Pub Date : 2024-10-01Epub Date: 2024-04-01DOI: 10.1080/10543406.2024.2330206
Bradley Hupf, Yunlong Yang, Ryan Gryder, Veronica Bunn, Jianchang Lin
Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.
{"title":"Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data.","authors":"Bradley Hupf, Yunlong Yang, Ryan Gryder, Veronica Bunn, Jianchang Lin","doi":"10.1080/10543406.2024.2330206","DOIUrl":"10.1080/10543406.2024.2330206","url":null,"abstract":"<p><p>Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"944-952"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-04-01DOI: 10.1080/10543406.2024.2330202
Meihua Long, Jiali Song, Zhiwei Rong, Lan Mi, Yuqin Song, Yan Hou
The incorporation of real-world data (RWD) into medical product development and evaluation has exhibited consistent growth. However, there is no universally adopted method of how much information to borrow from external data. This paper proposes a study design methodology called Tree-based Monte Carlo (TMC) that dynamically integrates patients from various RWD sources to calculate the treatment effect based on the similarity between clinical trial and RWD. Initially, a propensity score is developed to gauge the resemblance between clinical trial data and each real-world dataset. Utilizing this similarity metric, we construct a hierarchical clustering tree that delineates varying degrees of similarity between each RWD source and the clinical trial data. Ultimately, a Gaussian process methodology is employed across this hierarchical clustering framework to synthesize the projected treatment effects of the external group. Simulation result shows that our clustering tree could successfully identify similarity. Data sources exhibiting greater similarity with clinical trial are accorded higher weights in treatment estimation process, while less congruent sources receive comparatively lower emphasis. Compared with another Bayesian method, meta-analytic predictive prior (MAP), our proposed method's estimator is closer to the true value and has smaller bias.
{"title":"Adaptively leverage multiple real-world data sources for treatment effect estimation based on similarity.","authors":"Meihua Long, Jiali Song, Zhiwei Rong, Lan Mi, Yuqin Song, Yan Hou","doi":"10.1080/10543406.2024.2330202","DOIUrl":"10.1080/10543406.2024.2330202","url":null,"abstract":"<p><p>The incorporation of real-world data (RWD) into medical product development and evaluation has exhibited consistent growth. However, there is no universally adopted method of how much information to borrow from external data. This paper proposes a study design methodology called Tree-based Monte Carlo (TMC) that dynamically integrates patients from various RWD sources to calculate the treatment effect based on the similarity between clinical trial and RWD. Initially, a propensity score is developed to gauge the resemblance between clinical trial data and each real-world dataset. Utilizing this similarity metric, we construct a hierarchical clustering tree that delineates varying degrees of similarity between each RWD source and the clinical trial data. Ultimately, a Gaussian process methodology is employed across this hierarchical clustering framework to synthesize the projected treatment effects of the external group. Simulation result shows that our clustering tree could successfully identify similarity. Data sources exhibiting greater similarity with clinical trial are accorded higher weights in treatment estimation process, while less congruent sources receive comparatively lower emphasis. Compared with another Bayesian method, meta-analytic predictive prior (MAP), our proposed method's estimator is closer to the true value and has smaller bias.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"853-863"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-21DOI: 10.1080/10543406.2024.2330204
Weijia Mai, Shein-Chung Chow
In recent years, clinical trials utilizing a two-stage seamless adaptive trial design have become very popular in drug development. A typical example is a phase 2/3 adaptive trial design, which consists of two stages. As an example, stage 1 is for a phase 2 dose-finding study and stage 2 is for a phase 3 efficacy confirmation study. Depending upon whether or not the target patient population, study objectives, and study endpoints are the same at different stages, Chow (2020) classified two-stage seamless adaptive design into eight categories. In practice, standard statistical methods for group sequential design with one planned interim analysis are often wrongly directly applied for data analysis. In this article, following similar ideas proposed by Chow and Lin (2015) and Chow (2020), a statistical method for the analysis of a two-stage seamless adaptive trial design with different study endpoints and shifted target patient population is discussed under the fundamental assumption that study endpoints have a known relationship. The proposed analysis method should be useful in both clinical trials with protocol amendments and clinical trials with the existence of disease progression utilizing a two-stage seamless adaptive trial design.
