Spatiotemporal gait kinematics and their variability are commonly assessed in clinical and laboratory settings to quantify fall risk. Although the Hawthorne effect, or modifications in participant behavior due to knowledge of being observed, has the potential to impact such assessments, it has received minimal attention in the study of gait-particularly gait variability. The purpose of this study was to quantify the Hawthorne effect on variability and central tendency measures of fall-related spatiotemporal gait parameters. Seventeen healthy young adults walked on a treadmill at a self-selected velocity for 2 minutes under covert evaluation (ie, without awareness of being evaluated) and 2 minutes under overt evaluation. The movement was recorded using motion capture technology, from which we calculated mean value and step-to-step variability (using standard deviation and mean absolute deviation) of step length, step width, percent double support, percent stance phase, and stride time. Although central tendencies were unaffected by evaluation type, four-of-five measures of variability were significantly lower during overt evaluation for at least one-of-two metrics. Our results suggest a Hawthorne effect on locomotor control. Researchers should be aware of this phenomenon when designing research studies and interpreting gait assessments.
{"title":"Variability of Spatiotemporal Gait Kinematics During Treadmill Walking: Is There a Hawthorne Effect?","authors":"Saaniya Farhan, Marco A Avalos, Noah J Rosenblatt","doi":"10.1123/jab.2022-0185","DOIUrl":"https://doi.org/10.1123/jab.2022-0185","url":null,"abstract":"<p><p>Spatiotemporal gait kinematics and their variability are commonly assessed in clinical and laboratory settings to quantify fall risk. Although the Hawthorne effect, or modifications in participant behavior due to knowledge of being observed, has the potential to impact such assessments, it has received minimal attention in the study of gait-particularly gait variability. The purpose of this study was to quantify the Hawthorne effect on variability and central tendency measures of fall-related spatiotemporal gait parameters. Seventeen healthy young adults walked on a treadmill at a self-selected velocity for 2 minutes under covert evaluation (ie, without awareness of being evaluated) and 2 minutes under overt evaluation. The movement was recorded using motion capture technology, from which we calculated mean value and step-to-step variability (using standard deviation and mean absolute deviation) of step length, step width, percent double support, percent stance phase, and stride time. Although central tendencies were unaffected by evaluation type, four-of-five measures of variability were significantly lower during overt evaluation for at least one-of-two metrics. Our results suggest a Hawthorne effect on locomotor control. Researchers should be aware of this phenomenon when designing research studies and interpreting gait assessments.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"151-156"},"PeriodicalIF":1.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the ability to recover balance in the lateral direction has important implications with regard to fall risk in older adults, the effect of visual input on balance recovery in response to lateral perturbation and the effect of age are not well studied. We investigated the effect of visual input on balance recovery response to unpredictable lateral surface perturbations and its age-related changes. Ten younger and 10 older healthy adults were compared during balance recovery trials performed with the eyes open and eyes closed (EC). Compared with younger adults, older adults showed increased electromyography (EMG) peak amplitude of the soleus and gluteus medius, reduced EMG burst duration of the gluteus maximus and medius, and increased body sway (SD of the body's center of mass acceleration) in EC. In addition, older adults exhibited a smaller % increase (EC-eyes open) of the ankle eversion angle, hip abduction torque, EMG burst duration of the fibularis longus, and a greater % increase of body sway. All kinematics, kinetics, and EMG variables were greater in EC compared with eyes open in both groups. In conclusion, the absence of visual input negatively affects the balance recovery mechanism more in older adults compared with younger adults.
