首页 > 最新文献

Journal of Biomechanical Engineering-Transactions of the Asme最新文献

英文 中文
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. 瓣膜方向对生物人工肺动脉瓣血液动力学和瓣叶动力学影响的计算研究。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066178
Kwang Bem Ko, Jung-Hee Seo, Ashish Doshi, Danielle Gottlieb Sen, Rajat Mittal

Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.

肺动脉瓣不像心脏中的其他瓣膜那样显示纤维环;因此,肺动脉瓣可以在右心室流出道(RVOT)内的多个方向和位置植入。这使外科医生在植入瓣膜时有了更大的自由度,但同时也造成了植入位置的不确定性,尤其是瓣膜方向的不确定性。我们通过流体-结构相互作用模型研究了不同方向的 PVR 的肺动脉血流动力学和瓣叶动力学。我们将肺动脉分支的典型模型与肺动脉瓣的动态模型相结合,并由此量化了瓣膜植入方向对瓣后血流动力学和瓣叶动力学的影响。我们分析了湍流动能、肺动脉分支流量分布、瓣膜开口面积投影以及瓣叶压差等指标。我们的研究结果表明,偏离轴线的取向会导致更高的压力、流量和能量不对称,这可能会对植入生物人工瓣膜的长期耐久性产生影响。
{"title":"Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves.","authors":"Kwang Bem Ko, Jung-Hee Seo, Ashish Doshi, Danielle Gottlieb Sen, Rajat Mittal","doi":"10.1115/1.4066178","DOIUrl":"10.1115/1.4066178","url":null,"abstract":"<p><p>Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer. 不规则几何形状和复杂进给波如何影响脉动动脉传质。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4065556
Wayne Strasser

Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.

阿尔茨海默病是一种渐进性退行性疾病,对人的记忆力有不同程度的影响。它被认为是由于蛋白质在大脑中被称为血管周围间隙(PVS)的充满液体的小空间中堆积所致。PVS 通常以环形区域的形式存在于动脉周围,被用作大脑的蛋白质清除系统。为了分析 PVS 中的传质模式,对小鼠大脑 PVS 部分进行了数字化扫描,并将其网格化,用于计算流体动力学(CFD)研究。然后在小鼠 PVS 截面和具有相应无量纲参数和水力阻力的圆柱体之间进行串联分析和比较。这对几何体首先用于验证 CFD 模型,然后评估各种平流状态下的传质情况:无流、恒定流、正弦流、溶剂净流量为零的正弦流以及解剖学上正确的非对称周期流。考虑了两种质量传递情况,一种是蛋白质堆积,另一种是蛋白质混合下降。结果表明,对于所有相关流动和两种蛋白质情况,解剖学上正确的 PVS 几何形状几乎没有清除蛋白质的益处。令人惊讶的是,即使在佩克莱特数较高的情况下,溶质混合下降也是以扩散为主。本文的研究结果得出结论,将 PVS 几何形状纳入现有的减阶建模动脉网络中,风险极小。
{"title":"How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer.","authors":"Wayne Strasser","doi":"10.1115/1.4065556","DOIUrl":"10.1115/1.4065556","url":null,"abstract":"<p><p>Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. 利用自主式小儿膝关节外骨骼减轻神经受损者的蹲踞步态
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066370
Dawit Lee, Sierra C Mulrine, Max K Shepherd, David E Westberry, Benjamin M Rogozinski, Kinsey R Herrin, Aaron J Young

Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.

蹲踞步态是神经系统疾病患者因体能有限而最常见的代偿性行走模式之一。蹲踞步态的显著运动学特征是站立时膝关节过度屈曲,摆动时活动范围缩小。膝关节外骨骼有可能通过直接向膝关节提供精确控制的扭矩辅助来改善蹲踞步态。在这项研究中,我们为动力膝关节外骨骼实施了基于有限状态机的阻抗控制器,为五名表现出慢性蹲踞步态的儿童/青少年在站立和摆动时提供辅助。这种辅助具有很强的矫形效果,可将站立阶段的膝关节伸展量平均增加 12&amp;#176;。摆动时膝关节的活动范围平均增加了 15&amp;#176;。不同受试者的时空结果(如首选行走速度和站立阶段百分比)变化不一致,这表明用户对辅助的反应存在潜在的复杂性。这项研究证明了膝关节外骨骼在阻抗控制中的运行潜力,可以减轻蹲踞步态在步态的站立和摆动阶段的负面运动特性。
{"title":"Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired.","authors":"Dawit Lee, Sierra C Mulrine, Max K Shepherd, David E Westberry, Benjamin M Rogozinski, Kinsey R Herrin, Aaron J Young","doi":"10.1115/1.4066370","DOIUrl":"10.1115/1.4066370","url":null,"abstract":"<p><p>Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Structure and Wearing Modes on the Protective Performance of Industrial Safety Helmet. 结构和佩戴方式对工业安全帽防护性能的影响
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066467
Tian-Cheng Li, Hua Zhao, Bin Zhang, Cheng-Fei Du

