Pub Date : 2023-08-11Print Date: 2023-10-01DOI: 10.1123/jab.2023-0114
David J Saxby, Claudio Pizzolato, Laura E Diamond
There is a powerful global trend toward deeper integration of digital twins into modern life driven by Industry 4.0 and 5.0. Defense, agriculture, engineering, manufacturing, and urban planning sectors have thoroughly incorporated digital twins to great benefit across their respective product lifecycles. Despite clear benefits, a digital twin framework for health and medical sectors is yet to emerge. This paper proposes a digital twin framework for precision neuromusculoskeletal health care. We build upon the International Standards Organization framework for digital twins for manufacturing by presenting best available computational models within a digital twin framework for clinical application. We map a use case for modeling Achilles tendon mechanobiology, highlighting how current modeling practices align with our proposed digital twin framework. Similarly, we map a use case for advanced neurorehabilitation technology, highlighting the role of a digital twin in control of systems where human and machine are interfaced. Future work must now focus on creating an informatic representation to govern how digital data are passed to, from, and within the digital twin, as well as specific standards to declare which measurement systems and modeling methods are acceptable to move toward widespread use of the digital twin framework for precision neuromusculoskeletal health care.
{"title":"A Digital Twin Framework for Precision Neuromusculoskeletal Health Care: Extension Upon Industrial Standards.","authors":"David J Saxby, Claudio Pizzolato, Laura E Diamond","doi":"10.1123/jab.2023-0114","DOIUrl":"10.1123/jab.2023-0114","url":null,"abstract":"<p><p>There is a powerful global trend toward deeper integration of digital twins into modern life driven by Industry 4.0 and 5.0. Defense, agriculture, engineering, manufacturing, and urban planning sectors have thoroughly incorporated digital twins to great benefit across their respective product lifecycles. Despite clear benefits, a digital twin framework for health and medical sectors is yet to emerge. This paper proposes a digital twin framework for precision neuromusculoskeletal health care. We build upon the International Standards Organization framework for digital twins for manufacturing by presenting best available computational models within a digital twin framework for clinical application. We map a use case for modeling Achilles tendon mechanobiology, highlighting how current modeling practices align with our proposed digital twin framework. Similarly, we map a use case for advanced neurorehabilitation technology, highlighting the role of a digital twin in control of systems where human and machine are interfaced. Future work must now focus on creating an informatic representation to govern how digital data are passed to, from, and within the digital twin, as well as specific standards to declare which measurement systems and modeling methods are acceptable to move toward widespread use of the digital twin framework for precision neuromusculoskeletal health care.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"347-354"},"PeriodicalIF":1.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10332740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-02Print Date: 2023-10-01DOI: 10.1123/jab.2023-0022
Kirsten Veerkamp, Christopher P Carty, Niels F J Waterval, Thomas Geijtenbeek, Annemieke I Buizer, David G Lloyd, Jaap Harlaar, Marjolein M van der Krogt
Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.
{"title":"Predicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia.","authors":"Kirsten Veerkamp, Christopher P Carty, Niels F J Waterval, Thomas Geijtenbeek, Annemieke I Buizer, David G Lloyd, Jaap Harlaar, Marjolein M van der Krogt","doi":"10.1123/jab.2023-0022","DOIUrl":"10.1123/jab.2023-0022","url":null,"abstract":"<p><p>Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"334-346"},"PeriodicalIF":1.4,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9926985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Hausmanninger, Igor Komnik, Mario Fleiter, Wolfgang Potthast
The increase in repetitive strain injuries to the hand underscores the need for assessing and preventing musculoskeletal overuse associated with hand-intensive tasks. This study investigates the risk of overload injuries in soft tissue structures of the hand by analyzing the pressure distribution and location of peak pressure in the hand during snap-fit connection assembly in the automotive industry. The influence of the surface geometry of automotive trim components the pressure distribution and force imparted during strikes with the palm and the fist are investigated in a cohort of 30 subjects with extensive experience installing trim parts with snap-fit connections. Using the palm or fist (ulnar hand side) of the dominant hand, the subjects struck a simulation device with a flat, rounded, or edged surface geometry. The average peak force applied was 600 N (±122 N), nearly 3 times the force required to overcome the technical resistance of the snap-fit connector (220 N). Fist strikes exerted a 40% higher mean peak pressure and 18% higher mean pressure than did palm strikes. The pressure distribution in the region of the thenar eminence and soft tissue of the ulnar side of the hand did not differ between fist strikes on flat and edged surfaces. Considering the delicate anatomy of the hand, especially the hypothenar muscles on the ulnar side, assembling connection claps using the fist instead of the palm may prevent repetitive blunt trauma to the sensitive blood vessels and nerves in the palm.
