Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.
{"title":"Simultaneous Prediction of Multiple Unmeasured Muscle Activations Through Synergy Extrapolation.","authors":"Shadman Tahmid, James Yang","doi":"10.1115/1.4067520","DOIUrl":"10.1115/1.4067520","url":null,"abstract":"<p><p>Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evaluating the contribution of microstructure to overall bone strength is tricky since it is difficult to control changes to pore structure in human or animal samples. We developed an open-source program that can generate three-dimensional (3D) models of micron-scale cortical bone. These models can be highly customized with a wide array of variable input parameters to allow for generation of samples similar to micro-computed topography scans of cortical bone or with specific geometric features. The program can generate samples with specific desired porosities and minor deviations in pore diameter from human samples: 1.67% (±4.90) using literature values, and 1.36% (±2.39) with optimized values. When coupled with finite element analysis, this open-source program could be a useful tool for evaluating stress distributions caused by microstructural changes.
{"title":"Generating Virtual Bone Scans for the Purpose of Investigating the Effects of Cortical Microstructure.","authors":"Zachary B Toth, Joshua A Gargac","doi":"10.1115/1.4067576","DOIUrl":"10.1115/1.4067576","url":null,"abstract":"<p><p>Evaluating the contribution of microstructure to overall bone strength is tricky since it is difficult to control changes to pore structure in human or animal samples. We developed an open-source program that can generate three-dimensional (3D) models of micron-scale cortical bone. These models can be highly customized with a wide array of variable input parameters to allow for generation of samples similar to micro-computed topography scans of cortical bone or with specific geometric features. The program can generate samples with specific desired porosities and minor deviations in pore diameter from human samples: 1.67% (±4.90) using literature values, and 1.36% (±2.39) with optimized values. When coupled with finite element analysis, this open-source program could be a useful tool for evaluating stress distributions caused by microstructural changes.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crash avoidance vehicle maneuvers are known to influence occupant posture and kinematics which consequently may influence injury risks in the event of a crash. In this work, a generic buck vehicle finite element (FE) model was developed which included the vehicle interior and the front passenger airbag (PAB). Seat position and occupant characteristics including anthropometry, sex, and age were varied in a design of experiments. Two pre-crash maneuvers representing (1) a generic 1 g braking and (2) turning-and-braking scenarios were simulated. Rigid-body human models with active joints (GHBMCsi-pre models) obtained by morphing a 50th male model to selected anthropometries were used in pre-crash simulations. The kinematics data of belted GHBMCsi-pre models at the end of the pre-crash phase were transferred using a developed switch algorithm to the corresponding morphed Global Human Body Model Consortium (GHBMC) occupant simplified (OS) models to predict occupant injury risks. Finally, an FMVSS-208 pulse was applied to simulate the in-crash phase. During both pre-crash maneuvers, the occupant's head and thorax moved forward toward the dashboard. Therefore, the head and thorax contacted the PAB earlier, leading to lower head accelerations when the pre-crash phase was considered. Overall, it was concluded that pre-crash braking decreased the severity of injury sustained by the passenger. Seat track position and seat recline angle showed the highest influence on the head injury criterion (HIC). The brain injury criterion (BrIC) and neck injury criterion (Nij) were most sensitive to pre-crash maneuver type, seat recline angle, and occupant size.