{"title":"Effects of Visual Input Absence on Balance Recovery Responses to Lateral Standing Surface Perturbations in Older and Younger Adults.","authors":"Woohyoung Jeon, James Borrelli, Hao-Yuan Hsiao","doi":"10.1123/jab.2022-0029","DOIUrl":"https://doi.org/10.1123/jab.2022-0029","url":null,"abstract":"<p><p>Although the ability to recover balance in the lateral direction has important implications with regard to fall risk in older adults, the effect of visual input on balance recovery in response to lateral perturbation and the effect of age are not well studied. We investigated the effect of visual input on balance recovery response to unpredictable lateral surface perturbations and its age-related changes. Ten younger and 10 older healthy adults were compared during balance recovery trials performed with the eyes open and eyes closed (EC). Compared with younger adults, older adults showed increased electromyography (EMG) peak amplitude of the soleus and gluteus medius, reduced EMG burst duration of the gluteus maximus and medius, and increased body sway (SD of the body's center of mass acceleration) in EC. In addition, older adults exhibited a smaller % increase (EC-eyes open) of the ankle eversion angle, hip abduction torque, EMG burst duration of the fibularis longus, and a greater % increase of body sway. All kinematics, kinetics, and EMG variables were greater in EC compared with eyes open in both groups. In conclusion, the absence of visual input negatively affects the balance recovery mechanism more in older adults compared with younger adults.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"184-192"},"PeriodicalIF":1.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Field-based tibial acceleration measurements are increasingly common but sampling frequencies vary between accelerometers. The purpose of this study was to determine the minimum sampling frequency needed for reliable and accurate measurement of peak axial and resultant tibial acceleration during running in the field. Tibial acceleration was measured at 7161 Hz in 19 healthy runners on concrete and grass. Acceleration data were down sampled to approximate previously used sampling frequencies. Peak axial and resultant tibial acceleration were calculated for each sampling frequency. The within-session reliability and accuracy of peak axial and resultant tibial accelerations were evaluated using intraclass correlation coefficients, mean differences, and 95% limits of agreements. Intraclass correlation coefficients greater than .9 indicated excellent within-session reliability for both peak axial and resultant tibial acceleration measured while running on concrete and grass. Peak axial and resultant tibial accelerations were 0.5 to 1.4 g lower and minimal detectable differences were up to 0.6 g higher at 102 Hz compared with higher sampling frequencies. We recommend a minimum sampling frequency of 199 Hz for accurate and reliable measurements of peak axial and resultant tibial acceleration in the field.
{"title":"Minimum Sampling Frequency for Accurate and Reliable Tibial Acceleration Measurements During Rearfoot Strike Running in the Field.","authors":"Kevin G Aubol, Clare E Milner","doi":"10.1123/jab.2022-0069","DOIUrl":"https://doi.org/10.1123/jab.2022-0069","url":null,"abstract":"<p><p>Field-based tibial acceleration measurements are increasingly common but sampling frequencies vary between accelerometers. The purpose of this study was to determine the minimum sampling frequency needed for reliable and accurate measurement of peak axial and resultant tibial acceleration during running in the field. Tibial acceleration was measured at 7161 Hz in 19 healthy runners on concrete and grass. Acceleration data were down sampled to approximate previously used sampling frequencies. Peak axial and resultant tibial acceleration were calculated for each sampling frequency. The within-session reliability and accuracy of peak axial and resultant tibial accelerations were evaluated using intraclass correlation coefficients, mean differences, and 95% limits of agreements. Intraclass correlation coefficients greater than .9 indicated excellent within-session reliability for both peak axial and resultant tibial acceleration measured while running on concrete and grass. Peak axial and resultant tibial accelerations were 0.5 to 1.4 g lower and minimal detectable differences were up to 0.6 g higher at 102 Hz compared with higher sampling frequencies. We recommend a minimum sampling frequency of 199 Hz for accurate and reliable measurements of peak axial and resultant tibial acceleration in the field.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"193-198"},"PeriodicalIF":1.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-27Print Date: 2023-06-01DOI: 10.1123/jab.2022-0196
Ty D Holcomb, Madison E Marks, N Stewart Pritchard, Logan Miller, Mark A Espeland, Christopher M Miles, Justin B Moore, Kristie L Foley, Joel D Stitzel, Jillian E Urban
Many head acceleration events (HAEs) observed in youth football emanate from a practice environment. This study aimed to evaluate HAEs in youth football practice drills using a mouthpiece-based sensor, differentiating between inertial and direct HAEs. Head acceleration data were collected from athletes participating on 2 youth football teams (ages 11-13 y) using an instrumented mouthpiece-based sensor during all practice sessions in a single season. Video was recorded and analyzed to verify and assign HAEs to specific practice drill characteristics, including drill intensity, drill classification, and drill type. HAEs were quantified in terms of HAEs per athlete per minute and peak linear and rotational acceleration and rotational velocity. Mixed-effects models were used to evaluate the differences in kinematics, and generalized linear models were used to assess differences in HAE frequency between drill categories. A total of 3237 HAEs were verified and evaluated from 29 football athletes enrolled in this study. Head kinematics varied significantly between drill categorizations. HAEs collected at higher intensities resulted in significantly greater kinematics than lower-intensity drills. The results of this study add to the growing body of evidence informing evidence-based strategies to reduce head impact exposure and concussion risk in youth football practices.