This study aims to explore the effects of helmet structure designs and wearing modes on the protective performance of safety helmets under the impact of falling objects. Four helmet types (no helmet, V-shaped, dome-shaped, and motorcycle helmets) and five wearing modes (left and right tilt by 5 deg, backward tilt by 15 deg, 0 deg without chin strap, 0 deg with chin strap) were included in this study. The axial impact of a concrete block under various impact velocities was simulated. The results indicate that the energy absorption and shock mitigation effects of the foam cushion are superior to those of the suspension system in traditional industrial safety helmets. The structure of the top of V-shaped helmets is designed to withstand greater impact. Regarding the wearing mode, the helmet strap's deflection angle increases stress in the brain tissue and skull, heightens intracranial pressure, and causes pressure diffusion toward the forehead.

本研究旨在探讨安全头盔的结构设计和佩戴模式对坠物冲击下安全头盔防护性能的影响。本研究包括四种头盔类型(无头盔、V 形头盔、圆顶头盔和摩托车头盔)和五种佩戴模式(左右倾斜 5°、向后倾斜 15°、无颏带 0°、有颏带 0°),并模拟了不同冲击速度下混凝土块的轴向冲击。结果表明,泡沫缓冲垫的能量和冲击吸收效果优于传统工业安全头盔的悬挂系统。V 形安全帽顶部的结构设计可承受更大的冲击力。在佩戴模式方面,头盔带的偏转角度不仅增加了脑组织和颅骨的应力以及颅内压力的大小,还导致压力向前额扩散。
{"title":"Effect of Structure and Wearing Modes on the Protective Performance of Industrial Safety Helmet.","authors":"Tian-Cheng Li, Hua Zhao, Bin Zhang, Cheng-Fei Du","doi":"10.1115/1.4066467","DOIUrl":"10.1115/1.4066467","url":null,"abstract":"<p><p>This study aims to explore the effects of helmet structure designs and wearing modes on the protective performance of safety helmets under the impact of falling objects. Four helmet types (no helmet, V-shaped, dome-shaped, and motorcycle helmets) and five wearing modes (left and right tilt by 5 deg, backward tilt by 15 deg, 0 deg without chin strap, 0 deg with chin strap) were included in this study. The axial impact of a concrete block under various impact velocities was simulated. The results indicate that the energy absorption and shock mitigation effects of the foam cushion are superior to those of the suspension system in traditional industrial safety helmets. The structure of the top of V-shaped helmets is designed to withstand greater impact. Regarding the wearing mode, the helmet strap's deflection angle increases stress in the brain tissue and skull, heightens intracranial pressure, and causes pressure diffusion toward the forehead.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-Based Differences and Asymmetry in Hip Kinematics During Unilateral Extension From Deep Hip Flexion. 从髋关节深屈开始单侧伸展时髋关节运动学的性别差异和不对称。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066466
Camille C Johnson, Ethan Ruh, Naomi Frankston, Shaquille Charles, Michael McClincy, William Anderst

The purpose of this study was to identify side-to-side and sex-based differences in hip kinematics during a unilateral step-up from deep flexion. Twelve (eight men, four women) asymptomatic young adults performed a step ascent motion while synchronized biplane radiographs of the hip were collected at 50 images per second. Femur and pelvis position were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs created from subject-specific computed tomography (CT) bone models to each pair of synchronized radiographs. Hip kinematics and side-to-side differences were calculated and a linear mixed effects model evaluated sex-based differences. Women were on average 10.2 deg more abducted and 0.2 mm more medially translated than men across the step up motion (p < 0.001). Asymmetry between hips was up to 14.1 ± 12.1 deg in internal rotation and 1.3 ± 1.4 mm in translation. This dataset demonstrates the inherent asymmetry during movements involving unilateral hip extension from deep flexion and may be used provide context for observed kinematics differences following surgery or rehabilitation. Previously reported kinematic differences between total hip arthroplasty and contralateral hips may be well within the natural side-to-side differences that exist in asymptomatic native hips.