{"title":"The Influence of Occupant Characteristics, Seat Positioning, and Pre-Crash Maneuvers on Front Passenger Safety Performance.","authors":"Akshay Dahiya, Costin Untaroiu","doi":"10.1115/1.4067331","DOIUrl":"10.1115/1.4067331","url":null,"abstract":"<p><p>Crash avoidance vehicle maneuvers are known to influence occupant posture and kinematics which consequently may influence injury risks in the event of a crash. In this work, a generic buck vehicle finite element (FE) model was developed which included the vehicle interior and the front passenger airbag (PAB). Seat position and occupant characteristics including anthropometry, sex, and age were varied in a design of experiments. Two pre-crash maneuvers representing (1) a generic 1 g braking and (2) turning-and-braking scenarios were simulated. Rigid-body human models with active joints (GHBMCsi-pre models) obtained by morphing a 50th male model to selected anthropometries were used in pre-crash simulations. The kinematics data of belted GHBMCsi-pre models at the end of the pre-crash phase were transferred using a developed switch algorithm to the corresponding morphed Global Human Body Model Consortium (GHBMC) occupant simplified (OS) models to predict occupant injury risks. Finally, an FMVSS-208 pulse was applied to simulate the in-crash phase. During both pre-crash maneuvers, the occupant's head and thorax moved forward toward the dashboard. Therefore, the head and thorax contacted the PAB earlier, leading to lower head accelerations when the pre-crash phase was considered. Overall, it was concluded that pre-crash braking decreased the severity of injury sustained by the passenger. Seat track position and seat recline angle showed the highest influence on the head injury criterion (HIC). The brain injury criterion (BrIC) and neck injury criterion (Nij) were most sensitive to pre-crash maneuver type, seat recline angle, and occupant size.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><p>Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures and diseases, caused by factors such as trauma, tumors, congenital anomalies, and aging. In such methods, the rate of scaffold biodegradation, transport of nutrients and growth factors, as well as removal of cell metabolic wastes at the site of injury are critical fluid-dynamics factors, affecting cell proliferation and ultimately tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms and factors associated with cell-seeded, scaffold-based bone tissue engineering. The overarching goal of this study is to contribute to patient-specific, clinical treatment of bone pathology. The overall objective of the work is to establish computational fluid dynamics (CFD) models: (i) to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS) and (ii) to identify TPMS designs with optimal geometry and flow characteristics for the treatment of bone fractures in clinical practice. In this study, advanced CFD models were established based on ten TPMS scaffold designs for (i) single-unit internal flow analysis, (ii) single-unit external flow analysis, and (iii) cubic, full-scaffold external flow analysis, where the geometry of each design was parametrically created. The influence of several design parameters, such as surface representation iteration, wall thickness, and pore size on geometry accuracy as well as computation time, was investigated in order to obtain computationally efficient and accurate CFD models. The fluid properties (such as density and dynamic viscosity) as well as the boundary conditions (such as no-slip condition, inlet flow velocity, and pressure outlet) of the CFD models were set based on clinical/research values reported in the literature, according to the fundamentals of internal and external Newtonian flow modeling. The main fluid characteristics influential in bone regeneration, including flow velocity, flow pressure, and wall shear stress (WSS), were analyzed to observe material transport internally through and externally over the TPMS scaffold designs. Regarding the single-unit internal flow analysis, it was observed that P.W. Hybrid and Neovius designs had the highest level of not only flow pressure but also WSS. This can be attributed to their relatively flat surfaces when compared to the rest of the TPMS designs. Schwarz primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues) due to its relatively open channels allowing for more effortless fluid transport. An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of potential turbulent motion along the curved sections of the TPMS designs. Regarding the single-unit ext