在青少年足球比赛中观察到的许多头部加速度事件(HAEs)都来自练习环境。本研究旨在使用口罩式传感器评估青少年足球训练中的 HAE,并区分惯性和直接 HAE。在一个赛季的所有练习中,使用仪器口罩式传感器收集了两支青少年足球队运动员(11-13 岁)的头部加速度数据。对视频进行录制和分析,以验证 HAE 并将其与特定的训练特点(包括训练强度、训练分类和训练类型)相联系。HAE以每名运动员每分钟的HAE、峰值线性和旋转加速度以及旋转速度进行量化。混合效应模型用于评估运动学方面的差异,广义线性模型用于评估不同训练类别之间 HAE 频率的差异。本研究共对 29 名足球运动员的 3237 次 HAE 进行了验证和评估。不同训练类别的头部运动学差异显著。在高强度训练中收集的 HAE 所产生的运动学数据明显高于低强度训练。这项研究的结果为越来越多的证据提供了依据,为在青少年足球训练中减少头部冲击暴露和脑震荡风险的循证策略提供了参考。
{"title":"Characterization of Head Acceleration Exposure During Youth Football Practice Drills.","authors":"Ty D Holcomb, Madison E Marks, N Stewart Pritchard, Logan Miller, Mark A Espeland, Christopher M Miles, Justin B Moore, Kristie L Foley, Joel D Stitzel, Jillian E Urban","doi":"10.1123/jab.2022-0196","DOIUrl":"10.1123/jab.2022-0196","url":null,"abstract":"<p><p>Many head acceleration events (HAEs) observed in youth football emanate from a practice environment. This study aimed to evaluate HAEs in youth football practice drills using a mouthpiece-based sensor, differentiating between inertial and direct HAEs. Head acceleration data were collected from athletes participating on 2 youth football teams (ages 11-13 y) using an instrumented mouthpiece-based sensor during all practice sessions in a single season. Video was recorded and analyzed to verify and assign HAEs to specific practice drill characteristics, including drill intensity, drill classification, and drill type. HAEs were quantified in terms of HAEs per athlete per minute and peak linear and rotational acceleration and rotational velocity. Mixed-effects models were used to evaluate the differences in kinematics, and generalized linear models were used to assess differences in HAE frequency between drill categories. A total of 3237 HAEs were verified and evaluated from 29 football athletes enrolled in this study. Head kinematics varied significantly between drill categorizations. HAEs collected at higher intensities resulted in significantly greater kinematics than lower-intensity drills. The results of this study add to the growing body of evidence informing evidence-based strategies to reduce head impact exposure and concussion risk in youth football practices.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"157-168"},"PeriodicalIF":1.1,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jozef J M Suskens, Gustaaf Reurink, Johannes L Tol, Gino M M J Kerkhoffs, Edwin A Goedhart, Huub Maas, Jaap H van Dieën
This study assessed activity distribution among the hamstring muscles during the Nordic hamstring exercise (NHE). The objective was to compare muscle activity between and within muscles during the NHE to add insights in its underlying protective mechanism. Through multichannel electromyography, we measured muscle activity in male basketball players during the NHE. Electromyography was assessed at 15 locations: 5 for biceps femoris long head, 4 for semitendinosus, and 6 for semimembranosus. For each percent of the eccentric phase of the NHE, muscle activity was calculated for each electrode location within each hamstring muscle individually. To quantify whole muscle head activity, means and variances across electrodes within each muscle were calculated. Thirty-five noninjured participants were included (mean age, 18 [2] y; mass, 87 [12] kg; height, 192 [9] cm). Heterogeneous muscle activity was found between 38% and 62% and over the whole eccentric contraction phase within the semitendinosus and the semimembranosus, respectively. Muscle activity of the semitendinosus was significantly higher than that of the biceps femoris long head. During the NHE, the relative contribution of the semitendinosus is the highest among hamstring muscles. Its strong contribution may compensate for the biceps femoris long head, the most commonly injured hamstring muscle head.
