The study compared superficial trunk muscle activity and postural control among an active extension subgroup of people with nonspecific chronic low back pain (AE-NSCLBP) with painfree controls during functional tasks. Thirty-two people (17 people with low back pain [LBP] and 15 painfree controls) participated in this study. Muscle activity of 5 trunk muscles and postural control were investigated during both standing tasks (eyes open/closed; single/double-leg balance) and dynamic functional tasks (spinal forward flexion and return, and a sit to stand transfer). Results showed that during single-leg standing, people with AE-NSCLBP exhibit higher muscle activity than painfree controls for 3 trunk muscles, especially with their eyes closed. There were no significant differences in muscle activity between eye conditions during double-leg standing and sit to stand transfer, forward flexion, and return from flexion. The AE-NSCLBP subgroup also demonstrated significantly impaired postural control (lower time to boundary) in 4 of 8 conditions, especially during single-leg standing and with their eyes closed. These findings show people with LBP typically demonstrated greater trunk muscle activity and poorer postural control while maintaining standing posture. This pattern was most evident when the postural challenge was higher, such as single-leg standing or with eyes closed. While this study design cannot infer causality, these findings have implications for LBP rehabilitation, particularly regarding approaches which seek to alter muscle activation among people with LBP.
{"title":"People With Low Back Pain Exhibit Higher Trunk Muscle Activity and Impaired Postural Control During Static and Dynamic Functional Tasks: A Cross-Sectional Study.","authors":"Sara Salamat, Saeed Talebian, Nader Maroufi, Gitta Kalbassi, Davood Salamat, Kieran O'Sullivan","doi":"10.1123/jab.2023-0033","DOIUrl":"10.1123/jab.2023-0033","url":null,"abstract":"<p><p>The study compared superficial trunk muscle activity and postural control among an active extension subgroup of people with nonspecific chronic low back pain (AE-NSCLBP) with painfree controls during functional tasks. Thirty-two people (17 people with low back pain [LBP] and 15 painfree controls) participated in this study. Muscle activity of 5 trunk muscles and postural control were investigated during both standing tasks (eyes open/closed; single/double-leg balance) and dynamic functional tasks (spinal forward flexion and return, and a sit to stand transfer). Results showed that during single-leg standing, people with AE-NSCLBP exhibit higher muscle activity than painfree controls for 3 trunk muscles, especially with their eyes closed. There were no significant differences in muscle activity between eye conditions during double-leg standing and sit to stand transfer, forward flexion, and return from flexion. The AE-NSCLBP subgroup also demonstrated significantly impaired postural control (lower time to boundary) in 4 of 8 conditions, especially during single-leg standing and with their eyes closed. These findings show people with LBP typically demonstrated greater trunk muscle activity and poorer postural control while maintaining standing posture. This pattern was most evident when the postural challenge was higher, such as single-leg standing or with eyes closed. While this study design cannot infer causality, these findings have implications for LBP rehabilitation, particularly regarding approaches which seek to alter muscle activation among people with LBP.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-8"},"PeriodicalIF":1.4,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11Print Date: 2024-02-01DOI: 10.1123/jab.2023-0085
Alexander Waslen, Kenzie B Friesen, Angelica E Lang
There is mixed evidence on the role that biological sex plays in shoulder biomechanics despite known differences in musculoskeletal disorder prevalence between males and females. Additionally, advancing age may contribute to shoulder kinematic changes. The purpose of this study was to determine if sex and age influenced scapular and thoracohumeral kinematics during a range of functional tasks. Sixty healthy participants aged 19-63 years (30 males; 30 females) completed a functional task protocol while their upper limb motion was recorded. Scapular and humeral angles were calculated and compared with multiple linear regressions to assess the interaction effects of sex and age. Shoulder kinematics were not different between sex and age groups for many of the functional tasks. However, females had lower humeral external rotation in the overhead lift task (15°, P < .001), and less scapular anterior tilt angles in the forward transfer task (6°, P < .001) than males. Age was positively associated with humeral elevation (R2 = .330, P < .001) and scapular rotation (R2 = .299, P < .001) in the Wash Axilla task. There exist some kinematic differences between sex and with advancing age for select functional tasks, which should be considered for musculoskeletal disorder development.
