Pub Date : 2024-08-01Epub Date: 2023-10-12DOI: 10.1080/10543406.2023.2256835
Heiko Götte, Marietta Kirchner, Johannes Krisam, Arthur Allignol, Armin Schüler, Meinhard Kieser
There are good reasons to perform a randomized controlled trial (RCT) even in early phases of clinical development. However, the low sample sizes in those settings lead to high variability of the treatment effect estimate. The variability could be reduced by adding external control data if available. For the common setting of suitable subject-level control group data only available from one external (clinical trial or real-world) data source, we evaluate different analysis options for estimating the treatment effect via hazard ratios. The impact of the external control data is usually guided by the level of similarity with the current RCT data. Such level of similarity can be determined via outcome and/or baseline covariate data comparisons. We provide an overview over existing methods, propose a novel option for a combined assessment of outcome and baseline data, and compare a selected set of approaches in a simulation study under varying assumptions regarding observable and unobservable confounder distributions using a time-to-event model. Our various simulation scenarios also reflect the differences between external clinical trial and real-world data. Data combinations via simple outcome-based borrowing or simple propensity score weighting with baseline covariate data are not recommended. Analysis options which conflate outcome and baseline covariate data perform best in our simulation study.
{"title":"Estimation of treatment effects in early-phase randomized clinical trials involving external control data.","authors":"Heiko Götte, Marietta Kirchner, Johannes Krisam, Arthur Allignol, Armin Schüler, Meinhard Kieser","doi":"10.1080/10543406.2023.2256835","DOIUrl":"10.1080/10543406.2023.2256835","url":null,"abstract":"<p><p>There are good reasons to perform a randomized controlled trial (RCT) even in early phases of clinical development. However, the low sample sizes in those settings lead to high variability of the treatment effect estimate. The variability could be reduced by adding external control data if available. For the common setting of suitable subject-level control group data only available from one external (clinical trial or real-world) data source, we evaluate different analysis options for estimating the treatment effect via hazard ratios. The impact of the external control data is usually guided by the level of similarity with the current RCT data. Such level of similarity can be determined via outcome and/or baseline covariate data comparisons. We provide an overview over existing methods, propose a novel option for a combined assessment of outcome and baseline data, and compare a selected set of approaches in a simulation study under varying assumptions regarding observable and unobservable confounder distributions using a time-to-event model. Our various simulation scenarios also reflect the differences between external clinical trial and real-world data. Data combinations via simple outcome-based borrowing or simple propensity score weighting with baseline covariate data are not recommended. Analysis options which conflate outcome and baseline covariate data perform best in our simulation study.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"680-699"},"PeriodicalIF":1.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2023-10-19DOI: 10.1080/10543406.2023.2269262
Shi-Fang Qiu, Xiao-Liang Zhang, Ying-Qiu Qu, Yuan-Quan Han
This paper discusses the problem of disease prevalence in clinical studies, focusing on multiple comparisons based on stratified partially validated series in the presence of a gold standard. Five test statistics, including two Wald-type test statistics, the inverse hyperbolic tangent transformation test statistic, likelihood ratio test statistic, and score test statistic, are proposed to conduct multiple comparisons. To control the overall type I error rate, several adjustment procedures are developed, namely the Bonferroni, Single-step adjusted MaxT, Single-step adjusted MinP, Holm's Step-down, and Hochberg's step-up procedures, based on these test statistics. The performance of the proposed methods is evaluated through simulation studies in terms of the empirical type I error rate and empirical power. Simulation results show that the Single-step adjusted MaxT procedure and Single-step adjusted MinP procedure generally outperform the other three procedures, and these two test procedures based on all test statistics have satisfactory performance. Notably, the Single-step adjusted MinP procedure tends to exhibit higher empirical power than the Single-step adjusted MaxT procedure. Furthermore, the Step-down and Step-up procedures show greater power compared to the Bonferroni method. The study also observes that as the validated ratio increases, the empirical type I errors of all test procedures approach the nominal level while maintaining higher power. Two real examples are presented to illustrate the proposed methods.