{"title":"Activity Distribution Among the Hamstring Muscles During the Nordic Hamstring Exercise: A Multichannel Surface Electromyography Study.","authors":"Jozef J M Suskens, Gustaaf Reurink, Johannes L Tol, Gino M M J Kerkhoffs, Edwin A Goedhart, Huub Maas, Jaap H van Dieën","doi":"10.1123/jab.2022-0102","DOIUrl":"https://doi.org/10.1123/jab.2022-0102","url":null,"abstract":"<p><p>This study assessed activity distribution among the hamstring muscles during the Nordic hamstring exercise (NHE). The objective was to compare muscle activity between and within muscles during the NHE to add insights in its underlying protective mechanism. Through multichannel electromyography, we measured muscle activity in male basketball players during the NHE. Electromyography was assessed at 15 locations: 5 for biceps femoris long head, 4 for semitendinosus, and 6 for semimembranosus. For each percent of the eccentric phase of the NHE, muscle activity was calculated for each electrode location within each hamstring muscle individually. To quantify whole muscle head activity, means and variances across electrodes within each muscle were calculated. Thirty-five noninjured participants were included (mean age, 18 [2] y; mass, 87 [12] kg; height, 192 [9] cm). Heterogeneous muscle activity was found between 38% and 62% and over the whole eccentric contraction phase within the semitendinosus and the semimembranosus, respectively. Muscle activity of the semitendinosus was significantly higher than that of the biceps femoris long head. During the NHE, the relative contribution of the semitendinosus is the highest among hamstring muscles. Its strong contribution may compensate for the biceps femoris long head, the most commonly injured hamstring muscle head.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 2","pages":"69-79"},"PeriodicalIF":1.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9237981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dheyani Malde, Natalie Pizzimenti, John McCamley, Bonnie Sumner
There is limited research that directly compares the effect of reduced speed with reduced propulsive force production (PFP) on age-related gait changes. We aimed to determine how changes in the gait of older adults correlate with age, speed, or peak PFP over a 6-year span. We collected kinematics and kinetics of 17 older subjects at 2 time points. We determined which biomechanical variables changed significantly between visits and used linear regressions to determine whether combinations of self-selected walking speed, peak PFP, and age correlated to changes in these variables. We found a suite of gait-related changes that occurred in the 6-year period, in line with previous aging studies. Of the 10 significant changes, we found 2 with significant regressions. Self-selected walking speed was a significant indicator of step length, not peak PFP or age. Peak PFP was a significant indicator for knee flexion. None of the biomechanical changes were correlated to the chronological age of the subjects. Few gait parameters had a correlation to the independent variables, suggesting that changes in gait mechanics were not solely correlated to peak PFP, speed, and/or age. This study improves understanding of changes in ambulation that lead to age-related gait modifications.
