Kwang Bem Ko, Jung-Hee Seo, Ashish Doshi, Danielle Gottlieb Sen, Rajat Mittal
Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.
{"title":"Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves.","authors":"Kwang Bem Ko, Jung-Hee Seo, Ashish Doshi, Danielle Gottlieb Sen, Rajat Mittal","doi":"10.1115/1.4066178","DOIUrl":"10.1115/1.4066178","url":null,"abstract":"<p><p>Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.
{"title":"How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer.","authors":"Wayne Strasser","doi":"10.1115/1.4065556","DOIUrl":"10.1115/1.4065556","url":null,"abstract":"<p><p>Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dawit Lee, Sierra C Mulrine, Max K Shepherd, David E Westberry, Benjamin M Rogozinski, Kinsey R Herrin, Aaron J Young
Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.
{"title":"Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired.","authors":"Dawit Lee, Sierra C Mulrine, Max K Shepherd, David E Westberry, Benjamin M Rogozinski, Kinsey R Herrin, Aaron J Young","doi":"10.1115/1.4066370","DOIUrl":"10.1115/1.4066370","url":null,"abstract":"<p><p>Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to explore the effects of helmet structure designs and wearing modes on the protective performance of safety helmets under the impact of falling objects. Four helmet types (no helmet, V-shaped, dome-shaped, and motorcycle helmets) and five wearing modes (left and right tilt by 5 deg, backward tilt by 15 deg, 0 deg without chin strap, 0 deg with chin strap) were included in this study. The axial impact of a concrete block under various impact velocities was simulated. The results indicate that the energy absorption and shock mitigation effects of the foam cushion are superior to those of the suspension system in traditional industrial safety helmets. The structure of the top of V-shaped helmets is designed to withstand greater impact. Regarding the wearing mode, the helmet strap's deflection angle increases stress in the brain tissue and skull, heightens intracranial pressure, and causes pressure diffusion toward the forehead.
{"title":"Effect of Structure and Wearing Modes on the Protective Performance of Industrial Safety Helmet.","authors":"Tian-Cheng Li, Hua Zhao, Bin Zhang, Cheng-Fei Du","doi":"10.1115/1.4066467","DOIUrl":"10.1115/1.4066467","url":null,"abstract":"<p><p>This study aims to explore the effects of helmet structure designs and wearing modes on the protective performance of safety helmets under the impact of falling objects. Four helmet types (no helmet, V-shaped, dome-shaped, and motorcycle helmets) and five wearing modes (left and right tilt by 5 deg, backward tilt by 15 deg, 0 deg without chin strap, 0 deg with chin strap) were included in this study. The axial impact of a concrete block under various impact velocities was simulated. The results indicate that the energy absorption and shock mitigation effects of the foam cushion are superior to those of the suspension system in traditional industrial safety helmets. The structure of the top of V-shaped helmets is designed to withstand greater impact. Regarding the wearing mode, the helmet strap's deflection angle increases stress in the brain tissue and skull, heightens intracranial pressure, and causes pressure diffusion toward the forehead.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camille C Johnson, Ethan Ruh, Naomi Frankston, Shaquille Charles, Michael McClincy, William Anderst
The purpose of this study was to identify side-to-side and sex-based differences in hip kinematics during a unilateral step-up from deep flexion. Twelve (eight men, four women) asymptomatic young adults performed a step ascent motion while synchronized biplane radiographs of the hip were collected at 50 images per second. Femur and pelvis position were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs created from subject-specific computed tomography (CT) bone models to each pair of synchronized radiographs. Hip kinematics and side-to-side differences were calculated and a linear mixed effects model evaluated sex-based differences. Women were on average 10.2 deg more abducted and 0.2 mm more medially translated than men across the step up motion (p < 0.001). Asymmetry between hips was up to 14.1 ± 12.1 deg in internal rotation and 1.3 ± 1.4 mm in translation. This dataset demonstrates the inherent asymmetry during movements involving unilateral hip extension from deep flexion and may be used provide context for observed kinematics differences following surgery or rehabilitation. Previously reported kinematic differences between total hip arthroplasty and contralateral hips may be well within the natural side-to-side differences that exist in asymptomatic native hips.