{"title":"Analysis of innovative two-stage seamless adaptive design with different endpoints and population shift.","authors":"Weijia Mai, Shein-Chung Chow","doi":"10.1080/10543406.2024.2330204","DOIUrl":"10.1080/10543406.2024.2330204","url":null,"abstract":"<p><p>In recent years, clinical trials utilizing a two-stage seamless adaptive trial design have become very popular in drug development. A typical example is a phase 2/3 adaptive trial design, which consists of two stages. As an example, stage 1 is for a phase 2 dose-finding study and stage 2 is for a phase 3 efficacy confirmation study. Depending upon whether or not the target patient population, study objectives, and study endpoints are the same at different stages, Chow (2020) classified two-stage seamless adaptive design into eight categories. In practice, standard statistical methods for group sequential design with one planned interim analysis are often wrongly directly applied for data analysis. In this article, following similar ideas proposed by Chow and Lin (2015) and Chow (2020), a statistical method for the analysis of a two-stage seamless adaptive trial design with different study endpoints and shifted target patient population is discussed under the fundamental assumption that study endpoints have a known relationship. The proposed analysis method should be useful in both clinical trials with protocol amendments and clinical trials with the existence of disease progression utilizing a two-stage seamless adaptive trial design.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"993-1006"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-29DOI: 10.1080/10543406.2024.2330211
Runjia Li, Liwen Wu, Rachael Liu, Jianchang Lin
The 2-in-1 design is becoming popular in oncology drug development, with the flexibility in using different endpoints at different decision time. Based on the observed interim data, sponsors can choose to seamlessly advance a small phase 2 trial to a full-scale confirmatory phase 3 trial with a pre-determined maximum sample size or remain in a phase 2 trial. While this approach may increase efficiency in drug development, it is rigid and requires a pre-specified fixed sample size. In this paper, we propose a flexible 2-in-1 design with sample size adaptation, while retaining the advantage of allowing an intermediate endpoint for interim decision-making. The proposed design reflects the needs of the recent FDA's Project FrontRunner initiative, which encourages the use of an earlier surrogate endpoint to potentially support accelerated approval with conversion to standard approval with long-term endpoints from the same randomized study. Additionally, we identify the interim decision cut-off to allow a conventional test procedure at the final analysis. Extensive simulation studies showed that the proposed design requires much a smaller sample size and shorter timeline than the simple 2-in-1 design, while achieving similar power. We present a case study in multiple myeloma to demonstrate the benefits of the proposed design.
{"title":"Flexible seamless 2-in-1 design with sample size adaptation.","authors":"Runjia Li, Liwen Wu, Rachael Liu, Jianchang Lin","doi":"10.1080/10543406.2024.2330211","DOIUrl":"10.1080/10543406.2024.2330211","url":null,"abstract":"<p><p>The 2-in-1 design is becoming popular in oncology drug development, with the flexibility in using different endpoints at different decision time. Based on the observed interim data, sponsors can choose to seamlessly advance a small phase 2 trial to a full-scale confirmatory phase 3 trial with a pre-determined maximum sample size or remain in a phase 2 trial. While this approach may increase efficiency in drug development, it is rigid and requires a pre-specified fixed sample size. In this paper, we propose a flexible 2-in-1 design with sample size adaptation, while retaining the advantage of allowing an intermediate endpoint for interim decision-making. The proposed design reflects the needs of the recent FDA's Project FrontRunner initiative, which encourages the use of an earlier surrogate endpoint to potentially support accelerated approval with conversion to standard approval with long-term endpoints from the same randomized study. Additionally, we identify the interim decision cut-off to allow a conventional test procedure at the final analysis. Extensive simulation studies showed that the proposed design requires much a smaller sample size and shorter timeline than the simple 2-in-1 design, while achieving similar power. We present a case study in multiple myeloma to demonstrate the benefits of the proposed design.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1007-1025"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-23DOI: 10.1080/10543406.2024.2330216