{"title":"Computational Fluid Dynamics Modeling of Material Transport Through Triply Periodic Minimal Surface Scaffolds for Bone Tissue Engineering.","authors":"Brandon Coburn, Roozbeh Ross Salary","doi":"10.1115/1.4067575","DOIUrl":"10.1115/1.4067575","url":null,"abstract":"<p><p>Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures and diseases, caused by factors such as trauma, tumors, congenital anomalies, and aging. In such methods, the rate of scaffold biodegradation, transport of nutrients and growth factors, as well as removal of cell metabolic wastes at the site of injury are critical fluid-dynamics factors, affecting cell proliferation and ultimately tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms and factors associated with cell-seeded, scaffold-based bone tissue engineering. The overarching goal of this study is to contribute to patient-specific, clinical treatment of bone pathology. The overall objective of the work is to establish computational fluid dynamics (CFD) models: (i) to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS) and (ii) to identify TPMS designs with optimal geometry and flow characteristics for the treatment of bone fractures in clinical practice. In this study, advanced CFD models were established based on ten TPMS scaffold designs for (i) single-unit internal flow analysis, (ii) single-unit external flow analysis, and (iii) cubic, full-scaffold external flow analysis, where the geometry of each design was parametrically created. The influence of several design parameters, such as surface representation iteration, wall thickness, and pore size on geometry accuracy as well as computation time, was investigated in order to obtain computationally efficient and accurate CFD models. The fluid properties (such as density and dynamic viscosity) as well as the boundary conditions (such as no-slip condition, inlet flow velocity, and pressure outlet) of the CFD models were set based on clinical/research values reported in the literature, according to the fundamentals of internal and external Newtonian flow modeling. The main fluid characteristics influential in bone regeneration, including flow velocity, flow pressure, and wall shear stress (WSS), were analyzed to observe material transport internally through and externally over the TPMS scaffold designs. Regarding the single-unit internal flow analysis, it was observed that P.W. Hybrid and Neovius designs had the highest level of not only flow pressure but also WSS. This can be attributed to their relatively flat surfaces when compared to the rest of the TPMS designs. Schwarz primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues) due to its relatively open channels allowing for more effortless fluid transport. An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of potential turbulent motion along the curved sections of the TPMS designs. Regarding the single-unit ext","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a comprehensive finite element (FE) model for the human wrist, constructed from a CT scan of a 68-year-old male (type 1 wrist). This model intricately captures the bone and soft tissue geometries to study the biomechanics of wrist axial loading through tendon-driven simulations and grasping biomechanics using metacarpal loads. Validation is carried out by assessing the radial and ulnar axial loading distribution, radiocarpal articulation contact patterns, and other standard finite element metrics. The results show radial transmission of the load, consistent with results from wrist finite element models conducted in the last decade and other experimental studies. Our results confirm the model's efficacy in reproducing key known biomechanical aspects, laying the groundwork for future investigations into ongoing wrist biomechanics challenges and pathology mechanism studies.
{"title":"Development of a Finite Element Model of the Human Wrist Joint With Radial and Ulnar Axial Force Distribution and Radiocarpal Contact Validation.","authors":"Andres Mena, Ronit Wollstein, James Yang","doi":"10.1115/1.4067580","DOIUrl":"10.1115/1.4067580","url":null,"abstract":"<p><p>This study presents a comprehensive finite element (FE) model for the human wrist, constructed from a CT scan of a 68-year-old male (type 1 wrist). This model intricately captures the bone and soft tissue geometries to study the biomechanics of wrist axial loading through tendon-driven simulations and grasping biomechanics using metacarpal loads. Validation is carried out by assessing the radial and ulnar axial loading distribution, radiocarpal articulation contact patterns, and other standard finite element metrics. The results show radial transmission of the load, consistent with results from wrist finite element models conducted in the last decade and other experimental studies. Our results confirm the model's efficacy in reproducing key known biomechanical aspects, laying the groundwork for future investigations into ongoing wrist biomechanics challenges and pathology mechanism studies.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The carotid arteries (CAs) and vertebral arteries (VAs) are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the VA are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model. Research indicates that the increase in the diameter of the VA is associated with a corresponding increase in the complexity of the vortex structures at the bifurcation with the SA. When the VA diameter is constant, a 30 deg VA-SA angle yields better hemodynamic capacity than 45 deg and 60 deg angles, and the patterns of blood flow and helicity values are consistent across different angles. Elevated oscillatory shear index (OSI) zones are mainly at the origin of the VA, with an elliptical low OSI region within. As the diameter increases, the high OSI region spreads downstream. Increasing the bifurcation angle decreases OSI values in and below the elliptical low OSI region. These findings are valuable for studying the physiological and pathological mechanisms of VA atherosclerosis.