{"title":"Influence of Surface Geometry on Palm and Fist Contact Pressure Distribution During Strikes With the Hand in Automotive Assembly.","authors":"Lukas Hausmanninger, Igor Komnik, Mario Fleiter, Wolfgang Potthast","doi":"10.1123/jab.2022-0127","DOIUrl":"https://doi.org/10.1123/jab.2022-0127","url":null,"abstract":"<p><p>The increase in repetitive strain injuries to the hand underscores the need for assessing and preventing musculoskeletal overuse associated with hand-intensive tasks. This study investigates the risk of overload injuries in soft tissue structures of the hand by analyzing the pressure distribution and location of peak pressure in the hand during snap-fit connection assembly in the automotive industry. The influence of the surface geometry of automotive trim components the pressure distribution and force imparted during strikes with the palm and the fist are investigated in a cohort of 30 subjects with extensive experience installing trim parts with snap-fit connections. Using the palm or fist (ulnar hand side) of the dominant hand, the subjects struck a simulation device with a flat, rounded, or edged surface geometry. The average peak force applied was 600 N (±122 N), nearly 3 times the force required to overcome the technical resistance of the snap-fit connector (220 N). Fist strikes exerted a 40% higher mean peak pressure and 18% higher mean pressure than did palm strikes. The pressure distribution in the region of the thenar eminence and soft tissue of the ulnar side of the hand did not differ between fist strikes on flat and edged surfaces. Considering the delicate anatomy of the hand, especially the hypothenar muscles on the ulnar side, assembling connection claps using the fist instead of the palm may prevent repetitive blunt trauma to the sensitive blood vessels and nerves in the palm.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"246-253"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9927193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madison S Mach, Kyle T Ebersole, Hayley E Ericksen, Anh-Dung Nguyen, Jennifer E Earl-Boehm
Standing pelvic tilt (PT) is related to biomechanics linked with increased risk of injury such as dynamic knee valgus. However, there is limited evidence on how standing PT relates to dynamic PT and whether the palpation meter (PALM), a tool to measure standing PT, is valid against 3-dimensional (3D) motion analysis. The purposes of this study were to (1) determine the criterion validity of the PALM for measuring standing PT and (2) identify the relationship between standing PT and dynamic PT during running. Participants (n = 25; 10 males and 15 females) had their standing PT measured by the PALM and 3D motion analysis. Dynamic PT variables were defined at initial contact and toe off. No relationship between the 2 tools was found. Significant large positive relationships between standing PT and PT at initial contact (r = .751, N = 25, P < .001) and PT at toe off (r = .761, N = 25, P < .001) were found. Since no relationship was found between standing PT measured by the PALM and 3D motion analysis, the PALM is not a valid alternative to 3D motion analysis. Clinicians may be able to measure standing PT and gain valuable information on dynamic PT, allowing clinicians to quickly assess whether further biomechanical testing is needed.