Dasom Lee, Chenyin Gao, Sujit Ghosh, Shu Yang
Due to the heterogeneity of the randomized controlled trial (RCT) and external target populations, the estimated treatment effect from the RCT is not directly applicable to the target population. For example, the patient characteristics of the ACTG 175 HIV trial are significantly different from that of the three external target populations of interest: US early-stage HIV patients, Thailand HIV patients, and southern Ethiopia HIV patients. This paper considers several methods to transport the treatment effect from the ACTG 175 HIV trial to the target populations beyond the trial population. Most transport methods focus on continuous and binary outcomes; on the contrary, we derive and discuss several transport methods for survival outcomes: an outcome regression method based on a Cox proportional hazard (PH) model, an inverse probability weighting method based on the models for treatment assignment, sampling score, and censoring, and a doubly robust method that combines both methods, called the augmented calibration weighting (ACW) method. However, as the PH assumption was found to be incorrect for the ACTG 175 trial, the methods that depend on the PH assumption may lead to the biased quantification of the treatment effect. To account for the violation of the PH assumption, we extend the ACW method with the linear spline-based hazard regression model that does not require the PH assumption. Applying the aforementioned methods for transportability, we explore the effect of PH assumption, or the violation thereof, on transporting the survival results from the ACTG 175 trial to various external populations.
由于随机对照试验(RCT)和外部目标人群的异质性,RCT 估计的治疗效果并不能直接适用于目标人群。例如,ACTG 175 HIV 试验的患者特征与三个外部目标人群的特征存在显著差异:美国早期 HIV 患者、泰国 HIV 患者和埃塞俄比亚南部 HIV 患者。本文考虑了几种将 ACTG 175 HIV 试验的治疗效果转移到试验人群以外的目标人群的方法。大多数转运方法侧重于连续和二元结局;相反,我们推导并讨论了几种生存结局的转运方法:基于 Cox 比例危险(PH)模型的结局回归法,基于治疗分配、抽样分数和普查模型的逆概率加权法,以及结合两种方法的双重稳健方法,即增强校准加权法(ACW)。然而,由于在 ACTG 175 试验中发现 PH 假设不正确,依赖 PH 假设的方法可能会导致治疗效果的量化出现偏差。为了考虑违反 PH 假设的情况,我们使用不需要 PH 假设的基于线性样条的危险回归模型来扩展 ACW 方法。应用上述可迁移性方法,我们探讨了 PH 假设或违反 PH 假设对将 ACTG 175 试验的生存结果迁移到各种外部人群的影响。
{"title":"Transporting survival of an HIV clinical trial to the external target populations.","authors":"Dasom Lee, Chenyin Gao, Sujit Ghosh, Shu Yang","doi":"10.1080/10543406.2024.2330216","DOIUrl":"10.1080/10543406.2024.2330216","url":null,"abstract":"<p><p>Due to the heterogeneity of the randomized controlled trial (RCT) and external target populations, the estimated treatment effect from the RCT is not directly applicable to the target population. For example, the patient characteristics of the ACTG 175 HIV trial are significantly different from that of the three external target populations of interest: US early-stage HIV patients, Thailand HIV patients, and southern Ethiopia HIV patients. This paper considers several methods to transport the treatment effect from the ACTG 175 HIV trial to the target populations beyond the trial population. Most transport methods focus on continuous and binary outcomes; on the contrary, we derive and discuss several transport methods for survival outcomes: an outcome regression method based on a Cox proportional hazard (PH) model, an inverse probability weighting method based on the models for treatment assignment, sampling score, and censoring, and a doubly robust method that combines both methods, called the augmented calibration weighting (ACW) method. However, as the PH assumption was found to be incorrect for the ACTG 175 trial, the methods that depend on the PH assumption may lead to the biased quantification of the treatment effect. To account for the violation of the PH assumption, we extend the ACW method with the linear spline-based hazard regression model that does not require the PH assumption. Applying the aforementioned methods for transportability, we explore the effect of PH assumption, or the violation thereof, on transporting the survival results from the ACTG 175 trial to various external populations.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"922-943"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1080/10543406.2024.2399203
Moritz Pohl, Lukas D Sauer, Meinhard Kieser