{"title":"Do Sex and Age Influence Scapular and Thoracohumeral Kinematics During a Functional Task Protocol?","authors":"Alexander Waslen, Kenzie B Friesen, Angelica E Lang","doi":"10.1123/jab.2023-0085","DOIUrl":"10.1123/jab.2023-0085","url":null,"abstract":"<p><p>There is mixed evidence on the role that biological sex plays in shoulder biomechanics despite known differences in musculoskeletal disorder prevalence between males and females. Additionally, advancing age may contribute to shoulder kinematic changes. The purpose of this study was to determine if sex and age influenced scapular and thoracohumeral kinematics during a range of functional tasks. Sixty healthy participants aged 19-63 years (30 males; 30 females) completed a functional task protocol while their upper limb motion was recorded. Scapular and humeral angles were calculated and compared with multiple linear regressions to assess the interaction effects of sex and age. Shoulder kinematics were not different between sex and age groups for many of the functional tasks. However, females had lower humeral external rotation in the overhead lift task (15°, P < .001), and less scapular anterior tilt angles in the forward transfer task (6°, P < .001) than males. Age was positively associated with humeral elevation (R2 = .330, P < .001) and scapular rotation (R2 = .299, P < .001) in the Wash Axilla task. There exist some kinematic differences between sex and with advancing age for select functional tasks, which should be considered for musculoskeletal disorder development.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"29-39"},"PeriodicalIF":1.4,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10Print Date: 2024-02-01DOI: 10.1123/jab.2022-0244
Hailey B Fong, Alexis K Nelson, Deirdre McGhee, Kevin R Ford, Douglas W Powell
Female athletes exhibit greater rates of anterior cruciate ligament injury compared with male athletes. Biomechanical factors are suggested to contribute to sex differences in injury rates. No previous investigation has evaluated the role of breast support on landing biomechanics. This study investigates the effect of breast support on joint negative work and joint contributions to total negative work during landing. Thirty-five female athletes performed 5 landing trials in 3 breast support conditions. Lower-extremity joint negative work and relative joint contributions to total negative work were calculated. Univariate analyses of variance were used to determine the effect of breast support on negative joint work values. Increasing levels of breast support were associated with lower ankle negative work (P < .001) and ankle relative contributions (P < .001) and increases in hip negative work (P = .008) and hip relative contributions (P < .001). No changes were observed in total negative work (P = .759), knee negative work (P = .059), or knee contributions to negative work (P = .094). These data demonstrate that the level of breast support affects lower-extremity biomechanics. The distal-to-proximal shift in negative joint work and relative joint contributions may be indicative of a more protective landing strategy for anterior cruciate ligament injuries.
{"title":"Increasing Breast Support is Associated With a Distal-to-Proximal Redistribution of Joint Negative Work During a Double-Limb Landing Task.","authors":"Hailey B Fong, Alexis K Nelson, Deirdre McGhee, Kevin R Ford, Douglas W Powell","doi":"10.1123/jab.2022-0244","DOIUrl":"10.1123/jab.2022-0244","url":null,"abstract":"<p><p>Female athletes exhibit greater rates of anterior cruciate ligament injury compared with male athletes. Biomechanical factors are suggested to contribute to sex differences in injury rates. No previous investigation has evaluated the role of breast support on landing biomechanics. This study investigates the effect of breast support on joint negative work and joint contributions to total negative work during landing. Thirty-five female athletes performed 5 landing trials in 3 breast support conditions. Lower-extremity joint negative work and relative joint contributions to total negative work were calculated. Univariate analyses of variance were used to determine the effect of breast support on negative joint work values. Increasing levels of breast support were associated with lower ankle negative work (P < .001) and ankle relative contributions (P < .001) and increases in hip negative work (P = .008) and hip relative contributions (P < .001). No changes were observed in total negative work (P = .759), knee negative work (P = .059), or knee contributions to negative work (P = .094). These data demonstrate that the level of breast support affects lower-extremity biomechanics. The distal-to-proximal shift in negative joint work and relative joint contributions may be indicative of a more protective landing strategy for anterior cruciate ligament injuries.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"14-20"},"PeriodicalIF":1.4,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A muscle's architecture, defined as the geometric arrangement of its fibers with respect to its mechanical line of action, impacts its abilities to produce force and shorten or lengthen under load. Ultrasound and other noninvasive imaging methods have contributed significantly to our understanding of these structure-function relationships. The goal of this work was to develop a MATLAB toolbox for tracking and mathematically representing muscle architecture at the fascicle scale, based on brightness-mode ultrasound imaging data. The MuscleUS_Toolbox allows user-performed segmentation of a region of interest and automated modeling of local fascicle orientation; calculation of streamlines between aponeuroses of origin and insertion; and quantification of fascicle length, pennation angle, and curvature. A method is described for optimizing the fascicle orientation modeling process, and the capabilities of the toolbox for quantifying and visualizing fascicle architecture are illustrated in the human tibialis anterior muscle. The toolbox is freely available.