{"title":"Multiple test procedures of disease prevalence based on stratified partially validated series in the presence of a gold standard.","authors":"Shi-Fang Qiu, Xiao-Liang Zhang, Ying-Qiu Qu, Yuan-Quan Han","doi":"10.1080/10543406.2023.2269262","DOIUrl":"10.1080/10543406.2023.2269262","url":null,"abstract":"<p><p>This paper discusses the problem of disease prevalence in clinical studies, focusing on multiple comparisons based on stratified partially validated series in the presence of a gold standard. Five test statistics, including two Wald-type test statistics, the inverse hyperbolic tangent transformation test statistic, likelihood ratio test statistic, and score test statistic, are proposed to conduct multiple comparisons. To control the overall type I error rate, several adjustment procedures are developed, namely the Bonferroni, Single-step adjusted MaxT, Single-step adjusted MinP, Holm's Step-down, and Hochberg's step-up procedures, based on these test statistics. The performance of the proposed methods is evaluated through simulation studies in terms of the empirical type I error rate and empirical power. Simulation results show that the Single-step adjusted MaxT procedure and Single-step adjusted MinP procedure generally outperform the other three procedures, and these two test procedures based on all test statistics have satisfactory performance. Notably, the Single-step adjusted MinP procedure tends to exhibit higher empirical power than the Single-step adjusted MaxT procedure. Furthermore, the Step-down and Step-up procedures show greater power compared to the Bonferroni method. The study also observes that as the validated ratio increases, the empirical type I errors of all test procedures approach the nominal level while maintaining higher power. Two real examples are presented to illustrate the proposed methods.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"753-774"},"PeriodicalIF":1.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-30DOI: 10.1080/10543406.2024.2358796
Ping Gao, Weidong Zhang
The failure rates of phase 3 trials are high. Incorrect sample size due to uncertainty of effect size could be a critical contributing factor. Adaptive sequential design (ASD), which may include one or more sample size re-estimations (SSR), has been a popular approach for dealing with such uncertainties. The operating characteristics (OCs) of ASD, including the unconditional power and mean sample size, can be substantially affected by many factors, including the planned sample size, the interim analysis schedule and choice of critical boundaries and rules for interim analysis. We propose a systematic, comprehensive strategy which uses iterative simulations to investigate the operating characteristics of adaptive designs and help achieve adequate unconditional power and cost-effective mean sample size if the effect size is in a pre-identified range.
{"title":"A systematic approach to adaptive sequential design for clinical trials: using simulations to select a design with desired operating characteristics.","authors":"Ping Gao, Weidong Zhang","doi":"10.1080/10543406.2024.2358796","DOIUrl":"10.1080/10543406.2024.2358796","url":null,"abstract":"<p><p>The failure rates of phase 3 trials are high. Incorrect sample size due to uncertainty of effect size could be a critical contributing factor. Adaptive sequential design (ASD), which may include one or more sample size re-estimations (SSR), has been a popular approach for dealing with such uncertainties. The operating characteristics (OCs) of ASD, including the unconditional power and mean sample size, can be substantially affected by many factors, including the planned sample size, the interim analysis schedule and choice of critical boundaries and rules for interim analysis. We propose a systematic, comprehensive strategy which uses iterative simulations to investigate the operating characteristics of adaptive designs and help achieve adequate unconditional power and cost-effective mean sample size if the effect size is in a pre-identified range.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"737-752"},"PeriodicalIF":1.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1080/10543406.2024.2373436
William H Olson, Ibrahim Turkoz
In a prospective observational study (POS) designed to assess the average causal effect of a treatment (e.g. Drug A) compared to a comparator (e.g. Drug B) in the treatment population, enrolling all patients who are assigned to the treatments of interest for follow-up has a potentially large negative impact on the statistical efficiency and bias of the analysis of the outcomes and on the cost of the study. "Up-front matching" is an innovative enrollment method for selecting patients for long-term follow-up among those who have already been assigned to treatment or comparator which uses frequency matching and hence avoids the restrictions of individual matching that other methods have used. To achieve potential statistical and logistical efficiencies in the POS, in up-front matching, a target population is defined based on a retrospective database which then enables selecting populations of patients for follow-up that have desirable statistical properties. In particular, the resulting populations of patients who are enrolled look like the population of treatment patients were randomized to treatment or comparator for the baseline covariates that are used to select patients for follow-up. The method is illustrated in detail for a study designed to assess the effect of injectable antipsychotics versus oral antipsychotics.