The majority of statistical methods to share information in basket trials are based on a Bayesian hierarchical model with a common normal distribution for the logit-transformed response rates. The methods are of varying complexity, yet they all use this basic model. Generally, complexity is an obstacle for the application in clinical trials and that includes the use of the logit-transformation. The transformation complicates the model and impedes a direct interpretation of the hyperparameters. On the other hand, there exist basket trial designs which directly work on the probability scale of the response rate which facilitates the understanding of the model for many stakeholders. In order to reduce unnecessary complexity, we considered using a hierarchical beta-binomial model instead of the transformed models. This article investigates whether this approach is a practicable alternative to the commonly applied sharing tools based on a logit-transformation of the response rates. For this purpose, we performed a systematic comparison of the two models, starting with the distributional assumptions for the response rates, continuing with the Bayesian behavior together with binomial data in an independent setting and ended with a simulation study for the hierarchical model under various data and prior scenarios. All Bayesian comparisons require equal starting points, wherefore we propose a calibration procedure to choose similar priors for the models. The evaluation of the sharing property additionally required an evaluation measure for simulation results, which we derived in this work. The conclusion of the comparison is that the hierarchical beta-binomial model is a feasible alternative basic model to share information in basket trials.
{"title":"Assessing the hierarchical beta-binomial model as a basic information sharing tool in basket trials.","authors":"Moritz Pohl, Lukas D Sauer, Meinhard Kieser","doi":"10.1080/10543406.2024.2399203","DOIUrl":"https://doi.org/10.1080/10543406.2024.2399203","url":null,"abstract":"<p><p>The majority of statistical methods to share information in basket trials are based on a Bayesian hierarchical model with a common normal distribution for the logit-transformed response rates. The methods are of varying complexity, yet they all use this basic model. Generally, complexity is an obstacle for the application in clinical trials and that includes the use of the logit-transformation. The transformation complicates the model and impedes a direct interpretation of the hyperparameters. On the other hand, there exist basket trial designs which directly work on the probability scale of the response rate which facilitates the understanding of the model for many stakeholders. In order to reduce unnecessary complexity, we considered using a hierarchical beta-binomial model instead of the transformed models. This article investigates whether this approach is a practicable alternative to the commonly applied sharing tools based on a logit-transformation of the response rates. For this purpose, we performed a systematic comparison of the two models, starting with the distributional assumptions for the response rates, continuing with the Bayesian behavior together with binomial data in an independent setting and ended with a simulation study for the hierarchical model under various data and prior scenarios. All Bayesian comparisons require equal starting points, wherefore we propose a calibration procedure to choose similar priors for the models. The evaluation of the sharing property additionally required an evaluation measure for simulation results, which we derived in this work. The conclusion of the comparison is that the hierarchical beta-binomial model is a feasible alternative basic model to share information in basket trials.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-33"},"PeriodicalIF":1.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-22DOI: 10.1080/10543406.2024.2403435
Paul Faya, Tianhui Zhang, Wendy Walton, Steven Novick
Bioassays are regulated, analytical methods used to ensure proper activity (potency) of biological products at release and during long-term storage. Potency is commonly reported on a relative basis by comparing and calibrating a concentration-response curve from the test material to that of a reference standard material. The relative potency approach depends on an assumption that the two concentration-response curves exhibit similar (equivalent) shapes, except for a potency shift. In certain circumstances, however, biological factors preclude the similarity assumption, and the traditional approach becomes unworkable. The antibody-mediated cytotoxicity assay is one example where the similarity assumption does not always hold. Other examples also arise in the fields of toxicology and pharmacology. In this work, we present a non-constant mean relative potency approach which averages the relative potency across a common range of the concentration-response curves. The proposed method captures the changing nature of the relative potency into a summary statistic that can be reported for batch calibration and quality control purposes. We provide inferential methods for this statistic and summarize the results of a simulation comparing these methods across a number of non-constant relative potency scenarios and assay conditions.