{"title":"Are Age, Self-Selected Walking Speed, or Propulsion Force Predictors of Gait-Related Changes in Older Adults?","authors":"Dheyani Malde, Natalie Pizzimenti, John McCamley, Bonnie Sumner","doi":"10.1123/jab.2022-0026","DOIUrl":"https://doi.org/10.1123/jab.2022-0026","url":null,"abstract":"<p><p>There is limited research that directly compares the effect of reduced speed with reduced propulsive force production (PFP) on age-related gait changes. We aimed to determine how changes in the gait of older adults correlate with age, speed, or peak PFP over a 6-year span. We collected kinematics and kinetics of 17 older subjects at 2 time points. We determined which biomechanical variables changed significantly between visits and used linear regressions to determine whether combinations of self-selected walking speed, peak PFP, and age correlated to changes in these variables. We found a suite of gait-related changes that occurred in the 6-year period, in line with previous aging studies. Of the 10 significant changes, we found 2 with significant regressions. Self-selected walking speed was a significant indicator of step length, not peak PFP or age. Peak PFP was a significant indicator for knee flexion. None of the biomechanical changes were correlated to the chronological age of the subjects. Few gait parameters had a correlation to the independent variables, suggesting that changes in gait mechanics were not solely correlated to peak PFP, speed, and/or age. This study improves understanding of changes in ambulation that lead to age-related gait modifications.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 2","pages":"99-109"},"PeriodicalIF":1.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9240042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computational approaches for movement onset detection can standardize and automate analyses to improve repeatability, accessibility, and time efficiency. With the increasing interest in assessing time-varying biomechanical signals such as force-time recordings, there remains a need to investigate the recently adopted 5 times the standard deviation (5 × SD) threshold method. In addition, other employed methods and their variations such as the reverse scanning and first derivative methods have been scarcely evaluated. The aim of this study was to compare the 5 × SD threshold method, 3 variations of the reverse scanning method, and 5 variations of the first derivative method against manually selected onsets, in the countermovement jump and squat. Limits of agreement with respect to onsets, manually selected from unfiltered data, were best for the first derivative method using a 10-Hz low-pass filter (limits of agreement: -0.02 to 0.05 s and -0.07 to 0.11 s for the countermovement jump and squat, respectively). Thus, even when the onset of unfiltered data is of primary interest, filtering before calculating the first derivative is necessary as it reduces the amplification of high frequencies. The first derivative approach is also less susceptible to inherent variation during the quiet phase prior to the onset compared to the other approaches investigated.
{"title":"Movement Onset Detection Methods: A Comparison Using Force Plate Recordings.","authors":"Brendan L Pinto, Jack P Callaghan","doi":"10.1123/jab.2022-0111","DOIUrl":"https://doi.org/10.1123/jab.2022-0111","url":null,"abstract":"<p><p>Computational approaches for movement onset detection can standardize and automate analyses to improve repeatability, accessibility, and time efficiency. With the increasing interest in assessing time-varying biomechanical signals such as force-time recordings, there remains a need to investigate the recently adopted 5 times the standard deviation (5 × SD) threshold method. In addition, other employed methods and their variations such as the reverse scanning and first derivative methods have been scarcely evaluated. The aim of this study was to compare the 5 × SD threshold method, 3 variations of the reverse scanning method, and 5 variations of the first derivative method against manually selected onsets, in the countermovement jump and squat. Limits of agreement with respect to onsets, manually selected from unfiltered data, were best for the first derivative method using a 10-Hz low-pass filter (limits of agreement: -0.02 to 0.05 s and -0.07 to 0.11 s for the countermovement jump and squat, respectively). Thus, even when the onset of unfiltered data is of primary interest, filtering before calculating the first derivative is necessary as it reduces the amplification of high frequencies. The first derivative approach is also less susceptible to inherent variation during the quiet phase prior to the onset compared to the other approaches investigated.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 2","pages":"118-123"},"PeriodicalIF":1.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9293480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patients with knee osteoarthritis and varus knee deformity have impaired postural balance, resulting in decreased walking performance and an increased risk of falls. This study aimed to investigate the early changes in the postural balance following inverted V-shaped high tibial osteotomy (HTO). Fifteen patients with medial knee osteoarthritis were recruited. Postural balance was assessed using the center-of-pressure (COP) data during single-leg standing before and 6 weeks after inverted V-shaped HTO. The maximum range, mean velocity, and area of COP movements in the anteroposterior and mediolateral directions were analyzed. Preoperative and postoperative visual analog scale for knee pain was assessed. The maximum range of COP in the mediolateral direction decreased (P = .017), whereas the mean velocity of COP in the anteroposterior direction increased 6 weeks postoperatively (P = .011). The visual analog scale score for knee pain significantly improved at 6 weeks postoperatively (P = .006). Valgus correction with inverted V-shaped HTO resulted in improved postural balance in the mediolateral direction and good short-term clinical outcomes early following surgery. Early rehabilitation after inverted V-shaped HTO should focus on postural balance in the anteroposterior direction.