{"title":"Sex-Based Differences and Asymmetry in Hip Kinematics During Unilateral Extension From Deep Hip Flexion.","authors":"Camille C Johnson, Ethan Ruh, Naomi Frankston, Shaquille Charles, Michael McClincy, William Anderst","doi":"10.1115/1.4066466","DOIUrl":"10.1115/1.4066466","url":null,"abstract":"<p><p>The purpose of this study was to identify side-to-side and sex-based differences in hip kinematics during a unilateral step-up from deep flexion. Twelve (eight men, four women) asymptomatic young adults performed a step ascent motion while synchronized biplane radiographs of the hip were collected at 50 images per second. Femur and pelvis position were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs created from subject-specific computed tomography (CT) bone models to each pair of synchronized radiographs. Hip kinematics and side-to-side differences were calculated and a linear mixed effects model evaluated sex-based differences. Women were on average 10.2 deg more abducted and 0.2 mm more medially translated than men across the step up motion (p < 0.001). Asymmetry between hips was up to 14.1 ± 12.1 deg in internal rotation and 1.3 ± 1.4 mm in translation. This dataset demonstrates the inherent asymmetry during movements involving unilateral hip extension from deep flexion and may be used provide context for observed kinematics differences following surgery or rehabilitation. Previously reported kinematic differences between total hip arthroplasty and contralateral hips may be well within the natural side-to-side differences that exist in asymptomatic native hips.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion-extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F-E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg-105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.
{"title":"Analysis of Variation in Sagittal Curvature of the Femoral Condyles.","authors":"Eden Winslow, Xuanbei Pan, Maury L Hull","doi":"10.1115/1.4065813","DOIUrl":"10.1115/1.4065813","url":null,"abstract":"<p><p>In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion-extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F-E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg-105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph LeSueur, Jared Koser, Narayan Yoganandan, Frank A Pintar
Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.
{"title":"Three-Dimensional-Digital Image Correlation Methodology for Kinematic Measurements of Non-Penetrating Blunt Impacts.","authors":"Joseph LeSueur, Jared Koser, Narayan Yoganandan, Frank A Pintar","doi":"10.1115/1.4065734","DOIUrl":"10.1115/1.4065734","url":null,"abstract":"<p><p>Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Goals of knee replacement surgery are to restore function and maximize implant longevity. To determine how well these goals are satisfied, tibial femoral kinematics and tibial contact kinematics are of interest. Tibiofemoral kinematics, which characterize function, is movement between the tibia and femur whereas tibial contact kinematics, which is relevant to implant wear, is movement of the location of contact by the femoral implant on the tibial articular surface. The purposes of this review article are to describe and critique relevant methods to guide correct implementation. For tibiofemoral kinematics, methods are categorized as those which determine (1) relative planar motions and (2) relative three-dimensional (3D) motions. Planar motions are determined by first finding anterior-posterior (A-P) positions of each femoral condyle relative to the tibia and tracking these positions during flexion. Of the lowest point (LP) and flexion facet center (FFC) methods, which are common, the lowest point method is preferred and the reasoning is explained. 3D motions are determined using the joint coordinate system (JCS) of Grood and Suntay. Previous applications of this JCS have resulted in motions which are largely in error due to "kinematic crosstalk." Requirements for minimizing kinematic crosstalk are outlined followed by an example, which demonstrates the method for identifying a JCS that minimizes kinematic crosstalk. Although kinematic crosstalk can be minimized, the need for a JCS to determine 3D motions is questionable based on anatomical constraints, which limit varus-valgus rotation and compression-distraction translation. Methods for analyzing tibial contact kinematics are summarized and validation of methods discussed.
