Pub Date : 2024-10-22DOI: 10.1016/j.jat.2024.106115
Sergey M. Zagorodnyuk
<div><div>In this paper we study the generalized Bessel polynomials <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> (in the notation of Krall and Frink). Let <span><math><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. In this case we present the following positive continuous weights <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> on the unit circle for <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span>: <span><math><mrow><mn>2</mn><mi>π</mi><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>1</mn><mo>+</mo><mn>2</mn><mrow><mo>(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>b</mi><mi>u</mi><mo>cos</mo><mi>θ</mi></mrow></msup><mo>cos</mo><mrow><mo>(</mo><mi>b</mi><mi>u</mi><mo>sin</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>a</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. Namely, we have <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></msubsup><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><msub><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mi>d</mi><mi>θ</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≠</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>n</mi><mo>,</mo><mi>m</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>.</mo></mrow></math></span> Notice that this orthogon
{"title":"Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials","authors":"Sergey M. Zagorodnyuk","doi":"10.1016/j.jat.2024.106115","DOIUrl":"10.1016/j.jat.2024.106115","url":null,"abstract":"<div><div>In this paper we study the generalized Bessel polynomials <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> (in the notation of Krall and Frink). Let <span><math><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. In this case we present the following positive continuous weights <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> on the unit circle for <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span>: <span><math><mrow><mn>2</mn><mi>π</mi><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>1</mn><mo>+</mo><mn>2</mn><mrow><mo>(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>b</mi><mi>u</mi><mo>cos</mo><mi>θ</mi></mrow></msup><mo>cos</mo><mrow><mo>(</mo><mi>b</mi><mi>u</mi><mo>sin</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>a</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. Namely, we have <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></msubsup><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><msub><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mi>d</mi><mi>θ</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≠</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>n</mi><mo>,</mo><mi>m</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>.</mo></mrow></math></span> Notice that this orthogon","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106115"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jat.2024.106106
Jin Li, Yongling Cheng
Barycentric rational interpolation collocation method (BRICM) is presented to solve 3-dimensional convection–diffusion (CD) equation. The unknown value is approximated by barycentric rational interpolation basis, the discrete CD equation is written into the matrix equation. At last, the stability and convergence rate of BRIM for CD equation are proven and a numerical example is illustrated in our results.
提出了用于求解三维对流扩散(CD)方程的重心有理插值法(BRICM)。未知值由重心有理插值基近似,离散 CD 方程被写入矩阵方程。最后,证明了对流扩散方程 BRIM 的稳定性和收敛率,并以数值结果为例进行了说明。
{"title":"Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation","authors":"Jin Li, Yongling Cheng","doi":"10.1016/j.jat.2024.106106","DOIUrl":"10.1016/j.jat.2024.106106","url":null,"abstract":"<div><div>Barycentric rational interpolation collocation method (BRICM) is presented to solve 3-dimensional convection–diffusion (CD) equation. The unknown value is approximated by barycentric rational interpolation basis, the discrete CD equation is written into the matrix equation. At last, the stability and convergence rate of BRIM for CD equation are proven and a numerical example is illustrated in our results.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"304 ","pages":"Article 106106"},"PeriodicalIF":0.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jat.2024.106105
Rashid A. Aliev , Fidan M. Isgandarli
In this paper, new conditions are found for the representability of a continuous multivariate function as a sum of ridge functions. Using these conditions, we give a new proof for the earlier theorem solving the problem, posed by A.Pinkus in his monograph “Ridge Functions”, up to a multivariate polynomial. That is, we show that if a continuous multivariate function has a representation as a sum of arbitrarily behaved ridge functions, then it can be represented as a sum of continuous ridge functions and some multivariate polynomial.
{"title":"On the representability of a continuous multivariate function by sums of ridge functions","authors":"Rashid A. Aliev , Fidan M. Isgandarli","doi":"10.1016/j.jat.2024.106105","DOIUrl":"10.1016/j.jat.2024.106105","url":null,"abstract":"<div><div>In this paper, new conditions are found for the representability of a continuous multivariate function as a sum of ridge functions. Using these conditions, we give a new proof for the earlier theorem solving the problem, posed by A.Pinkus in his monograph “Ridge Functions”, up to a multivariate polynomial. That is, we show that if a continuous multivariate function has a representation as a sum of arbitrarily behaved ridge functions, then it can be represented as a sum of continuous ridge functions and some multivariate polynomial.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"304 ","pages":"Article 106105"},"PeriodicalIF":0.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.jat.2024.106103
Bartosz Langowski , Adam Nowak
We prove sharp estimates of the heat kernel associated with Fourier–Dini expansions on equipped with Lebesgue measure and the Neumann condition imposed on the right endpoint. Then we give several applications of this result including sharp bounds for the corresponding Poisson and potential kernels, sharp mapping properties of the maximal heat semigroup and potential operators and boundary convergence of the Fourier–Dini semigroup.