{"title":"Early Changes in Postural Balance Following Inverted V-Shaped High Tibial Osteotomy in Patients With Knee Osteoarthritis.","authors":"Kento Sabashi, Takeshi Chiba, Koji Iwasaki, Tomohiro Onodera, Eiji Kondo, Norimasa Iwasaki, Harukazu Tohyama","doi":"10.1123/jab.2022-0273","DOIUrl":"https://doi.org/10.1123/jab.2022-0273","url":null,"abstract":"<p><p>Patients with knee osteoarthritis and varus knee deformity have impaired postural balance, resulting in decreased walking performance and an increased risk of falls. This study aimed to investigate the early changes in the postural balance following inverted V-shaped high tibial osteotomy (HTO). Fifteen patients with medial knee osteoarthritis were recruited. Postural balance was assessed using the center-of-pressure (COP) data during single-leg standing before and 6 weeks after inverted V-shaped HTO. The maximum range, mean velocity, and area of COP movements in the anteroposterior and mediolateral directions were analyzed. Preoperative and postoperative visual analog scale for knee pain was assessed. The maximum range of COP in the mediolateral direction decreased (P = .017), whereas the mean velocity of COP in the anteroposterior direction increased 6 weeks postoperatively (P = .011). The visual analog scale score for knee pain significantly improved at 6 weeks postoperatively (P = .006). Valgus correction with inverted V-shaped HTO resulted in improved postural balance in the mediolateral direction and good short-term clinical outcomes early following surgery. Early rehabilitation after inverted V-shaped HTO should focus on postural balance in the anteroposterior direction.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 2","pages":"124-129"},"PeriodicalIF":1.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9293473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernanda Metzen, João Breno Ribeiro-Alvares, Klauber Dalcero Pompeo, Francesca Chaida Sonda, Rodrigo Silva Santos, Marco Aurélio Vaz
Développé à la seconde is a classic ballet movement that requires the maintenance of a high hip joint range of motion (ROM) and muscle strength. However, the contribution of these hip joint biomechanical parameters to this movement's esthetic performance is unclear. Therefore, this study evaluated hip joint biomechanical characteristics of 21 experienced ballet dancers (15-29 y old) and verified the relationship between these variables with the développé à la seconde static and dynamic performance. Correlations between age, ballet practice time, gluteus maximus and gluteus medius thicknesses, ROM, and muscle strength with absolute and relative static and dynamic performances were verified. Flexors, extensors, and internal rotators peak strength and external rotation ROM were highly correlated with absolute and relative static performances (0.5-0.7). Flexors and extensors strength and external and internal rotation ROM showed the highest correlations with the développé dynamic performance (0.49-0.67). Flexor strength and flexor and internal rotation ROM predicted 26% to 41% of this movement's static and dynamic performances. Thus, from a biomechanical perspective, clinical assessment of hip strength and ROM may be used to predict the quality of the ballet dancers' performance of the développé à la seconde and guide classical ballet training.