{"title":"Quantitative Muscle Fascicle Tractography Using Brightness-Mode Ultrasound.","authors":"Hannah Kilpatrick, Emily Bush, Carly Lockard, Xingyu Zhou, Crystal Coolbaugh, Bruce Damon","doi":"10.1123/jab.2022-0270","DOIUrl":"10.1123/jab.2022-0270","url":null,"abstract":"<p><p>A muscle's architecture, defined as the geometric arrangement of its fibers with respect to its mechanical line of action, impacts its abilities to produce force and shorten or lengthen under load. Ultrasound and other noninvasive imaging methods have contributed significantly to our understanding of these structure-function relationships. The goal of this work was to develop a MATLAB toolbox for tracking and mathematically representing muscle architecture at the fascicle scale, based on brightness-mode ultrasound imaging data. The MuscleUS_Toolbox allows user-performed segmentation of a region of interest and automated modeling of local fascicle orientation; calculation of streamlines between aponeuroses of origin and insertion; and quantification of fascicle length, pennation angle, and curvature. A method is described for optimizing the fascicle orientation modeling process, and the capabilities of the toolbox for quantifying and visualizing fascicle architecture are illustrated in the human tibialis anterior muscle. The toolbox is freely available.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"421-431"},"PeriodicalIF":1.1,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-04Print Date: 2024-02-01DOI: 10.1123/jab.2023-0040
Diana De Carvalho, Kristi Randhawa, Leslie Verville, Sheilah Hogg-Johnson, Samuel J Howarth, Carmen Liang, Silvano Mior, Pierre Côté
Driving posture can lead to musculoskeletal pain. Most work focuses on the lower back; therefore, we know little about automobile seat design and neck posture. This study evaluated an automobile driver seat that individualized upper back support to improve head and neck posture. Specifically, we examined the system's impact on anterior head translation with secondary outcomes of spine posture and perceptions of comfort/well-being compared with a control. Forty participants were block randomized to experience either the activated or deactivated version of the same seating system first. Participants completed two 30-minute simulated driving trials, separated by washout, with continuous measures of anterior head translation, spine posture, and pelvis orientation. Perceptions of comfort/well-being were assessed by survey and open-ended questions immediately following each condition. Small, but statistically significant decreases in anterior head translation and posterior pelvic tilt occurred with the activated seat system. Participants reported lower satisfaction with the activated seat system. Order of the 2 seat conditions affected differences in pelvis orientation and participant perceptions of comfort/well-being. An anthropometric-based seat system targeting upper back support can significantly affect head and pelvic posture but not satisfaction during simulated driving. Future work should examine long-term impacts of these posture changes on health outcomes.
{"title":"The Vehicle Seating Intervention Trial: Cross-Over Randomized Controlled Trial to Evaluate the Impact of 2 Car Seat Configurations on Spinal Posture.","authors":"Diana De Carvalho, Kristi Randhawa, Leslie Verville, Sheilah Hogg-Johnson, Samuel J Howarth, Carmen Liang, Silvano Mior, Pierre Côté","doi":"10.1123/jab.2023-0040","DOIUrl":"10.1123/jab.2023-0040","url":null,"abstract":"<p><p>Driving posture can lead to musculoskeletal pain. Most work focuses on the lower back; therefore, we know little about automobile seat design and neck posture. This study evaluated an automobile driver seat that individualized upper back support to improve head and neck posture. Specifically, we examined the system's impact on anterior head translation with secondary outcomes of spine posture and perceptions of comfort/well-being compared with a control. Forty participants were block randomized to experience either the activated or deactivated version of the same seating system first. Participants completed two 30-minute simulated driving trials, separated by washout, with continuous measures of anterior head translation, spine posture, and pelvis orientation. Perceptions of comfort/well-being were assessed by survey and open-ended questions immediately following each condition. Small, but statistically significant decreases in anterior head translation and posterior pelvic tilt occurred with the activated seat system. Participants reported lower satisfaction with the activated seat system. Order of the 2 seat conditions affected differences in pelvis orientation and participant perceptions of comfort/well-being. An anthropometric-based seat system targeting upper back support can significantly affect head and pelvic posture but not satisfaction during simulated driving. Future work should examine long-term impacts of these posture changes on health outcomes.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"40-49"},"PeriodicalIF":1.4,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29Print Date: 2024-02-01DOI: 10.1123/jab.2023-0067
Matheus Vianna, Leonardo Metsavaht, Eliane Guadagnin, Carlos Eduardo Franciozi, Marcus Luzo, Marcio Tannure, Gustavo Leporace
Prior studies have explored the relationship between knee valgus and musculoskeletal variables to formulate injury prevention programs, primarily for females. Nonetheless, there is insufficient evidence pertaining to professional male soccer players. Here, the aim was to test the correlation of lateral trunk inclination, hip adduction, hip internal rotation, ankle dorsiflexion range of motion, and hip isometric strength with knee valgus during the single-leg vertical jump test. Twenty-four professional male soccer players performed a single-leg vertical hop test, hip strength assessments, and an ankle dorsiflexion range of motion test. A motion analysis system was employed for kinematic analysis. Maximal isometric hip strength and ankle dorsiflexion range of motion were tested using a handheld dynamometer and a digital inclinometer, respectively. The correlation of peak knee valgus with peak lateral trunk inclination was .43 during the landing phase (P = .04) and with peak hip internal rotation was -.68 (P < .001). For knee valgus angular displacement, only peak lateral trunk inclination presented a moderate positive correlation (r = .40, P = .05). This study showed that trunk and hip kinematics are associated with knee valgus, which could consequently lead to increased knee overload in male professional soccer players following a unilateral vertical landing test.
