>G</em> is <em>q-Ramsey</em> for a <em>q</em>-tuple of graphs <span><math><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> if for every <em>q</em>-coloring of the edges of <em>G</em> there exists a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in color <em>i</em> for some <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>q</mi><mo>]</mo></math></span>. Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are <em>q</em>-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000455/pdfft?md5=2b7bd0f20408d42167594cf123d9f0c1&pid=1-s2.0-S0095895624000455-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.jctb.2024.06.002
Ruoyu Wang
Given a tree T of order n, one can contract any edge and obtain a new tree of order . In 1983, Jamison made a conjecture that the mean subtree order, i.e., the average order of all subtrees, decreases at least in contracting an edge of a tree. In 2023, Luo, Xu, Wagner and Wang proved the case when the edge to be contracted is a pendant edge. In this article, we prove that the conjecture is true in general.
给定一棵阶数为 n 的树 T,可以收缩任意一条边,得到一棵阶数为 n-1 的新树 T⁎。1983 年,Jamison 提出了一个猜想,即在收缩树的一条边时,平均子树序(即所有子树的平均序)至少会减少 13。2023 年,Luo、Xu、Wagner 和 Wang 证明了要收缩的边是垂边时的情况。在本文中,我们将证明该猜想在一般情况下为真。
{"title":"On the difference of mean subtree orders under edge contraction","authors":"Ruoyu Wang","doi":"10.1016/j.jctb.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.06.002","url":null,"abstract":"<div><p>Given a tree <em>T</em> of order <em>n</em>, one can contract any edge and obtain a new tree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of order <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. In 1983, Jamison made a conjecture that the mean subtree order, i.e., the average order of all subtrees, decreases at least <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> in contracting an edge of a tree. In 2023, Luo, Xu, Wagner and Wang proved the case when the edge to be contracted is a pendant edge. In this article, we prove that the conjecture is true in general.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000467/pdfft?md5=bc686935124fe54d5af1a2d92fba12b9&pid=1-s2.0-S0095895624000467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.jctb.2024.05.005
Cai Heng Li , Cheryl E. Praeger , Shu Jiao Song
A well-known theorem of Sabidussi shows that a simple G-arc-transitive graph can be represented as a coset graph for the group G. This pivotal result is the standard way to turn problems about simple arc-transitive graphs into questions about groups. In this paper, the Sabidussi representation is extended to arc-transitive, not necessarily simple graphs which satisfy a local-finiteness condition: namely graphs with finite valency and finite edge-multiplicity. The construction yields a G-arc-transitive coset graph , where are stabilisers in G of a vertex and incident edge, respectively. A first major application is presented concerning arc-transitive maps on surfaces: given a group with and finite, the coset graph is shown, under suitable finiteness assumptions, to have exactly two different arc-transitive embeddings as a G-arc-transitive map (with the sets of vertices, edges and faces, respectively), namely, a G-rotary map if is finite, and a G-bi-rotary map if is finite. The G-rotary map can be represented as a coset geometry for G, extending the notion of a coset graph. However the G-bi-rotary map does not have such a representation, and the face boundary cycles must be specified in addition to incidences between faces and edges. In addition a coset geometry construction is given of a flag-regular map for non necessarily simple graphs. For all of these constructions it is proved that the face boundary cycles are simple cycles precisely when the given group acts faithfully on . Illustrative examples are given for graphs related to the n-dimensional hypercubes and the Petersen graph.
萨比杜西(Sabidussi)的一个著名定理表明,简单的 G-弧透图可以表示为群 G 的余集图。这一关键结果是将简单弧透图问题转化为群问题的标准方法。在本文中,萨比杜西表示法被扩展到了满足局部有限性条件的弧遍历图,而不一定是简单图:即具有有限价和有限边多重性的图。该构造产生了一个 G-弧遍历余集图 Cos(G,H,J),其中 H,J 分别是顶点和入射边在 G 中的稳定器。本文提出的第一个主要应用涉及曲面上的弧跨映射:给定一个组 G=〈a,z〉,|z|=2,|a|有限,在适当的有限性假设下,证明了余集图 Cos(G,〈a〉,〈z〉) 作为 G-弧透映射 (V. E,F) 有两种不同的弧透嵌入、E,F)(V,E,F 分别为顶点集、边集和面集),即如果 |az| 有限,则为 G 旋转图;如果 |zza| 有限,则为 G 双旋转图。G 旋转图可以表示为 G 的余集几何,扩展了余集图的概念。然而 G-bi-rotary 映射没有这样的表示法,除了面与边之间的发生率之外,还必须指定面边界循环。此外,还给出了非简单图的旗正则图(V,E,F)的余集几何构造。对于所有这些构造,都证明了当给定的群忠实地作用于 V∪F 时,面边界循环正是简单循环。文中给出了与 n 维超立方体和彼得森图有关的图的示例。
{"title":"Locally finite vertex-rotary maps and coset graphs with finite valency and finite edge multiplicity","authors":"Cai Heng Li , Cheryl E. Praeger , Shu Jiao Song","doi":"10.1016/j.jctb.2024.05.005","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.05.005","url":null,"abstract":"<div><p>A well-known theorem of Sabidussi shows that a simple <em>G</em>-arc-transitive graph can be represented as a coset graph for the group <em>G</em>. This pivotal result is the standard way to turn problems about simple arc-transitive graphs into questions about groups. In this paper, the Sabidussi representation is extended to arc-transitive, not necessarily simple graphs which satisfy a local-finiteness condition: namely graphs with finite valency and finite edge-multiplicity. The construction yields a <em>G</em>-arc-transitive coset graph <span><math><mrow><mi>Cos</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>J</mi><mo>)</mo></math></span>, where <span><math><mi>H</mi><mo>,</mo><mi>J</mi></math></span> are stabilisers in <em>G</em> of a vertex and incident edge, respectively. A first major application is presented concerning arc-transitive maps on surfaces: given a group <span><math><mi>G</mi><mo>=</mo><mo>〈</mo><mi>a</mi><mo>,</mo><mi>z</mi><mo>〉</mo></math></span> with <span><math><mo>|</mo><mi>z</mi><mo>|</mo><mo>=</mo><mn>2</mn></math></span> and <span><math><mo>|</mo><mi>a</mi><mo>|</mo></math></span> finite, the coset graph <span><math><mrow><mi>Cos</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mo>〈</mo><mi>a</mi><mo>〉</mo><mo>,</mo><mo>〈</mo><mi>z</mi><mo>〉</mo><mo>)</mo></math></span> is shown, under suitable finiteness assumptions, to have exactly two different arc-transitive embeddings as a <em>G</em>-arc-transitive map <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> (with <span><math><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>F</mi></math></span> the sets of vertices, edges and faces, respectively), namely, a <em>G-rotary</em> map if <span><math><mo>|</mo><mi>a</mi><mi>z</mi><mo>|</mo></math></span> is finite, and a <em>G-bi-rotary</em> map if <span><math><mo>|</mo><mi>z</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>|</mo></math></span> is finite. The <em>G</em>-rotary map can be represented as a coset geometry for <em>G</em>, extending the notion of a coset graph. However the <em>G</em>-bi-rotary map does not have such a representation, and the face boundary cycles must be specified in addition to incidences between faces and edges. In addition a coset geometry construction is given of a flag-regular map <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for non necessarily simple graphs. For all of these constructions it is proved that the face boundary cycles are simple cycles precisely when the given group acts faithfully on <span><math><mi>V</mi><mo>∪</mo><mi>F</mi></math></span>. Illustrative examples are given for graphs related to the <em>n</em>-dimensional hypercubes and the Petersen graph.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}