本研究的目的是确定单侧深屈上台阶时髋关节运动学的侧向和性别差异。12名(8名男性,4名女性)无症状的年轻成年人在以每秒50张图像的速度同步采集髋部双平面X光片的同时,进行了台阶上升运动。股骨和骨盆的位置是通过一种经过验证的基于容积模型的跟踪技术确定的,该技术可将由特定受试者的计算机断层扫描(CT)骨骼模型创建的数字重建X光片与每对同步X光片相匹配。计算髋关节运动学和侧向差异,并利用线性混合效应模型评估性别差异。在整个上台阶运动中,女性比男性平均多外展 10.2°,多内旋 0.2 毫米(p
{"title":"Sex-Based Differences and Asymmetry in Hip Kinematics During Unilateral Extension From Deep Hip Flexion.","authors":"Camille C Johnson, Ethan Ruh, Naomi Frankston, Shaquille Charles, Michael McClincy, William Anderst","doi":"10.1115/1.4066466","DOIUrl":"10.1115/1.4066466","url":null,"abstract":"<p><p>The purpose of this study was to identify side-to-side and sex-based differences in hip kinematics during a unilateral step-up from deep flexion. Twelve (eight men, four women) asymptomatic young adults performed a step ascent motion while synchronized biplane radiographs of the hip were collected at 50 images per second. Femur and pelvis position were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs created from subject-specific computed tomography (CT) bone models to each pair of synchronized radiographs. Hip kinematics and side-to-side differences were calculated and a linear mixed effects model evaluated sex-based differences. Women were on average 10.2 deg more abducted and 0.2 mm more medially translated than men across the step up motion (p < 0.001). Asymmetry between hips was up to 14.1 ± 12.1 deg in internal rotation and 1.3 ± 1.4 mm in translation. This dataset demonstrates the inherent asymmetry during movements involving unilateral hip extension from deep flexion and may be used provide context for observed kinematics differences following surgery or rehabilitation. Previously reported kinematic differences between total hip arthroplasty and contralateral hips may be well within the natural side-to-side differences that exist in asymptomatic native hips.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Variation in Sagittal Curvature of the Femoral Condyles. 股骨髁矢状曲率变化分析
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1115/1.4065813
Eden Winslow, Xuanbei Pan, Maury L Hull

In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion-extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F-E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg-105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.

背景:在设计恢复原生(即健康)膝关节运动学的股骨组件时,屈伸(F-E)轴应与原生膝关节相匹配。由于 F-E 轴是由股骨髁关节面在矢状面上的曲率决定的,因此首要目标是确定曲率半径的变化:方法:通过高分辨率 CT 扫描生成 11 个高精度三维股骨模型。创建了每个髁的矢状面轮廓。根据最佳拟合节段圆确定弧长增量为 15 度的曲率半径。结果标准化为最佳拟合整体圆的半径,拟合范围为 15 - 105 度:结果:股骨内侧和外侧髁呈现多曲率半径矢状曲线,屈曲 30 度时半径分别减少 10 毫米和 15 度时减少 8 毫米。在下降的两侧,最佳拟合节段圆的半径相对恒定。在过渡角之外,内侧和外侧髁的曲率中心前后(A-P)位置分别相差 4.8 毫米和 2.3 毫米:结论:双曲率半径轮廓近似于两个原生股骨髁的曲率半径,但过渡角不同,股骨内侧髁的过渡角在屈曲时约晚15度。由于曲率中心 A-P 位置的变化,F-E 轴在股骨中并非严格固定。
{"title":"Analysis of Variation in Sagittal Curvature of the Femoral Condyles.","authors":"Eden Winslow, Xuanbei Pan, Maury L Hull","doi":"10.1115/1.4065813","DOIUrl":"10.1115/1.4065813","url":null,"abstract":"<p><p>In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion-extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F-E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg-105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional-Digital Image Correlation Methodology for Kinematic Measurements of Non-Penetrating Blunt Impacts. 用于非穿透性钝撞运动学测量的三维数字图像关联方法。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1115/1.4065734
Joseph LeSueur, Jared Koser, Narayan Yoganandan, Frank A Pintar

Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.