{"title":"Up-front matching: an ongoing recruitment method for prospective observational studies that mimics randomization for selected baseline covariates.","authors":"William H Olson, Ibrahim Turkoz","doi":"10.1080/10543406.2024.2373436","DOIUrl":"https://doi.org/10.1080/10543406.2024.2373436","url":null,"abstract":"<p><p>In a prospective observational study (POS) designed to assess the average causal effect of a treatment (e.g. Drug A) compared to a comparator (e.g. Drug B) in the treatment population, enrolling all patients who are assigned to the treatments of interest for follow-up has a potentially large negative impact on the statistical efficiency and bias of the analysis of the outcomes and on the cost of the study. \"Up-front matching\" is an innovative enrollment method for selecting patients for long-term follow-up among those who have already been assigned to treatment or comparator which uses frequency matching and hence avoids the restrictions of individual matching that other methods have used. To achieve potential statistical and logistical efficiencies in the POS, in up-front matching, a target population is defined based on a retrospective database which then enables selecting populations of patients for follow-up that have desirable statistical properties. In particular, the resulting populations of patients who are enrolled look like the population of treatment patients were randomized to treatment or comparator for the baseline covariates that are used to select patients for follow-up. The method is illustrated in detail for a study designed to assess the effect of injectable antipsychotics versus oral antipsychotics.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-14"},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1080/10543406.2024.2379357
Xin Wei, Xiaosong Li, Ziyan Guo
Dose selection and optimization in early phase of oncology drug development serves as the foundation for the success of late phases drug development. Bivariate Bayesian logistic regression model (BLRM) is a widely utilized model-based algorithm that has been shown to improve the accuracy for identifying recommended phase 2 dose (RP2D) based on dose-limiting-toxicity (DLT) over traditional method such as 3 + 3. However, it remains a challenge to optimize dose selection that strikes a proper balance between safety and efficacy in escalation and expansion phase of phase I trials. In this paper, we first use a phase I clinical trial to demonstrate how the variability of drug exposure related to pharmacokinetic (PK) parameters among trial participants may add to the difficulties of identifying optimal dose. We use simulation to show that concurrently or retrospectively fitting BLRM model for dose/toxicity data from escalation phase with dose-independent PK parameters as covariate lead to improved accuracy of identifying dose level at which DLT rate is within a prespecified toxicity interval. Furthermore, we proposed both model- and rule-based methods to modify dose at patient level in expansion cohorts based on their PK/exposure parameters. Simulation studies show this approach leads to higher likelihood for a dose level with a manageable toxicity and desirable efficacy margin to be advanced to late phase pipeline after being screened at expansion phase of phase I trial.