{"title":"Variables Associated With Knee Valgus in Male Professional Soccer Players During a Single-Leg Vertical Landing Task.","authors":"Matheus Vianna, Leonardo Metsavaht, Eliane Guadagnin, Carlos Eduardo Franciozi, Marcus Luzo, Marcio Tannure, Gustavo Leporace","doi":"10.1123/jab.2023-0067","DOIUrl":"10.1123/jab.2023-0067","url":null,"abstract":"<p><p>Prior studies have explored the relationship between knee valgus and musculoskeletal variables to formulate injury prevention programs, primarily for females. Nonetheless, there is insufficient evidence pertaining to professional male soccer players. Here, the aim was to test the correlation of lateral trunk inclination, hip adduction, hip internal rotation, ankle dorsiflexion range of motion, and hip isometric strength with knee valgus during the single-leg vertical jump test. Twenty-four professional male soccer players performed a single-leg vertical hop test, hip strength assessments, and an ankle dorsiflexion range of motion test. A motion analysis system was employed for kinematic analysis. Maximal isometric hip strength and ankle dorsiflexion range of motion were tested using a handheld dynamometer and a digital inclinometer, respectively. The correlation of peak knee valgus with peak lateral trunk inclination was .43 during the landing phase (P = .04) and with peak hip internal rotation was -.68 (P < .001). For knee valgus angular displacement, only peak lateral trunk inclination presented a moderate positive correlation (r = .40, P = .05). This study showed that trunk and hip kinematics are associated with knee valgus, which could consequently lead to increased knee overload in male professional soccer players following a unilateral vertical landing test.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"9-13"},"PeriodicalIF":1.4,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Print Date: 2023-10-01DOI: 10.1123/jab.2023-0165
David G Lloyd, Ilse Jonkers, Scott L Delp, Luca Modenese
The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system's 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.
{"title":"The History and Future of Neuromusculoskeletal Biomechanics.","authors":"David G Lloyd, Ilse Jonkers, Scott L Delp, Luca Modenese","doi":"10.1123/jab.2023-0165","DOIUrl":"https://doi.org/10.1123/jab.2023-0165","url":null,"abstract":"<p><p>The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system's 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 5","pages":"273-283"},"PeriodicalIF":1.4,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Print Date: 2023-10-01DOI: 10.1123/jab.2023-0046
Zahra S Mahdian, Huawei Wang, Mohamed Irfan Mohamed Refai, Guillaume Durandau, Massimo Sartori, Mhairi K MacLean
Lower limb exoskeletons and exosuits ("exos") are traditionally designed with a strong focus on mechatronics and actuation, whereas the "human side" is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons. We report methods to measure muscle biomechanics directly and indirectly and summarize the studies that have incorporated muscle measures for improved design and control of intuitive lower limb exos. Finally, we delve into articles that have studied how the human-exo interaction influences muscle biomechanics during locomotion. To support neurorehabilitation and facilitate everyday use of wearable assistive technologies, we believe that future studies should investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle force resulting in joint torques should be combined with musculoskeletal models to address time-varying parameters such as adaptation to exos and fatigue. Development of smarter predictive controllers that steer rather than assist biological components could result in a synchronized human-machine system that optimizes the biological and electromechanical performance of the combined system.