{"title":"On sharp heat kernel estimates in the context of Fourier–Dini expansions","authors":"Bartosz Langowski , Adam Nowak","doi":"10.1016/j.jat.2024.106103","DOIUrl":"10.1016/j.jat.2024.106103","url":null,"abstract":"<div><div>We prove sharp estimates of the heat kernel associated with Fourier–Dini expansions on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> equipped with Lebesgue measure and the Neumann condition imposed on the right endpoint. Then we give several applications of this result including sharp bounds for the corresponding Poisson and potential kernels, sharp mapping properties of the maximal heat semigroup and potential operators and boundary convergence of the Fourier–Dini semigroup.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"304 ","pages":"Article 106103"},"PeriodicalIF":0.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.jat.2024.106104
Lukas Liehr
Given a compact interval , and a function that is a product of a nonzero polynomial with a Gaussian, it will be shown that the translates are complete in if and only if the series of reciprocals of diverges. This extends a theorem in [R. A. Zalik, Trans. Amer. Math. Soc. 243, 299–308]. An additional characterization is obtained when is an arithmetic progression, and the generator constitutes a linear combination of translates of a function with sufficiently fast decay.
{"title":"Translation-based completeness on compact intervals","authors":"Lukas Liehr","doi":"10.1016/j.jat.2024.106104","DOIUrl":"10.1016/j.jat.2024.106104","url":null,"abstract":"<div><div>Given a compact interval <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>R</mi></mrow></math></span>, and a function <span><math><mi>f</mi></math></span> that is a product of a nonzero polynomial with a Gaussian, it will be shown that the translates <span><math><mrow><mo>{</mo><mi>f</mi><mrow><mo>(</mo><mi>⋅</mi><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></mrow></math></span> are complete in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> if and only if the series of reciprocals of <span><math><mi>Λ</mi></math></span> diverges. This extends a theorem in [R. A. Zalik, Trans. Amer. Math. Soc. 243, 299–308]. An additional characterization is obtained when <span><math><mi>Λ</mi></math></span> is an arithmetic progression, and the generator <span><math><mi>f</mi></math></span> constitutes a linear combination of translates of a function with sufficiently fast decay.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106104"},"PeriodicalIF":0.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.jat.2024.106102
Dimitar K. Dimitrov, Yen Chi Lun
Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the th derivative of the Bessel function of the first kind are all real when . We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every , the positive zeros of are increasing functions of the parameter , for . We provide two apparently distinct proofs of the conjecture.
{"title":"Monotonicity of zeros of derivatives of Bessel functions","authors":"Dimitar K. Dimitrov, Yen Chi Lun","doi":"10.1016/j.jat.2024.106102","DOIUrl":"10.1016/j.jat.2024.106102","url":null,"abstract":"<div><div>Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the <span><math><mi>n</mi></math></span>th derivative of the Bessel function of the first kind <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are all real when <span><math><mrow><mi>ν</mi><mo>></mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>. We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the positive zeros of <span><math><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are increasing functions of the parameter <span><math><mi>ν</mi></math></span>, for <span><math><mrow><mi>ν</mi><mo>∈</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>. We provide two apparently distinct proofs of the conjecture.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106102"},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1016/j.jat.2024.106101
Feng Dai , András Kroó , Andriy Prymak
We prove new Bernstein and Markov type inequalities in spaces associated with the normal and the tangential derivatives on the boundary of a general compact -domain with . These estimates are also applied to establish Marcinkiewicz type inequalities for discretization of norms of algebraic polynomials on -domains with asymptotically optimal number of function samples used.
{"title":"On Bernstein- and Marcinkiewicz-type inequalities on multivariate Cα-domains","authors":"Feng Dai , András Kroó , Andriy Prymak","doi":"10.1016/j.jat.2024.106101","DOIUrl":"10.1016/j.jat.2024.106101","url":null,"abstract":"<div><p>We prove new Bernstein and Markov type inequalities in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spaces associated with the normal and the tangential derivatives on the boundary of a general compact <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-domain with <span><math><mrow><mn>1</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. These estimates are also applied to establish Marcinkiewicz type inequalities for discretization of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norms of algebraic polynomials on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-domains with asymptotically optimal number of function samples used.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106101"},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.jat.2024.106100
Jeffrey Galkowski
We prove lower bounds on the error incurred when approximating any oscillating function using piecewise polynomial spaces. The estimates are explicit in the polynomial degree and have optimal dependence on the meshwidth and frequency when the polynomial degree is fixed. These lower bounds, for example, apply when approximating solutions to Helmholtz plane wave scattering problem.
{"title":"Lower bounds for piecewise polynomial approximations of oscillatory functions","authors":"Jeffrey Galkowski","doi":"10.1016/j.jat.2024.106100","DOIUrl":"10.1016/j.jat.2024.106100","url":null,"abstract":"<div><p>We prove lower bounds on the error incurred when approximating any oscillating function using piecewise polynomial spaces. The estimates are explicit in the polynomial degree and have optimal dependence on the meshwidth and frequency when the polynomial degree is fixed. These lower bounds, for example, apply when approximating solutions to Helmholtz plane wave scattering problem.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106100"},"PeriodicalIF":0.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000881/pdfft?md5=fb33e23c82eb14bbcd3a20a9e7b11759&pid=1-s2.0-S0021904524000881-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.jat.2024.106098
David Krieg , Mathias Sonnleitner
We consider the task of recovering a Sobolev function on a connected compact Riemannian manifold when given a sample on a finite point set. We prove that the quality of the sample is given by the -average of the geodesic distance to the point set and determine the value of . This extends our findings on bounded convex domains [IMA J. Numer. Anal., 2024]. As a byproduct, we prove the optimal rate of convergence of the th minimal worst case error for -approximation for all .