{"title":"Non-constant mean relative potency for antibody-dependent cellular cytotoxicity assays.","authors":"Paul Faya, Tianhui Zhang, Wendy Walton, Steven Novick","doi":"10.1080/10543406.2024.2403435","DOIUrl":"https://doi.org/10.1080/10543406.2024.2403435","url":null,"abstract":"<p><p>Bioassays are regulated, analytical methods used to ensure proper activity (potency) of biological products at release and during long-term storage. Potency is commonly reported on a relative basis by comparing and calibrating a concentration-response curve from the test material to that of a reference standard material. The relative potency approach depends on an assumption that the two concentration-response curves exhibit similar (equivalent) shapes, except for a potency shift. In certain circumstances, however, biological factors preclude the similarity assumption, and the traditional approach becomes unworkable. The antibody-mediated cytotoxicity assay is one example where the similarity assumption does not always hold. Other examples also arise in the fields of toxicology and pharmacology. In this work, we present a non-constant mean relative potency approach which averages the relative potency across a common range of the concentration-response curves. The proposed method captures the changing nature of the relative potency into a summary statistic that can be reported for batch calibration and quality control purposes. We provide inferential methods for this statistic and summarize the results of a simulation comparing these methods across a number of non-constant relative potency scenarios and assay conditions.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-12"},"PeriodicalIF":1.2,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-22DOI: 10.1080/10543406.2024.2395542
Jianbo Xu
Single and multiple random change points (RCPs) in survival analysis have arisen naturally in oncology trials, where the time to hazard rate change differs from one subject to another. Recently, Xu formulated and discovered important properties of these survival models using a frequentist approach, allowing us to estimate the hazard rates, rate parameters of the exponential distributions for the RCPs, expected survival and hazard functions. However, these methods did not provide an estimation of the uncertainty or the confidence intervals for the parameters and their differences or ratios. Therefore, statistical inferences were not able to be drawn on the parameters and their comparisons. To solve this issue, this article implements a Gibbs sampler method to estimate the above parameters and the differences or ratios alongside the 100(1 )% highest posterior density (HPD) intervals calculated from Chen-Shao's algorithm. The estimated rate parameters from the methods in Xu serve as empirical values in the Gibbs sampler method. Thus, formal statistical inferences can now be readily drawn. Simulation studies demonstrate that the proposed methods yield robust estimates, with the samples from the marginal posterior distributions converging rapidly and exhibiting favorable behavior. The 95% HPD intervals also demonstrate excellent coverage probabilities. This proposed method has a multitude of applications in clinical trials such as efficient clinical trial design and sample size adjustment based on the estimated parameter values at interim analyses.
{"title":"Bayesian analyses of multiple random change points in survival models with applications to clinical trials.","authors":"Jianbo Xu","doi":"10.1080/10543406.2024.2395542","DOIUrl":"https://doi.org/10.1080/10543406.2024.2395542","url":null,"abstract":"<p><p>Single and multiple random change points (RCPs) in survival analysis have arisen naturally in oncology trials, where the time to hazard rate change differs from one subject to another. Recently, Xu formulated and discovered important properties of these survival models using a frequentist approach, allowing us to estimate the hazard rates, rate parameters of the exponential distributions for the RCPs, expected survival and hazard functions. However, these methods did not provide an estimation of the uncertainty or the confidence intervals for the parameters and their differences or ratios. Therefore, statistical inferences were not able to be drawn on the parameters and their comparisons. To solve this issue, this article implements a Gibbs sampler method to estimate the above parameters and the differences or ratios alongside the 100(1 <math><mo>-</mo></math> <math><mi>α</mi></math>)% highest posterior density (HPD) intervals calculated from Chen-Shao's algorithm. The estimated rate parameters from the methods in Xu serve as empirical values in the Gibbs sampler method. Thus, formal statistical inferences can now be readily drawn. Simulation studies demonstrate that the proposed methods yield robust estimates, with the samples from the marginal posterior distributions converging rapidly and exhibiting favorable behavior. The 95% HPD intervals also demonstrate excellent coverage probabilities. This proposed method has a multitude of applications in clinical trials such as efficient clinical trial design and sample size adjustment based on the estimated parameter values at interim analyses.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1080/10543406.2024.2403442