{"title":"Influence of Geometric Parameters on the Hemodynamic Characteristics of the Vertebral Artery.","authors":"Yanlu Chen, Yuzhou Cheng, Kun Luo, Jianren Fan","doi":"10.1115/1.4067578","DOIUrl":"10.1115/1.4067578","url":null,"abstract":"<p><p>The carotid arteries (CAs) and vertebral arteries (VAs) are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the VA are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model. Research indicates that the increase in the diameter of the VA is associated with a corresponding increase in the complexity of the vortex structures at the bifurcation with the SA. When the VA diameter is constant, a 30 deg VA-SA angle yields better hemodynamic capacity than 45 deg and 60 deg angles, and the patterns of blood flow and helicity values are consistent across different angles. Elevated oscillatory shear index (OSI) zones are mainly at the origin of the VA, with an elliptical low OSI region within. As the diameter increases, the high OSI region spreads downstream. Increasing the bifurcation angle decreases OSI values in and below the elliptical low OSI region. These findings are valuable for studying the physiological and pathological mechanisms of VA atherosclerosis.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandre Galley, Samira Vakili, Ilya Borukhov, Brent Lanting, Stephen J Piazza, Ryan Willing
Total knee replacement (TKR) failure, low patient satisfaction and high revision surgery rates may stem from insufficient preclinical testing. Conventional joint motion simulators for preclinical testing of TKR implants manipulate a knee joint in force, displacement, or simulated muscle control. However, a rig capable of using all three control modes has yet to be described in literature. This study aimed to validate a novel platform, the muscle actuator system (MAS), that can generate gravity-dependent, quadriceps-controlled squatting motions representative of an Oxford rig knee simulator and is mounted onto a force/displacement-control-capable joint motion simulator. Synthetic knee joint phantoms were created that comprised revision TKR implants and key extensor and flexor mechanism analogues, but no ligaments. The combined system implemented a constant force vector acting from simulated hip-to-ankle coordinates, effectively replicating gravity as observed in an Oxford rig. Quadriceps forces and patellofemoral joint kinematics were measured to assess the performance of the MAS and these tests showed high levels of repeatability and reproducibility. Forces and kinematics measured at a nominal patellar tendon length, and with patella alta and baja, were compared against those measured under the same conditions using a conventional Oxford rig, the Pennsylvania State Knee Simulator (PSKS). There was disagreement in absolute kinematics and muscle forces, but similar trends resulting from changing prosthesis design or patellar tendon length.
{"title":"Comparing Patellofemoral Kinematics Assessed With a Novel Muscle Actuator System and an Oxford Rig Using Noncadaveric Knees.","authors":"Alexandre Galley, Samira Vakili, Ilya Borukhov, Brent Lanting, Stephen J Piazza, Ryan Willing","doi":"10.1115/1.4067400","DOIUrl":"10.1115/1.4067400","url":null,"abstract":"<p><p>Total knee replacement (TKR) failure, low patient satisfaction and high revision surgery rates may stem from insufficient preclinical testing. Conventional joint motion simulators for preclinical testing of TKR implants manipulate a knee joint in force, displacement, or simulated muscle control. However, a rig capable of using all three control modes has yet to be described in literature. This study aimed to validate a novel platform, the muscle actuator system (MAS), that can generate gravity-dependent, quadriceps-controlled squatting motions representative of an Oxford rig knee simulator and is mounted onto a force/displacement-control-capable joint motion simulator. Synthetic knee joint phantoms were created that comprised revision TKR implants and key extensor and flexor mechanism analogues, but no ligaments. The combined system implemented a constant force vector acting from simulated hip-to-ankle coordinates, effectively replicating gravity as observed in an Oxford rig. Quadriceps forces and patellofemoral joint kinematics were measured to assess the performance of the MAS and these tests showed high levels of repeatability and reproducibility. Forces and kinematics measured at a nominal patellar tendon length, and with patella alta and baja, were compared against those measured under the same conditions using a conventional Oxford rig, the Pennsylvania State Knee Simulator (PSKS). There was disagreement in absolute kinematics and muscle forces, but similar trends resulting from changing prosthesis design or patellar tendon length.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cameron A Nurse, Derek N Wolf, Katherine M Rodzak, Rachel H Teater, Chad C Ice, Shimra J Fine, Elisa C Holtzman, Karl E Zelik
Achilles tendon overuse injuries are common for long-distance runners. Ankle exos (exoskeletons and exosuits) are wearable devices that can reduce Achilles tendon loading and could potentially aid in the rehabilitation or prevention of these injuries by helping to mitigate and control tissue loading. However, most ankle exos are confined to controlled lab testing and are not practical to use in real-world running. Here, we present the design of an unpowered ankle exo aimed at reducing the load on the Achilles tendon during running while also overcoming key usability challenges for runners outside the lab. We fabricated a 500-gram ankle exo prototype that attaches to the outside of a running shoe. We then evaluated the reliability, acceptability, transparency during swing phase, and offloading assistance provided during treadmill and outdoor running tests. We found that the exo prototype reliably assisted 95-99% of running steps during indoor and outdoor tests, was deemed acceptable by more than 80% of runners in terms of comfort and feel, and did not impede natural ankle dorsiflexion during leg swing for 86% of runners. During indoor tests, the exo reduced peak Achilles tendon loads for most participants during running; however, reductions varied considerably, between near zero and 12%, depending on the participant, condition (speed and slope) and the precise tendon load metric used. This next-generation ankle exo concept could open new possibilities for longitudinal and real-world research on runners, or when transitioning into the return-to-sport phase after an Achilles tendon injury.