Further, a limit theorem for moments of the average distance to a set consisting of i.i.d. uniform points is proven. This yields that a random sample is asymptotically as good as an optimal sample in precisely those cases with . In particular, we obtain that cubature formulas with random nodes are asymptotically as good as optimal cubature formulas if the weights are chosen correctly. This closes a logarithmic gap left open by Ehler, Gräf and Oates [Stat. Comput., 29:1203-1214, 2019].
我们考虑了当给定有限点集上的样本时,在连通紧凑黎曼流形 M 上恢复 Sobolev 函数的任务。我们证明样本的质量是由到点集的大地距离的 Lγ(M)- 平均值给出的,并确定了 γ∈(0,∞] 的值。这扩展了我们在有界凸域上的发现[IMA J. Numer. Anal.]作为副产品,我们证明了 Lq(M)-approximation 在所有 1≤q≤∞ 条件下第 n 次最小最坏情况误差的最佳收敛速率。由此可以得出,正是在γ<∞的情况下,随机样本在渐近上与最优样本一样好。特别是,如果权重选择得当,我们可以得到带有随机节点的立体公式在渐近上与最优立体公式一样好。这弥补了埃勒、格拉夫和奥茨[Stat. Comput., 29:1203-1214, 2019]留下的对数差距。
{"title":"Function recovery on manifolds using scattered data","authors":"David Krieg , Mathias Sonnleitner","doi":"10.1016/j.jat.2024.106098","DOIUrl":"10.1016/j.jat.2024.106098","url":null,"abstract":"<div><p>We consider the task of recovering a Sobolev function on a connected compact Riemannian manifold <span><math><mi>M</mi></math></span> when given a sample on a finite point set. We prove that the quality of the sample is given by the <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>-average of the geodesic distance to the point set and determine the value of <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>. This extends our findings on bounded convex domains [IMA J. Numer. Anal., 2024]. As a byproduct, we prove the optimal rate of convergence of the <span><math><mi>n</mi></math></span>th minimal worst case error for <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>-approximation for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>.</p><p>Further, a limit theorem for moments of the average distance to a set consisting of i.i.d. uniform points is proven. This yields that a random sample is asymptotically as good as an optimal sample in precisely those cases with <span><math><mrow><mi>γ</mi><mo><</mo><mi>∞</mi></mrow></math></span>. In particular, we obtain that cubature formulas with random nodes are asymptotically as good as optimal cubature formulas if the weights are chosen correctly. This closes a logarithmic gap left open by Ehler, Gräf and Oates [Stat. Comput., 29:1203-1214, 2019].</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106098"},"PeriodicalIF":0.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000868/pdfft?md5=fe139e66c2cbd25bf59dda36950e8234&pid=1-s2.0-S0021904524000868-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.jat.2024.106099
Stefan Kahler , Ryszard Szwarc
Many symmetric orthogonal polynomials induce a hypergroup structure on . The Haar measure is the counting measure weighted with , where denotes the orthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable property . We give sufficient criteria and particularly show that if the (Hermitian) dual space equals the full interval , which is fulfilled by an abundance of examples. We also study the role of nonnegative linearization of products (and of the resulting harmonic and functional analysis). Moreover, we construct two example types with . To our knowledge, these are the first such examples. The first type is based on Karlin–McGregor polynomials, and consists of two intervals and can be chosen “maximal” in some sense; is of quadratic growth. The second type relies on hypergroups of strong compact type; grows exponentially, and is discrete.
{"title":"Dual spaces vs. Haar measures of polynomial hypergroups","authors":"Stefan Kahler , Ryszard Szwarc","doi":"10.1016/j.jat.2024.106099","DOIUrl":"10.1016/j.jat.2024.106099","url":null,"abstract":"<div><div>Many symmetric orthogonal polynomials <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> induce a hypergroup structure on <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The Haar measure is the counting measure weighted with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≔</mo><mn>1</mn><mo>/</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><mspace></mspace><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, where <span><math><mi>μ</mi></math></span> denotes the orthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable property <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. We give sufficient criteria and particularly show that <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> if the (Hermitian) dual space <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> equals the full interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, which is fulfilled by an abundance of examples. We also study the role of nonnegative linearization of products (and of the resulting harmonic and functional analysis). Moreover, we construct two example types with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo><</mo><mn>2</mn></mrow></math></span>. To our knowledge, these are the first such examples. The first type is based on Karlin–McGregor polynomials, and <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> consists of two intervals and can be chosen “maximal” in some sense; <span><math><mi>h</mi></math></span> is of quadratic growth. The second type relies on hypergroups of strong compact type; <span><math><mi>h</mi></math></span> grows exponentially, and <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> is discrete.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106099"},"PeriodicalIF":0.9,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}