肿瘤药物开发早期的剂量选择和优化是后期药物开发成功的基础。双变量贝叶斯逻辑回归模型(BLRM)是一种广泛使用的基于模型的算法,与 3 + 3 等传统方法相比,它已被证明能提高根据剂量限制毒性(DLT)确定第二阶段推荐剂量(RP2D)的准确性。然而,在 I 期试验的升级和扩展阶段,如何优化剂量选择,在安全性和有效性之间取得适当平衡,仍然是一项挑战。在本文中,我们首先利用一项 I 期临床试验来说明试验参与者之间与药代动力学(PK)参数相关的药物暴露的变异性是如何增加确定最佳剂量的难度的。我们通过模拟实验表明,同时或回顾性地对升级阶段的剂量/毒性数据拟合 BLRM 模型,并将与剂量无关的 PK 参数作为协变量,可提高确定 DLT 发生率在预设毒性区间内的剂量水平的准确性。此外,我们还提出了基于模型和规则的方法,以根据患者的 PK/暴露参数修改扩增队列中患者的剂量。模拟研究表明,这种方法能使毒性可控且疗效理想的剂量水平更有可能在 I 期试验的扩增阶段通过筛选后进入后期阶段。
{"title":"Leveraging pharmacokinetic parameters as covariate in Bayesian logistic regression model to optimize dose selection in early phase oncology trial.","authors":"Xin Wei, Xiaosong Li, Ziyan Guo","doi":"10.1080/10543406.2024.2379357","DOIUrl":"https://doi.org/10.1080/10543406.2024.2379357","url":null,"abstract":"<p><p>Dose selection and optimization in early phase of oncology drug development serves as the foundation for the success of late phases drug development. Bivariate Bayesian logistic regression model (BLRM) is a widely utilized model-based algorithm that has been shown to improve the accuracy for identifying recommended phase 2 dose (RP2D) based on dose-limiting-toxicity (DLT) over traditional method such as 3 + 3. However, it remains a challenge to optimize dose selection that strikes a proper balance between safety and efficacy in escalation and expansion phase of phase I trials. In this paper, we first use a phase I clinical trial to demonstrate how the variability of drug exposure related to pharmacokinetic (PK) parameters among trial participants may add to the difficulties of identifying optimal dose. We use simulation to show that concurrently or retrospectively fitting BLRM model for dose/toxicity data from escalation phase with dose-independent PK parameters as covariate lead to improved accuracy of identifying dose level at which DLT rate is within a prespecified toxicity interval. Furthermore, we proposed both model- and rule-based methods to modify dose at patient level in expansion cohorts based on their PK/exposure parameters. Simulation studies show this approach leads to higher likelihood for a dose level with a manageable toxicity and desirable efficacy margin to be advanced to late phase pipeline after being screened at expansion phase of phase I trial.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-22"},"PeriodicalIF":1.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1080/10543406.2024.2374850
Yingqiu Li, Xun Zhang, Zhimao Weng
In this paper, we propose a new Bayesian adaptive design, score-goldilocks design, which has the same algorithmic idea as goldilocks design. The score-goldilocks design leads to a uniform formula for calculating the probability of trial success for different endpoint trials by using the normal approximation. The simulation results show that the score-goldilocks design is not only very similar to the goldilocks design in terms of operating characteristics such as type 1 error, power, average sample size, probability of stop for futility, and probability of early stop for success, but also greatly saves the calculation time and improves the operation efficiency.
{"title":"The score-goldilocks design for phase 3 clinical trials.","authors":"Yingqiu Li, Xun Zhang, Zhimao Weng","doi":"10.1080/10543406.2024.2374850","DOIUrl":"https://doi.org/10.1080/10543406.2024.2374850","url":null,"abstract":"<p><p>In this paper, we propose a new Bayesian adaptive design, score-goldilocks design, which has the same algorithmic idea as goldilocks design. The score-goldilocks design leads to a uniform formula for calculating the probability of trial success for different endpoint trials by using the normal approximation. The simulation results show that the score-goldilocks design is not only very similar to the goldilocks design in terms of operating characteristics such as type 1 error, power, average sample size, probability of stop for futility, and probability of early stop for success, but also greatly saves the calculation time and improves the operation efficiency.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-10"},"PeriodicalIF":1.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1080/10543406.2024.2373452
M Iftakhar Alam, Barbara Bogacka, D Stephen Coad
Recently, interest has grown in the development of dose-finding methods that consider both toxicity and efficacy as endpoints. Along with responses on these, the incorporation of pharmacokinetic (PK) data can be beneficial in terms of patients' safety and can also increase the efficiency of the design for finding the best dose for the next phase. In this paper, the maximum concentration () is used as the PK measure guiding the dose selection. The ethically attractive approach, which is based on the probability of efficacy, is used as a dose optimisation criterion. At each stage of an adaptive trial, that dose is selected for which the criterion is maximised, subject to the constraints imposed on the and the probability of toxicity. The inter-patient variability of the PK model parameters is considered, and population -optimal sampling time points for measuring the concentration of a drug in the blood are calculated. The method is illustrated with a one-compartment PK model with first-order absorption, with the parameters being assumed to be random. The Cox model for bivariate binary responses is employed to model the dose-response outcomes. The results of a simulation study for several plausible dose-response scenarios show a significant gain in the efficiency of the design, as well as a reduction in the proportion of toxic responses.