钝力创伤对许多人来说仍然是一种严重威胁,常见于机动车碰撞、体育运动和军事环境中。头盔和防护装甲的有效设计应考虑到所要保护器官的生物力学公差,并要求精确测量撞击过程中作为主要伤害指标的变形。为了克服使用集成加速度计和二维(2D)高速视频测量钝体冲击时的速度和位移所面临的挑战,我们进行了三维(3D)数字图像相关(DIC)测量,并与公认的技术进行了比较。半球形撞击器以每秒 14 至 20 米的速度撞击合成弹道明胶,以模拟在装甲后钝性创伤 (BABT)、跌倒和运动撞击中观察到的钝性撞击。重复测量方差分析结果表明,不同方法的最大位移(p=0.10)、最大位移时间(p=0.21)、冲击速度(p=0.13)和反弹速度(p=0.21)均无显著差异。与公认的测量技术相比,3D-DIC 测量显示出相同或更好的百分比差异和较低的均方根偏差。因此,3D-DIC 可用于 BABT 和其他钝性撞击应用,以进行精确的 3D 运动学测量,尤其是在加速度计或 2D 横向相机分析不切实际或容易出错的情况下。
{"title":"Three-Dimensional-Digital Image Correlation Methodology for Kinematic Measurements of Non-Penetrating Blunt Impacts.","authors":"Joseph LeSueur, Jared Koser, Narayan Yoganandan, Frank A Pintar","doi":"10.1115/1.4065734","DOIUrl":"10.1115/1.4065734","url":null,"abstract":"<p><p>Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Examination of Methods to Determine Tibiofemoral Kinematics and Tibial Contact Kinematics Based on Analysis of Fluoroscopic Images. 对基于透视图像分析确定胫骨运动学和胫骨接触运动学的方法进行批判性研究。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1115/1.4065878
Maury L Hull

Goals of knee replacement surgery are to restore function and maximize implant longevity. To determine how well these goals are satisfied, tibial femoral kinematics and tibial contact kinematics are of interest. Tibiofemoral kinematics, which characterize function, is movement between the tibia and femur whereas tibial contact kinematics, which is relevant to implant wear, is movement of the location of contact by the femoral implant on the tibial articular surface. The purposes of this review article are to describe and critique relevant methods to guide correct implementation. For tibiofemoral kinematics, methods are categorized as those which determine (1) relative planar motions and (2) relative three-dimensional (3D) motions. Planar motions are determined by first finding anterior-posterior (A-P) positions of each femoral condyle relative to the tibia and tracking these positions during flexion. Of the lowest point (LP) and flexion facet center (FFC) methods, which are common, the lowest point method is preferred and the reasoning is explained. 3D motions are determined using the joint coordinate system (JCS) of Grood and Suntay. Previous applications of this JCS have resulted in motions which are largely in error due to "kinematic crosstalk." Requirements for minimizing kinematic crosstalk are outlined followed by an example, which demonstrates the method for identifying a JCS that minimizes kinematic crosstalk. Although kinematic crosstalk can be minimized, the need for a JCS to determine 3D motions is questionable based on anatomical constraints, which limit varus-valgus rotation and compression-distraction translation. Methods for analyzing tibial contact kinematics are summarized and validation of methods discussed.