{"title":"Evaluating the Biomechanical Effects and Real-World Usability of a Novel Ankle Exo for Runners.","authors":"Cameron A Nurse, Derek N Wolf, Katherine M Rodzak, Rachel H Teater, Chad C Ice, Shimra J Fine, Elisa C Holtzman, Karl E Zelik","doi":"10.1115/1.4067579","DOIUrl":"10.1115/1.4067579","url":null,"abstract":"<p><p>Achilles tendon overuse injuries are common for long-distance runners. Ankle exos (exoskeletons and exosuits) are wearable devices that can reduce Achilles tendon loading and could potentially aid in the rehabilitation or prevention of these injuries by helping to mitigate and control tissue loading. However, most ankle exos are confined to controlled lab testing and are not practical to use in real-world running. Here, we present the design of an unpowered ankle exo aimed at reducing the load on the Achilles tendon during running while also overcoming key usability challenges for runners outside the lab. We fabricated a 500-gram ankle exo prototype that attaches to the outside of a running shoe. We then evaluated the reliability, acceptability, transparency during swing phase, and offloading assistance provided during treadmill and outdoor running tests. We found that the exo prototype reliably assisted 95-99% of running steps during indoor and outdoor tests, was deemed acceptable by more than 80% of runners in terms of comfort and feel, and did not impede natural ankle dorsiflexion during leg swing for 86% of runners. During indoor tests, the exo reduced peak Achilles tendon loads for most participants during running; however, reductions varied considerably, between near zero and 12%, depending on the participant, condition (speed and slope) and the precise tendon load metric used. This next-generation ankle exo concept could open new possibilities for longitudinal and real-world research on runners, or when transitioning into the return-to-sport phase after an Achilles tendon injury.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elnaz Ghajar-Rahimi, Diya D Sakhrani, Radhika S Kulkarni, Shiyin Lim, Blythe Dumerer, Annie Labine, Michael E Abbott, Grace D O'Connell, Craig J Goergen
Measurement of internal intervertebral disc strain is paramount for understanding the underlying mechanisms of injury and validating computational models. Although advancements in noninvasive imaging and image processing have made it possible to quantify strain, they often rely on visual markers that alter tissue mechanics and are limited to static testing that is not reflective of physiologic loading conditions. The purpose of this study was to integrate high-frequency ultrasound and texture correlation to quantify disc strain during dynamic loading. We acquired ultrasound images of the posterior side of bovine discs in the transverse plane throughout 0-0.5 mm of assigned axial compression at 0.3-0.5 Hz. Internal Green-Lagrangian strains were quantified across time using direct deformation estimation (DDE), a texture correlation method. Median principal strain at maximal compression was 0.038±0.011 for E1 and -0.042±0.012 for E2. Strain distributions were heterogeneous throughout the discs, with higher strains noted near the disc endplates. This methodological report shows that high-frequency ultrasound can be a valuable tool for quantification of disc strain under dynamic loading conditions. Further work will be needed to determine if diseased or damaged discs reveal similar strain patterns, opening the possibility of clinical use in patients with disc disease.