站立骨盆倾斜(PT)与生物力学有关,与动态膝外翻等损伤风险增加有关。然而,关于站立PT与动态PT之间的关系,以及测量站立PT的触诊仪(PALM)是否适用于三维(3D)运动分析,证据有限。本研究的目的是:(1)确定PALM测量站立PT的标准效度;(2)确定跑步时站立PT与动态PT之间的关系。参与者(n = 25;10名男性和15名女性)通过PALM和3D运动分析测量了他们的站立PT。在初始接触和脚趾脱落时定义动态PT变量。没有发现这两种工具之间的关系。站立PT与初次接触PT (r = .751, N = 25, P < .001)和脚尖PT (r = .761, N = 25, P < .001)呈显著正相关。由于没有发现PALM测量的站立PT与3D运动分析之间的关系,因此PALM不是3D运动分析的有效替代方案。临床医生可能能够测量站立PT并获得动态PT的有价值信息,从而使临床医生能够快速评估是否需要进一步的生物力学测试。
{"title":"Standing Pelvic Tilt Is Associated With Dynamic Pelvic Tilt During Running When Measured by 3-Dimensional Motion Capture.","authors":"Madison S Mach, Kyle T Ebersole, Hayley E Ericksen, Anh-Dung Nguyen, Jennifer E Earl-Boehm","doi":"10.1123/jab.2022-0226","DOIUrl":"https://doi.org/10.1123/jab.2022-0226","url":null,"abstract":"<p><p>Standing pelvic tilt (PT) is related to biomechanics linked with increased risk of injury such as dynamic knee valgus. However, there is limited evidence on how standing PT relates to dynamic PT and whether the palpation meter (PALM), a tool to measure standing PT, is valid against 3-dimensional (3D) motion analysis. The purposes of this study were to (1) determine the criterion validity of the PALM for measuring standing PT and (2) identify the relationship between standing PT and dynamic PT during running. Participants (n = 25; 10 males and 15 females) had their standing PT measured by the PALM and 3D motion analysis. Dynamic PT variables were defined at initial contact and toe off. No relationship between the 2 tools was found. Significant large positive relationships between standing PT and PT at initial contact (r = .751, N = 25, P < .001) and PT at toe off (r = .761, N = 25, P < .001) were found. Since no relationship was found between standing PT measured by the PALM and 3D motion analysis, the PALM is not a valid alternative to 3D motion analysis. Clinicians may be able to measure standing PT and gain valuable information on dynamic PT, allowing clinicians to quickly assess whether further biomechanical testing is needed.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"230-236"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9977943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Arcanjo de Assis, Thiago Ribeiro Teles Santos, Sergio Teixeira Fonseca, André Gustavo Pereira de Andrade, Priscila Albuquerque Araújo, Thales Rezende de Souza, Renan Alves Resende, Juliana Melo Ocarino
The upper body and trunk muscles are crucial to perform soccer kicks. Resistance training targeting these muscles may modify the pattern adopted during kicking. This study aimed to investigate the effect of resistance training of the arm and anterior trunk muscles on instep kicking kinematics. Twenty-six male participants were randomly allocated into a training group or control group. The training group underwent resistance training of arm and trunk muscles and practiced the instep kick for 8 weeks. The control group only practiced kicking during the same period. The trunk, hip, and knee kinematics were assessed during the instep kick before and after the intervention. Kinematics were analyzed according to their data distribution with statistical parametric or nonparametric mapping. The effect of the training on the 1-repetition maximum test was analyzed using a repeated-measures multivariate analysis of variance. The training group showed greater hip extension after the training during the backswing phase (Hedge g effect size of 0.316-0.321) and increased 1-repetition maximum for all exercises. There were no other differences. The present study documented the nonlocal effect of strengthening training in which arm and trunk muscle training resulted in changes in hip kinematics during the backswing phase of the instep kick.