{"title":"Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review.","authors":"Zahra S Mahdian, Huawei Wang, Mohamed Irfan Mohamed Refai, Guillaume Durandau, Massimo Sartori, Mhairi K MacLean","doi":"10.1123/jab.2023-0046","DOIUrl":"https://doi.org/10.1123/jab.2023-0046","url":null,"abstract":"<p><p>Lower limb exoskeletons and exosuits (\"exos\") are traditionally designed with a strong focus on mechatronics and actuation, whereas the \"human side\" is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons. We report methods to measure muscle biomechanics directly and indirectly and summarize the studies that have incorporated muscle measures for improved design and control of intuitive lower limb exos. Finally, we delve into articles that have studied how the human-exo interaction influences muscle biomechanics during locomotion. To support neurorehabilitation and facilitate everyday use of wearable assistive technologies, we believe that future studies should investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle force resulting in joint torques should be combined with musculoskeletal models to address time-varying parameters such as adaptation to exos and fatigue. Development of smarter predictive controllers that steer rather than assist biological components could result in a synchronized human-machine system that optimizes the biological and electromechanical performance of the combined system.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 5","pages":"318-333"},"PeriodicalIF":1.4,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41120981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-22Print Date: 2023-10-01DOI: 10.1123/jab.2023-0079
Justin Fernandez, Vickie Shim, Marco Schneider, Julie Choisne, Geoff Handsfield, Ted Yeung, Ju Zhang, Peter Hunter, Thor Besier
In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones. Finally, a more general approach to model personalization is discussed based on the idea of multiscale personalization called scaffolds.
{"title":"A Narrative Review of Personalized Musculoskeletal Modeling Using the Physiome and Musculoskeletal Atlas Projects.","authors":"Justin Fernandez, Vickie Shim, Marco Schneider, Julie Choisne, Geoff Handsfield, Ted Yeung, Ju Zhang, Peter Hunter, Thor Besier","doi":"10.1123/jab.2023-0079","DOIUrl":"10.1123/jab.2023-0079","url":null,"abstract":"In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones. Finally, a more general approach to model personalization is discussed based on the idea of multiscale personalization called scaffolds.","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"304-317"},"PeriodicalIF":1.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10425917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16Print Date: 2023-10-01DOI: 10.1123/jab.2023-0015
Alex Bersani, Giorgio Davico, Marco Viceconti
This review paper provides an overview of the approaches to model neuromuscular control, focusing on methods to identify nonoptimal control strategies typical of populations with neuromuscular disorders or children. Where possible, the authors tightened the description of the methods to the mechanisms behind the underlying biomechanical and physiological rationale. They start by describing the first and most simplified approach, the reductionist approach, which splits the role of the nervous and musculoskeletal systems. Static optimization and dynamic optimization methods and electromyography-based approaches are summarized to highlight their limitations and understand (the need for) their developments over time. Then, the authors look at the more recent stochastic approach, introduced to explore the space of plausible neural solutions, thus implementing the uncontrolled manifold theory, according to which the central nervous system only controls specific motions and tasks to limit energy consumption while allowing for some degree of adaptability to perturbations. Finally, they explore the literature covering the explicit modeling of the coupling between the nervous system (acting as controller) and the musculoskeletal system (the actuator), which may be employed to overcome the split characterizing the reductionist approach.
{"title":"Modeling Human Suboptimal Control: A Review.","authors":"Alex Bersani, Giorgio Davico, Marco Viceconti","doi":"10.1123/jab.2023-0015","DOIUrl":"10.1123/jab.2023-0015","url":null,"abstract":"<p><p>This review paper provides an overview of the approaches to model neuromuscular control, focusing on methods to identify nonoptimal control strategies typical of populations with neuromuscular disorders or children. Where possible, the authors tightened the description of the methods to the mechanisms behind the underlying biomechanical and physiological rationale. They start by describing the first and most simplified approach, the reductionist approach, which splits the role of the nervous and musculoskeletal systems. Static optimization and dynamic optimization methods and electromyography-based approaches are summarized to highlight their limitations and understand (the need for) their developments over time. Then, the authors look at the more recent stochastic approach, introduced to explore the space of plausible neural solutions, thus implementing the uncontrolled manifold theory, according to which the central nervous system only controls specific motions and tasks to limit energy consumption while allowing for some degree of adaptability to perturbations. Finally, they explore the literature covering the explicit modeling of the coupling between the nervous system (acting as controller) and the musculoskeletal system (the actuator), which may be employed to overcome the split characterizing the reductionist approach.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"294-303"},"PeriodicalIF":1.4,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10014564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}