{"title":"Critical Examination of Methods to Determine Tibiofemoral Kinematics and Tibial Contact Kinematics Based on Analysis of Fluoroscopic Images.","authors":"Maury L Hull","doi":"10.1115/1.4065878","DOIUrl":"10.1115/1.4065878","url":null,"abstract":"<p><p>Goals of knee replacement surgery are to restore function and maximize implant longevity. To determine how well these goals are satisfied, tibial femoral kinematics and tibial contact kinematics are of interest. Tibiofemoral kinematics, which characterize function, is movement between the tibia and femur whereas tibial contact kinematics, which is relevant to implant wear, is movement of the location of contact by the femoral implant on the tibial articular surface. The purposes of this review article are to describe and critique relevant methods to guide correct implementation. For tibiofemoral kinematics, methods are categorized as those which determine (1) relative planar motions and (2) relative three-dimensional (3D) motions. Planar motions are determined by first finding anterior-posterior (A-P) positions of each femoral condyle relative to the tibia and tracking these positions during flexion. Of the lowest point (LP) and flexion facet center (FFC) methods, which are common, the lowest point method is preferred and the reasoning is explained. 3D motions are determined using the joint coordinate system (JCS) of Grood and Suntay. Previous applications of this JCS have resulted in motions which are largely in error due to \"kinematic crosstalk.\" Requirements for minimizing kinematic crosstalk are outlined followed by an example, which demonstrates the method for identifying a JCS that minimizes kinematic crosstalk. Although kinematic crosstalk can be minimized, the need for a JCS to determine 3D motions is questionable based on anatomical constraints, which limit varus-valgus rotation and compression-distraction translation. Methods for analyzing tibial contact kinematics are summarized and validation of methods discussed.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, "Real-Time Gait Event Detection Using Wearable Sensors," Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, "A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation," IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.
这项研究引入了一种自适应控制算法,旨在利用贴在小腿上的惯性测量单元(IMU)实时确定步态相位。该算法侧重于检测特定的步态事件,主要是初始接触(IC)和脚尖离开(TO),利用动态阈值和比率,在一定的步行速度范围内自适应地准确确定事件。内置的安全检查进一步确保了精确度,并将误检率降至最低。我们用八名以不同速度行走的参与者验证了该算法。该算法在检测 IC 和 TO 事件方面取得了令人满意的结果,平均延迟时间分别为 8.70 毫秒和 5.43 毫秒,检测成功率分别为 100%和 99.72%。这些结果与已有算法的基准一致。此外,该算法的自适应特性确保其可用于不同的运动场景,为实时步态相位检测提供了一个前景广阔的解决方案。
{"title":"Detecting Toe-Off and Initial Contact in Real-Time With Self-Adapting Thresholds.","authors":"Sofya M Akhetova, Rebecca Roembke, Peter Adamczyk","doi":"10.1115/1.4065842","DOIUrl":"10.1115/1.4065842","url":null,"abstract":"<p><p>This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, \"Real-Time Gait Event Detection Using Wearable Sensors,\" Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, \"A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation,\" IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.
轴突中约有一半的突触前释放点没有固定的线粒体,这些没有固定线粒体的释放点是如何获得 ATP 的,其背后的确切机制尚不完全清楚。本文介绍了一个数学模型,旨在模拟突触前通过突触中的瞬时 ATP 浓度。该模型用于研究在神经元发射过程中,有线粒体的突触和没有线粒体的突触中的 ATP 浓度如何对增加的 ATP 需求做出反应。分析表明,神经元发射可能会引起 ATP 浓度的振荡,峰-峰振幅从平均值的 0.06% 到 5% 不等。然而,这并不会耗尽缺乏线粒体的突触的 ATP;对于模型参数的生理相关值,其浓度仍比突触活动所需的最低浓度高出约 3.75 倍。含有固定线粒体的突触与缺乏线粒体的突触之间的 ATP 平均浓度差异为 0.3% 至 0.8%,取决于突触之间的距离。该模型表明,扩散驱动的 ATP 运输足够快,足以为缺乏固定线粒体的突触提供足够的 ATP 分子。
{"title":"Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion.","authors":"Andrey V Kuznetsov","doi":"10.1115/1.4065743","DOIUrl":"10.1115/1.4065743","url":null,"abstract":"<p><p>The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}