{"title":"Hip Joint Biomechanical Parameters and Their Relationship With the Esthetic Functional Performance of the Développé à la Seconde Movement in Classical Ballet Dancers.","authors":"Fernanda Metzen, João Breno Ribeiro-Alvares, Klauber Dalcero Pompeo, Francesca Chaida Sonda, Rodrigo Silva Santos, Marco Aurélio Vaz","doi":"10.1123/jab.2022-0200","DOIUrl":"https://doi.org/10.1123/jab.2022-0200","url":null,"abstract":"<p><p>Développé à la seconde is a classic ballet movement that requires the maintenance of a high hip joint range of motion (ROM) and muscle strength. However, the contribution of these hip joint biomechanical parameters to this movement's esthetic performance is unclear. Therefore, this study evaluated hip joint biomechanical characteristics of 21 experienced ballet dancers (15-29 y old) and verified the relationship between these variables with the développé à la seconde static and dynamic performance. Correlations between age, ballet practice time, gluteus maximus and gluteus medius thicknesses, ROM, and muscle strength with absolute and relative static and dynamic performances were verified. Flexors, extensors, and internal rotators peak strength and external rotation ROM were highly correlated with absolute and relative static performances (0.5-0.7). Flexors and extensors strength and external and internal rotation ROM showed the highest correlations with the développé dynamic performance (0.49-0.67). Flexor strength and flexor and internal rotation ROM predicted 26% to 41% of this movement's static and dynamic performances. Thus, from a biomechanical perspective, clinical assessment of hip strength and ROM may be used to predict the quality of the ballet dancers' performance of the développé à la seconde and guide classical ballet training.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 2","pages":"80-89"},"PeriodicalIF":1.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9592305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Wang, Man Wang, Vikki Wing-Shan Chu, Patrick Shu-Hang Yung, Daniel T P Fong
Anterior cruciate ligament injury prevention should focus primarily on reduction of the knee abduction moment (KAM) in landing tasks. Gluteus medius and hamstring forces are considered to decrease KAM during landing. The effects of different muscle stimulations on KAM reduction were compared using 2 electrode sizes (standard 38 cm2 and half size 19 cm2) during a landing task. Twelve young healthy female adults (22.3 [3.6] y, 1.62 [0.02] m, 50.2 [4.7] kg) were recruited. KAM was calculated under 3 conditions of muscle stimulation (gluteus medius, biceps femoris, and both gluteus medius, and biceps femoris) using 2 electrode sizes, respectively versus no stimulation during a landing task. A repeated-measures analysis of variance determined that KAM differed significantly among stimulation conditions and post hoc analysis revealed that KAM was significantly decreased in conditions of stimulating either the gluteus medius (P < .001) or the biceps femoris (P < .001) with the standard electrode size, and condition of stimulating both gluteus medius and biceps femoris with half-size electrode (P = .012) when compared with the control condition. Therefore, stimulation on the gluteus medius, the biceps femoris, or both muscles could be implemented for the examination of anterior cruciate ligament injury potential.
{"title":"Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task.","authors":"Dan Wang, Man Wang, Vikki Wing-Shan Chu, Patrick Shu-Hang Yung, Daniel T P Fong","doi":"10.1123/jab.2021-0107","DOIUrl":"https://doi.org/10.1123/jab.2021-0107","url":null,"abstract":"<p><p>Anterior cruciate ligament injury prevention should focus primarily on reduction of the knee abduction moment (KAM) in landing tasks. Gluteus medius and hamstring forces are considered to decrease KAM during landing. The effects of different muscle stimulations on KAM reduction were compared using 2 electrode sizes (standard 38 cm2 and half size 19 cm2) during a landing task. Twelve young healthy female adults (22.3 [3.6] y, 1.62 [0.02] m, 50.2 [4.7] kg) were recruited. KAM was calculated under 3 conditions of muscle stimulation (gluteus medius, biceps femoris, and both gluteus medius, and biceps femoris) using 2 electrode sizes, respectively versus no stimulation during a landing task. A repeated-measures analysis of variance determined that KAM differed significantly among stimulation conditions and post hoc analysis revealed that KAM was significantly decreased in conditions of stimulating either the gluteus medius (P < .001) or the biceps femoris (P < .001) with the standard electrode size, and condition of stimulating both gluteus medius and biceps femoris with half-size electrode (P = .012) when compared with the control condition. Therefore, stimulation on the gluteus medius, the biceps femoris, or both muscles could be implemented for the examination of anterior cruciate ligament injury potential.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 2","pages":"110-117"},"PeriodicalIF":1.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9238865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}