{"title":"Effects of Resistance Training of Upper Limb and Trunk Muscles on Soccer Instep Kick Kinematics.","authors":"Miguel Arcanjo de Assis, Thiago Ribeiro Teles Santos, Sergio Teixeira Fonseca, André Gustavo Pereira de Andrade, Priscila Albuquerque Araújo, Thales Rezende de Souza, Renan Alves Resende, Juliana Melo Ocarino","doi":"10.1123/jab.2022-0323","DOIUrl":"https://doi.org/10.1123/jab.2022-0323","url":null,"abstract":"<p><p>The upper body and trunk muscles are crucial to perform soccer kicks. Resistance training targeting these muscles may modify the pattern adopted during kicking. This study aimed to investigate the effect of resistance training of the arm and anterior trunk muscles on instep kicking kinematics. Twenty-six male participants were randomly allocated into a training group or control group. The training group underwent resistance training of arm and trunk muscles and practiced the instep kick for 8 weeks. The control group only practiced kicking during the same period. The trunk, hip, and knee kinematics were assessed during the instep kick before and after the intervention. Kinematics were analyzed according to their data distribution with statistical parametric or nonparametric mapping. The effect of the training on the 1-repetition maximum test was analyzed using a repeated-measures multivariate analysis of variance. The training group showed greater hip extension after the training during the backswing phase (Hedge g effect size of 0.316-0.321) and increased 1-repetition maximum for all exercises. There were no other differences. The present study documented the nonlocal effect of strengthening training in which arm and trunk muscle training resulted in changes in hip kinematics during the backswing phase of the instep kick.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"254-263"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9927196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebecca A M Wills, Jacquelyn M Maciukiewicz, Marina Mourtzakis, Clark R Dickerson
Breast cancer affects one in 8 females with a 5-year survival rate of 89%. Up to 72% of breast cancer survivors have trouble with activities of daily living (ADL) following treatment. Increased time-from-treatment improves some measures of function, yet ADL limitations persist. Therefore, this study assessed the effect of time-from-treatment on upper extremity kinematics during ADLs in breast cancer survivors. Twenty-nine female breast cancer survivors were divided into 2 groups: <1 year (n = 12) and 1-2 years (n = 17) from treatment. Kinematics were collected during 6 ADL tasks, and humerothoracic joint angles were quantified. A 2-way mixed analysis of variance assessed the effects of time-from-treatment and arm on maximum angles for each ADL. Decreased maximum angle existed for breast cancer survivors with increased time-from-treatment during all ADLs. Breast cancer survivors in the 1-2 years group used ∼28° to 32° lower elevation, ∼14° to 28° lower axial rotation, and ∼10° to 14° lower plane of elevation range across tasks. Decreased ranges of arm movement during ADLs with increased time-from-treatment may reflect compensatory movement strategies. Recognizing this shift in strategies and accompanying underlying disease progression can help inform responses to functional performance limitations in breast cancer survivors as delayed effects are present posttreatment.
{"title":"Examining the Effect of Time-From-Treatment on Activities of Daily Living Kinematics in Breast Cancer Survivors.","authors":"Rebecca A M Wills, Jacquelyn M Maciukiewicz, Marina Mourtzakis, Clark R Dickerson","doi":"10.1123/jab.2022-0245","DOIUrl":"https://doi.org/10.1123/jab.2022-0245","url":null,"abstract":"<p><p>Breast cancer affects one in 8 females with a 5-year survival rate of 89%. Up to 72% of breast cancer survivors have trouble with activities of daily living (ADL) following treatment. Increased time-from-treatment improves some measures of function, yet ADL limitations persist. Therefore, this study assessed the effect of time-from-treatment on upper extremity kinematics during ADLs in breast cancer survivors. Twenty-nine female breast cancer survivors were divided into 2 groups: <1 year (n = 12) and 1-2 years (n = 17) from treatment. Kinematics were collected during 6 ADL tasks, and humerothoracic joint angles were quantified. A 2-way mixed analysis of variance assessed the effects of time-from-treatment and arm on maximum angles for each ADL. Decreased maximum angle existed for breast cancer survivors with increased time-from-treatment during all ADLs. Breast cancer survivors in the 1-2 years group used ∼28° to 32° lower elevation, ∼14° to 28° lower axial rotation, and ∼10° to 14° lower plane of elevation range across tasks. Decreased ranges of arm movement during ADLs with increased time-from-treatment may reflect compensatory movement strategies. Recognizing this shift in strategies and accompanying underlying disease progression can help inform responses to functional performance limitations in breast cancer survivors as delayed effects are present posttreatment.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"217-222"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10280306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single-leg landings with or without subsequent jumping are frequently used to evaluate landing biomechanics. The purpose of this study was to investigate the effects of subsequent jumping on the external knee abduction moment and trunk and hip biomechanics during single-leg landing. Thirty young adult female participants performed a single-leg drop vertical jumping (SDVJ; landing with subsequent jumping) and single-leg drop landing (SDL; landing without subsequent jumping). Trunk, hip, and knee biomechanics were evaluated using a 3-dimensional motion analysis system. The peak knee abduction moment was significantly larger during SDVJ than during SDL (SDVJ 0.08 [0.10] N·m·kg-1·m-1, SDL 0.05 [0.10] N·m·kg-1·m-1, P = .002). The trunk lateral tilt and rotation angles toward the support-leg side and external hip abduction moment were significantly larger during SDVJ than during SDL (P < .05). The difference in the peak hip abduction moment between SDVJ and SDL predicted the difference in the peak knee abduction moment (P = .003, R2 = .252). Landing tasks with subsequent jumping would have advantages for evaluating trunk and hip control as well as knee abduction moment. In particular, evaluating hip abduction moment may be important because of its association with the knee abduction moment.