Yu Deng, Yunzhao Xing, Jason Quach, Xiaotian Chen, Xiaoqiang Wu, Yafei Zhang, Charlotte Moureaud, Mengjia Yu, Yujie Zhao, Li Wang, Sheng Zhong
Adverse drug events (ADEs) are one of the major causes of hospital admissions and are associated with increased morbidity and mortality. Post-marketing ADE identification is one of the most important phases of drug safety surveillance. Traditionally, data sources for post-marketing surveillance mainly come from spontaneous reporting system such as the Food and Drug Administration Adverse Event Reporting System (FAERS). Social media data such as posts on X (formerly Twitter) contain rich patient and medication information and could potentially accelerate drug surveillance research. However, ADE information in social media data is usually locked in the text, making it difficult to be employed by traditional statistical approaches. In recent years, large language models (LLMs) have shown promise in many natural language processing tasks. In this study, we developed several LLMs to perform ADE classification on X data. We fine-tuned various LLMs including BERT-base, Bio_ClinicalBERT, RoBERTa, and RoBERTa-large. We also experimented ChatGPT few-shot prompting and ChatGPT fine-tuned on the whole training data. We then evaluated the model performance based on sensitivity, specificity, negative predictive value, positive predictive value, accuracy, F1-measure, and area under the ROC curve. Our results showed that RoBERTa-large achieved the best F1-measure (0.8) among all models followed by ChatGPT fine-tuned model with F1-measure of 0.75. Our feature importance analysis based on 1200 random samples and RoBERTa-Large showed the most important features are as follows: "withdrawals"/"withdrawal", "dry", "dealing", "mouth", and "paralysis". The good model performance and clinically relevant features show the potential of LLMs in augmenting ADE detection for post-marketing drug safety surveillance.
{"title":"Developing large language models to detect adverse drug events in posts on x.","authors":"Yu Deng, Yunzhao Xing, Jason Quach, Xiaotian Chen, Xiaoqiang Wu, Yafei Zhang, Charlotte Moureaud, Mengjia Yu, Yujie Zhao, Li Wang, Sheng Zhong","doi":"10.1080/10543406.2024.2403442","DOIUrl":"https://doi.org/10.1080/10543406.2024.2403442","url":null,"abstract":"<p><p>Adverse drug events (ADEs) are one of the major causes of hospital admissions and are associated with increased morbidity and mortality. Post-marketing ADE identification is one of the most important phases of drug safety surveillance. Traditionally, data sources for post-marketing surveillance mainly come from spontaneous reporting system such as the Food and Drug Administration Adverse Event Reporting System (FAERS). Social media data such as posts on X (formerly Twitter) contain rich patient and medication information and could potentially accelerate drug surveillance research. However, ADE information in social media data is usually locked in the text, making it difficult to be employed by traditional statistical approaches. In recent years, large language models (LLMs) have shown promise in many natural language processing tasks. In this study, we developed several LLMs to perform ADE classification on X data. We fine-tuned various LLMs including BERT-base, Bio_ClinicalBERT, RoBERTa, and RoBERTa-large. We also experimented ChatGPT few-shot prompting and ChatGPT fine-tuned on the whole training data. We then evaluated the model performance based on sensitivity, specificity, negative predictive value, positive predictive value, accuracy, F1-measure, and area under the ROC curve. Our results showed that RoBERTa-large achieved the best F1-measure (0.8) among all models followed by ChatGPT fine-tuned model with F1-measure of 0.75. Our feature importance analysis based on 1200 random samples and RoBERTa-Large showed the most important features are as follows: \"withdrawals\"/\"withdrawal\", \"dry\", \"dealing\", \"mouth\", and \"paralysis\". The good model performance and clinically relevant features show the potential of LLMs in augmenting ADE detection for post-marketing drug safety surveillance.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-12"},"PeriodicalIF":1.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}