{"title":"A constrained optimum adaptive design for dose finding in early phase clinical trials.","authors":"M Iftakhar Alam, Barbara Bogacka, D Stephen Coad","doi":"10.1080/10543406.2024.2373452","DOIUrl":"10.1080/10543406.2024.2373452","url":null,"abstract":"<p><p>Recently, interest has grown in the development of dose-finding methods that consider both toxicity and efficacy as endpoints. Along with responses on these, the incorporation of pharmacokinetic (PK) data can be beneficial in terms of patients' safety and can also increase the efficiency of the design for finding the best dose for the next phase. In this paper, the maximum concentration (<math><mrow><msub><mi>C</mi><mrow><mo>max</mo></mrow></msub></mrow></math>) is used as the PK measure guiding the dose selection. The ethically attractive approach, which is based on the probability of efficacy, is used as a dose optimisation criterion. At each stage of an adaptive trial, that dose is selected for which the criterion is maximised, subject to the constraints imposed on the <math><mrow><msub><mi>C</mi><mrow><mo>max</mo></mrow></msub></mrow></math> and the probability of toxicity. The inter-patient variability of the PK model parameters is considered, and population <math><mi>D</mi></math>-optimal sampling time points for measuring the concentration of a drug in the blood are calculated. The method is illustrated with a one-compartment PK model with first-order absorption, with the parameters being assumed to be random. The Cox model for bivariate binary responses is employed to model the dose-response outcomes. The results of a simulation study for several plausible dose-response scenarios show a significant gain in the efficiency of the design, as well as a reduction in the proportion of toxic responses.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-26"},"PeriodicalIF":1.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1080/10543406.2024.2373449
Shu Yang, Xiang Zhang
{"title":"Response to comment on \"Transporting survival of an HIV clinical trial to the external target populations by Lee et al. (2024)\".","authors":"Shu Yang, Xiang Zhang","doi":"10.1080/10543406.2024.2373449","DOIUrl":"10.1080/10543406.2024.2373449","url":null,"abstract":"","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03Epub Date: 2023-07-17DOI: 10.1080/10543406.2023.2236208
Ziqing Wang, Jingyi Zhang, Tian Xia, Ruyue He, Fangrong Yan
In recent years, combined therapy shows expected treatment effect as they increase dose intensity, work on multiple targets and benefit more patients for antitumor treatment. However, dose -finding designs for combined therapy face a number of challenges. Therefore, under the framework of phase I-II, we propose a two-stage dose -finding design to identify the biologically optimal dose combination (BODC), defined as the one with the maximum posterior mean utility under acceptable safety. We model the probabilities of toxicity and efficacy by using linear logistic regression models and conduct Bayesian model selection (BMS) procedure to define the most likely pattern of dose-response surface. The BMS can adaptively select the most suitable model during the trial, making the results robust. We investigated the operating characteristics of the proposed design through simulation studies under various practical scenarios and showed that the proposed design is robust and performed well.