{"title":"Quantification of Internal Disc Strain Under Dynamic Loading Via High-Frequency Ultrasound.","authors":"Elnaz Ghajar-Rahimi, Diya D Sakhrani, Radhika S Kulkarni, Shiyin Lim, Blythe Dumerer, Annie Labine, Michael E Abbott, Grace D O'Connell, Craig J Goergen","doi":"10.1115/1.4067330","DOIUrl":"10.1115/1.4067330","url":null,"abstract":"<p><p>Measurement of internal intervertebral disc strain is paramount for understanding the underlying mechanisms of injury and validating computational models. Although advancements in noninvasive imaging and image processing have made it possible to quantify strain, they often rely on visual markers that alter tissue mechanics and are limited to static testing that is not reflective of physiologic loading conditions. The purpose of this study was to integrate high-frequency ultrasound and texture correlation to quantify disc strain during dynamic loading. We acquired ultrasound images of the posterior side of bovine discs in the transverse plane throughout 0-0.5 mm of assigned axial compression at 0.3-0.5 Hz. Internal Green-Lagrangian strains were quantified across time using direct deformation estimation (DDE), a texture correlation method. Median principal strain at maximal compression was 0.038±0.011 for E1 and -0.042±0.012 for E2. Strain distributions were heterogeneous throughout the discs, with higher strains noted near the disc endplates. This methodological report shows that high-frequency ultrasound can be a valuable tool for quantification of disc strain under dynamic loading conditions. Further work will be needed to determine if diseased or damaged discs reveal similar strain patterns, opening the possibility of clinical use in patients with disc disease.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose A Colmenarez, Pengfei Dong, Juhwan Lee, David L Wilson, Linxia Gu
Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking. Therefore, our goal is to assess the impact of plaque characteristics on the fibrous cap stress and elucidate their underlying mechanisms. We analyzed the stent deployment in a three-dimensional patient-specific coronary artery reconstructed from intravascular optical coherence tomography (IVOCT) data using the finite element method. Additionally, we performed sensitivity analysis on 78,000 distinct plaque geometries of two-dimensional arterial cross section for verification. Results from the three-dimensional patient-specific model indicate strong correlations between maximum fibrous cap stress and lipid arc (r=0.769), area stenosis (r=0.550), and lumen curvature (r=0.642). Plaques with lipid arcs >60 deg, area stenosis >75%, and lumen curvatures >5 mm-1 are at rupture risk. While we observed a rise in stress with thicker lipid cores, it was less representative than other features. Fibrous cap thickness showed a poor correlation, with the sensitivity analysis revealing its significance only when high stretches are induced by other features, likely due to its J-shaped stress-stretch response. Contrary to physiological pressure, the stent expansion generates unique vulnerable features as the stent load-transferring characteristics modify the plaque's response. This study is expected to prompt further clinical investigations of other morphological features for predicting plaque rupture in stenting.
{"title":"Evaluating the Influence of Morphological Features on the Vulnerability of Lipid-Rich Plaques During Stenting.","authors":"Jose A Colmenarez, Pengfei Dong, Juhwan Lee, David L Wilson, Linxia Gu","doi":"10.1115/1.4067398","DOIUrl":"10.1115/1.4067398","url":null,"abstract":"<p><p>Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking. Therefore, our goal is to assess the impact of plaque characteristics on the fibrous cap stress and elucidate their underlying mechanisms. We analyzed the stent deployment in a three-dimensional patient-specific coronary artery reconstructed from intravascular optical coherence tomography (IVOCT) data using the finite element method. Additionally, we performed sensitivity analysis on 78,000 distinct plaque geometries of two-dimensional arterial cross section for verification. Results from the three-dimensional patient-specific model indicate strong correlations between maximum fibrous cap stress and lipid arc (r=0.769), area stenosis (r=0.550), and lumen curvature (r=0.642). Plaques with lipid arcs >60 deg, area stenosis >75%, and lumen curvatures >5 mm-1 are at rupture risk. While we observed a rise in stress with thicker lipid cores, it was less representative than other features. Fibrous cap thickness showed a poor correlation, with the sensitivity analysis revealing its significance only when high stretches are induced by other features, likely due to its J-shaped stress-stretch response. Contrary to physiological pressure, the stent expansion generates unique vulnerable features as the stent load-transferring characteristics modify the plaque's response. This study is expected to prompt further clinical investigations of other morphological features for predicting plaque rupture in stenting.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}