{"title":"Subsequent Jumping Increases the Knee and Hip Abduction Moment, Trunk Lateral Tilt, and Trunk Rotation Motion During Single-Leg Landing in Female Individuals.","authors":"Masato Chijimatsu, Tomoya Ishida, Masanori Yamanaka, Shohei Taniguchi, Ryo Ueno, Ryohei Ikuta, Mina Samukawa, Takumi Ino, Satoshi Kasahara, Harukazu Tohyama","doi":"10.1123/jab.2022-0305","DOIUrl":"https://doi.org/10.1123/jab.2022-0305","url":null,"abstract":"<p><p>Single-leg landings with or without subsequent jumping are frequently used to evaluate landing biomechanics. The purpose of this study was to investigate the effects of subsequent jumping on the external knee abduction moment and trunk and hip biomechanics during single-leg landing. Thirty young adult female participants performed a single-leg drop vertical jumping (SDVJ; landing with subsequent jumping) and single-leg drop landing (SDL; landing without subsequent jumping). Trunk, hip, and knee biomechanics were evaluated using a 3-dimensional motion analysis system. The peak knee abduction moment was significantly larger during SDVJ than during SDL (SDVJ 0.08 [0.10] N·m·kg-1·m-1, SDL 0.05 [0.10] N·m·kg-1·m-1, P = .002). The trunk lateral tilt and rotation angles toward the support-leg side and external hip abduction moment were significantly larger during SDVJ than during SDL (P < .05). The difference in the peak hip abduction moment between SDVJ and SDL predicted the difference in the peak knee abduction moment (P = .003, R2 = .252). Landing tasks with subsequent jumping would have advantages for evaluating trunk and hip control as well as knee abduction moment. In particular, evaluating hip abduction moment may be important because of its association with the knee abduction moment.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"223-229"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10298813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno Mazuquin, Karl Peter Gill, Puneet Monga, James Selfe, Jim Richards
Inertial sensors may help clinicians to assess patients' movement and potentially support clinical decision making. Our aim was to determine whether shoulder range of motion during movement tasks measured using inertial sensors is capable of accurately discriminating between patients with different shoulder problems. Inertial sensors were used to measure 3-dimensional shoulder motion during 6 tasks of 37 patients on the waiting list for shoulder surgery. Discriminant function analysis was used to identify whether the range of motion of different tasks could classify patients with different shoulder problems. The discriminant function analysis could correctly classify 91.9% of patients into one of the 3 diagnostic groups based. The tasks that associated a patient with a particular diagnostic group were the following: subacromial decompression: abduction, rotator cuff repair of tears ≤5 cm: flexion and rotator cuff repair of tears >5 cm: combing hair, abduction, and horizontal abduction-adduction. The discriminant function analysis showed that range of motion measured by inertial sensors can correctly classify patients and could be used as a screening tool to support surgery planning.