{"title":"A Bayesian phase I-II clinical trial design to find the biological optimal dose on drug combination.","authors":"Ziqing Wang, Jingyi Zhang, Tian Xia, Ruyue He, Fangrong Yan","doi":"10.1080/10543406.2023.2236208","DOIUrl":"10.1080/10543406.2023.2236208","url":null,"abstract":"<p><p>In recent years, combined therapy shows expected treatment effect as they increase dose intensity, work on multiple targets and benefit more patients for antitumor treatment. However, dose -finding designs for combined therapy face a number of challenges. Therefore, under the framework of phase I-II, we propose a two-stage dose -finding design to identify the biologically optimal dose combination (BODC), defined as the one with the maximum posterior mean utility under acceptable safety. We model the probabilities of toxicity and efficacy by using linear logistic regression models and conduct Bayesian model selection (BMS) procedure to define the most likely pattern of dose-response surface. The BMS can adaptively select the most suitable model during the trial, making the results robust. We investigated the operating characteristics of the proposed design through simulation studies under various practical scenarios and showed that the proposed design is robust and performed well.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"582-595"},"PeriodicalIF":1.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9824714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03Epub Date: 2023-07-15DOI: 10.1080/10543406.2023.2234028
Xinlin Lu, Guogen Shan
In recent years, adaptive randomization methods have gained significant popularity in clinical research and trial design due to their ability to provide both efficiency and flexibility in adjusting the statistical procedures of ongoing clinical trials. For a study to compare multiple treatments, a multi-arm two-stage design could be utilized to select the best treatment from the first stage and further compare that treatment with control in the second stage. The traditional design used equal randomization in both stages. To better utilize the interim results from the first stage, we propose to develop response adaptive randomization two-stage designs for a multi-arm clinical trial with binary outcome. Two allocation methods are considered: (1) an optimal allocation based on a sequential design; (2) the play-the-winner rule. Optimal multi-arm two-stage designs are obtained under three criteria: minimizing the expected number of failures, minimizing the average expected sample size, and minimizing the expected sample size under the null hypothesis. Simulation studies show that the proposed adaptive design based on the play-the-winner rule has good performance. A phase II trial for patients with pancreas adenocarcinoma and a germline BRCAPALB2 mutation was used to illustrate the application of the proposed response adaptive randomization designs.
近年来,自适应随机化方法在临床研究和试验设计中大受欢迎,因为它既能提高效率,又能灵活调整正在进行的临床试验的统计程序。对于比较多种治疗方法的研究,可采用多臂两阶段设计,从第一阶段选择最佳治疗方法,并在第二阶段进一步比较该治疗方法与对照组。传统的设计在两个阶段都采用了相同的随机化。为了更好地利用第一阶段的中期结果,我们建议为二元结果的多臂临床试验开发响应自适应随机化两阶段设计。我们考虑了两种分配方法:(1) 基于顺序设计的最优分配;(2) 胜者为王规则。最优的多臂两阶段设计有三个标准:最小化预期失败次数、最小化平均预期样本量和最小化零假设下的预期样本量。模拟研究表明,基于胜者为王规则提出的自适应设计具有良好的性能。一项针对胰腺腺癌和种系 BRCA/PALB2 基因突变患者的 II 期试验被用来说明所提出的反应自适应随机化设计的应用。
{"title":"Two-stage response adaptive randomization designs for multi-arm trials with binary outcome.","authors":"Xinlin Lu, Guogen Shan","doi":"10.1080/10543406.2023.2234028","DOIUrl":"10.1080/10543406.2023.2234028","url":null,"abstract":"<p><p>In recent years, adaptive randomization methods have gained significant popularity in clinical research and trial design due to their ability to provide both efficiency and flexibility in adjusting the statistical procedures of ongoing clinical trials. For a study to compare multiple treatments, a multi-arm two-stage design could be utilized to select the best treatment from the first stage and further compare that treatment with control in the second stage. The traditional design used equal randomization in both stages. To better utilize the interim results from the first stage, we propose to develop response adaptive randomization two-stage designs for a multi-arm clinical trial with binary outcome. Two allocation methods are considered: (1) an optimal allocation based on a sequential design; (2) the play-the-winner rule. Optimal multi-arm two-stage designs are obtained under three criteria: minimizing the expected number of failures, minimizing the average expected sample size, and minimizing the expected sample size under the null hypothesis. Simulation studies show that the proposed adaptive design based on the play-the-winner rule has good performance. A phase II trial for patients with pancreas adenocarcinoma and a germline BRCA<math><mrow><mo>/</mo></mrow></math>PALB2 mutation was used to illustrate the application of the proposed response adaptive randomization designs.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"526-538"},"PeriodicalIF":1.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9782235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}