膝关节置换手术的目标是恢复功能并最大限度地延长植入物的寿命。为了确定这些目标的实现情况,胫骨股骨运动学和胫骨接触运动学是非常重要的。胫骨股骨运动学是胫骨和股骨之间的运动,而胫骨接触运动学是股骨在胫骨关节面上接触位置的运动,与假体磨损有关。这篇综述文章的目的是描述和评论相关方法,以指导正确的实施。对于胫骨-股骨运动学,可将方法分为确定 1) 相对平面运动和 2) 相对 3D 运动的方法。平面运动的确定首先要找到股骨髁相对于胫骨的AP位置,并在屈曲过程中跟踪这些位置。在常用的最低点法和屈曲面中心法中,我们更倾向于最低点法,并解释了其中的原因。三维运动是使用 Grood 和 Suntay 的关节坐标系(JCS)确定的。以往应用这种关节坐标系时,由于 "运动串扰",运动会产生很大误差。本文概述了最大限度减少运动学串扰的要求,并通过一个示例演示了识别最大限度减少运动学串扰的 JCS 的方法。虽然运动学串扰可以降到最低,但由于解剖学上的限制,曲-瓣旋转和压缩-牵引平移都受到了限制,因此是否需要联合运动控制系统来确定三维运动还值得商榷。本文总结了分析胫骨接触运动学的方法,并讨论了方法的验证。
{"title":"Critical Examination of Methods to Determine Tibiofemoral Kinematics and Tibial Contact Kinematics Based on Analysis of Fluoroscopic Images.","authors":"Maury L Hull","doi":"10.1115/1.4065878","DOIUrl":"10.1115/1.4065878","url":null,"abstract":"<p><p>Goals of knee replacement surgery are to restore function and maximize implant longevity. To determine how well these goals are satisfied, tibial femoral kinematics and tibial contact kinematics are of interest. Tibiofemoral kinematics, which characterize function, is movement between the tibia and femur whereas tibial contact kinematics, which is relevant to implant wear, is movement of the location of contact by the femoral implant on the tibial articular surface. The purposes of this review article are to describe and critique relevant methods to guide correct implementation. For tibiofemoral kinematics, methods are categorized as those which determine (1) relative planar motions and (2) relative three-dimensional (3D) motions. Planar motions are determined by first finding anterior-posterior (A-P) positions of each femoral condyle relative to the tibia and tracking these positions during flexion. Of the lowest point (LP) and flexion facet center (FFC) methods, which are common, the lowest point method is preferred and the reasoning is explained. 3D motions are determined using the joint coordinate system (JCS) of Grood and Suntay. Previous applications of this JCS have resulted in motions which are largely in error due to \"kinematic crosstalk.\" Requirements for minimizing kinematic crosstalk are outlined followed by an example, which demonstrates the method for identifying a JCS that minimizes kinematic crosstalk. Although kinematic crosstalk can be minimized, the need for a JCS to determine 3D motions is questionable based on anatomical constraints, which limit varus-valgus rotation and compression-distraction translation. Methods for analyzing tibial contact kinematics are summarized and validation of methods discussed.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Toe-Off and Initial Contact in Real-Time With Self-Adapting Thresholds. 利用自适应阈值实时检测 "脚尖离开 "和 "初始接触"。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1115/1.4065842
Sofya M Akhetova, Rebecca Roembke, Peter Adamczyk

This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, "Real-Time Gait Event Detection Using Wearable Sensors," Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, "A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation," IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.

这项研究引入了一种自适应控制算法,旨在利用贴在小腿上的惯性测量单元(IMU)实时确定步态相位。该算法侧重于检测特定的步态事件,主要是初始接触(IC)和脚尖离开(TO),利用动态阈值和比率,在一定的步行速度范围内自适应地准确确定事件。内置的安全检查进一步确保了精确度,并将误检率降至最低。我们用八名以不同速度行走的参与者验证了该算法。该算法在检测 IC 和 TO 事件方面取得了令人满意的结果,平均延迟时间分别为 8.70 毫秒和 5.43 毫秒,检测成功率分别为 100%和 99.72%。这些结果与已有算法的基准一致。此外,该算法的自适应特性确保其可用于不同的运动场景,为实时步态相位检测提供了一个前景广阔的解决方案。
{"title":"Detecting Toe-Off and Initial Contact in Real-Time With Self-Adapting Thresholds.","authors":"Sofya M Akhetova, Rebecca Roembke, Peter Adamczyk","doi":"10.1115/1.4065842","DOIUrl":"10.1115/1.4065842","url":null,"abstract":"<p><p>This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, \"Real-Time Gait Event Detection Using Wearable Sensors,\" Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, \"A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation,\" IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion. 神经元发射引起的时间依赖性 Atp 消耗对含有和缺乏静止线粒体的突触泡中 Atp 浓度的影响
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1115/1.4065743
Andrey V Kuznetsov

The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.

轴突中约有一半的突触前释放点没有固定的线粒体,这些没有固定线粒体的释放点是如何获得 ATP 的,其背后的确切机制尚不完全清楚。本文介绍了一个数学模型,旨在模拟突触前通过突触中的瞬时 ATP 浓度。该模型用于研究在神经元发射过程中,有线粒体的突触和没有线粒体的突触中的 ATP 浓度如何对增加的 ATP 需求做出反应。分析表明,神经元发射可能会引起 ATP 浓度的振荡,峰-峰振幅从平均值的 0.06% 到 5% 不等。然而,这并不会耗尽缺乏线粒体的突触的 ATP;对于模型参数的生理相关值,其浓度仍比突触活动所需的最低浓度高出约 3.75 倍。含有固定线粒体的突触与缺乏线粒体的突触之间的 ATP 平均浓度差异为 0.3% 至 0.8%,取决于突触之间的距离。该模型表明,扩散驱动的 ATP 运输足够快,足以为缺乏固定线粒体的突触提供足够的 ATP 分子。
{"title":"Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion.","authors":"Andrey V Kuznetsov","doi":"10.1115/1.4065743","DOIUrl":"10.1115/1.4065743","url":null,"abstract":"<p><p>The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomechanical Engineering-Transactions of the Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1