{"title":"Can Shoulder Impairments Be Classified From 3-Dimensional Kinematics Using Inertial Sensors?","authors":"Bruno Mazuquin, Karl Peter Gill, Puneet Monga, James Selfe, Jim Richards","doi":"10.1123/jab.2022-0173","DOIUrl":"https://doi.org/10.1123/jab.2022-0173","url":null,"abstract":"<p><p>Inertial sensors may help clinicians to assess patients' movement and potentially support clinical decision making. Our aim was to determine whether shoulder range of motion during movement tasks measured using inertial sensors is capable of accurately discriminating between patients with different shoulder problems. Inertial sensors were used to measure 3-dimensional shoulder motion during 6 tasks of 37 patients on the waiting list for shoulder surgery. Discriminant function analysis was used to identify whether the range of motion of different tasks could classify patients with different shoulder problems. The discriminant function analysis could correctly classify 91.9% of patients into one of the 3 diagnostic groups based. The tasks that associated a patient with a particular diagnostic group were the following: subacromial decompression: abduction, rotator cuff repair of tears ≤5 cm: flexion and rotator cuff repair of tears >5 cm: combing hair, abduction, and horizontal abduction-adduction. The discriminant function analysis showed that range of motion measured by inertial sensors can correctly classify patients and could be used as a screening tool to support surgery planning.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"264-267"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9920426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mary Frances Segars, Tanner M Filben, N Stewart Pritchard, Logan E Miller, Christopher M Miles, Joel D Stitzel, Jillian E Urban
Soccer, one of the most popular sports in the world, has one of the highest rates of sports-related concussions. Additionally, soccer players are frequently exposed to nonconcussive impacts from intentionally heading the ball, a fundamental component of the sport. There have been many studies on head impact exposure in soccer, but few focus on soccer practices or practice activities. This study aimed to characterize the frequency and magnitude of head impacts in National Collegiate Athletic Association Division I female soccer practice activities using a custom-fit instrumented mouthpiece. Sixteen players were instrumented over the course of 54 practice sessions. Video analysis was performed to verify all mouthpiece-recorded events and classify practice activities. Category groupings of practice activities include technical training, team interaction, set pieces, position-specific, and other. Differences in head impact rates and peak resultant kinematics were observed across activity types and category groupings. Technical training had the highest impact rate compared to other category groupings. Impacts occurring during set piece activities had the highest mean kinematic values. Understanding drill exposure can help inform coaches on training plans aimed to reduce head impact exposure for their athletes.
{"title":"Head Impact Exposure in Female Collegiate Soccer by Activity Type.","authors":"Mary Frances Segars, Tanner M Filben, N Stewart Pritchard, Logan E Miller, Christopher M Miles, Joel D Stitzel, Jillian E Urban","doi":"10.1123/jab.2022-0134","DOIUrl":"https://doi.org/10.1123/jab.2022-0134","url":null,"abstract":"<p><p>Soccer, one of the most popular sports in the world, has one of the highest rates of sports-related concussions. Additionally, soccer players are frequently exposed to nonconcussive impacts from intentionally heading the ball, a fundamental component of the sport. There have been many studies on head impact exposure in soccer, but few focus on soccer practices or practice activities. This study aimed to characterize the frequency and magnitude of head impacts in National Collegiate Athletic Association Division I female soccer practice activities using a custom-fit instrumented mouthpiece. Sixteen players were instrumented over the course of 54 practice sessions. Video analysis was performed to verify all mouthpiece-recorded events and classify practice activities. Category groupings of practice activities include technical training, team interaction, set pieces, position-specific, and other. Differences in head impact rates and peak resultant kinematics were observed across activity types and category groupings. Technical training had the highest impact rate compared to other category groupings. Impacts occurring during set piece activities had the highest mean kinematic values. Understanding drill exposure can help inform coaches on training plans aimed to reduce head impact exposure for their athletes.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"209-216"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9925655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiri Skypala, Joseph Hamill, Michal Sebera, Steriani Elavsky, Andrea Monte, Daniel Jandacka
There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.
{"title":"Running-Related Achilles Tendon Injury: A Prospective Biomechanical Study in Recreational Runners.","authors":"Jiri Skypala, Joseph Hamill, Michal Sebera, Steriani Elavsky, Andrea Monte, Daniel Jandacka","doi":"10.1123/jab.2022-0221","DOIUrl":"https://doi.org/10.1123/jab.2022-0221","url":null,"abstract":"<p><p>There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"237-245"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9920965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}