Pub Date : 2024-10-25DOI: 10.1016/j.ijrmms.2024.105931
Yaolan Tang , Jianchun Li , Dapeng Wang , Congying Li , Chunshun Zhang
This research develops an energy-driven constitutive model designed to tackle the complex phenomenon of grain crushing in porous rocks. Initially, a novel coupled relationship is proposed to integrate various energy dissipation mechanisms, including both plastic and crushing effects, using spherical polar coordinates. This approach results in a robust coupling of energy dissipation, providing a comprehensive depiction of the influence of grain crushing on plastic deformation. An energy-based yield criterion is then formulated by comparing elastic potential energy contours with experimental findings, and the behaviour of crushing hardening is examined through energy evolution. Flow rules are subsequently derived, both independently and with consideration of plasticity-crushing coupling. Finally, validation against a range of experimental tests highlights the model's versatility. The proposed model enhances the understanding of rock-crushing issues from an energy perspective and demonstrates simplicity with only 4 or 5 easily calibrated parameters.
{"title":"An energy-driven crushing-plasticity coupling model for grain crushing in porous rocks","authors":"Yaolan Tang , Jianchun Li , Dapeng Wang , Congying Li , Chunshun Zhang","doi":"10.1016/j.ijrmms.2024.105931","DOIUrl":"10.1016/j.ijrmms.2024.105931","url":null,"abstract":"<div><div>This research develops an energy-driven constitutive model designed to tackle the complex phenomenon of grain crushing in porous rocks. Initially, a novel coupled relationship is proposed to integrate various energy dissipation mechanisms, including both plastic and crushing effects, using spherical polar coordinates. This approach results in a robust coupling of energy dissipation, providing a comprehensive depiction of the influence of grain crushing on plastic deformation. An energy-based yield criterion is then formulated by comparing elastic potential energy contours with experimental findings, and the behaviour of crushing hardening is examined through energy evolution. Flow rules are subsequently derived, both independently and with consideration of plasticity-crushing coupling. Finally, validation against a range of experimental tests highlights the model's versatility. The proposed model enhances the understanding of rock-crushing issues from an energy perspective and demonstrates simplicity with only 4 or 5 easily calibrated parameters.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105931"},"PeriodicalIF":7.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.ijrmms.2024.105951
Yunpeng Wang , Tiankui Guo , Ming Chen , Xuliang Jia , Dingwei Weng , Zhanqing Qu , Zunpeng Hu , Bo Zhang , Jiwei Wang
Multiwell fracturing is a key technology for developing shale gas and shale oil reservoirs. In this study, a multiple planar 3D (PL3D) fracture simulator that can capture multiple thin layers was developed to examine the propagation of multiple fractures during multicluster fracturing in multiple horizontal wells. The simulator considers multiple thin layers in the vertical direction. The results of the model are validated against the analytical solution of a single radial fracture and the implicit level set algorithm (ILSA). Using the simulator, a series of numerical simulations based on the field case are performed to investigate the fracture propagation mechanism of multiwell fracturing. The completion sequence, well placement pattern, well spacing, and cluster spacing are investigated to optimize the treatment parameters. The effective fracture area is used to quantitatively describe the stimulation effect. The adaptability of the completion sequence and well placement pattern is also analysed from the perspective of “frac hits”. The results show that the completion sequence has a critical influence on the stimulation effect and fracture geometry. From the perspective of avoiding “frac-hit” fractures, fracturing the low-stress layer can form an “artificial stress barrier”, which slightly protects the well from interference from other fractures. The staggered well pattern is better than the stacked well pattern. Compared with the stacked pattern, the staggered pattern can reduce the overlap area of fractures by 80 %, which greatly reduces the probability of “frac-hits”. With increasing well spacing from 200 m to 500 m, the fracture area increases by 25 %, and the degree of uneven stimulation between the two pay zones also increases by 6 %. Considering that a small well spacing is prone to “frac hits”, a large well spacing leads to an unstimulated area between two wells, and a 350 m well spacing is optimal. The effective fracture area decreases slightly with increasing perforation cluster spacing, but the fracture geometry becomes much more regular. The results can be helpful for the field design of multiwell fracturing.
{"title":"Numerical simulation on multi-well fracturing considering multiple thin layers in vertical direction","authors":"Yunpeng Wang , Tiankui Guo , Ming Chen , Xuliang Jia , Dingwei Weng , Zhanqing Qu , Zunpeng Hu , Bo Zhang , Jiwei Wang","doi":"10.1016/j.ijrmms.2024.105951","DOIUrl":"10.1016/j.ijrmms.2024.105951","url":null,"abstract":"<div><div>Multiwell fracturing is a key technology for developing shale gas and shale oil reservoirs. In this study, a multiple planar 3D (PL3D) fracture simulator that can capture multiple thin layers was developed to examine the propagation of multiple fractures during multicluster fracturing in multiple horizontal wells. The simulator considers multiple thin layers in the vertical direction. The results of the model are validated against the analytical solution of a single radial fracture and the implicit level set algorithm (ILSA). Using the simulator, a series of numerical simulations based on the field case are performed to investigate the fracture propagation mechanism of multiwell fracturing. The completion sequence, well placement pattern, well spacing, and cluster spacing are investigated to optimize the treatment parameters. The effective fracture area is used to quantitatively describe the stimulation effect. The adaptability of the completion sequence and well placement pattern is also analysed from the perspective of “frac hits”. The results show that the completion sequence has a critical influence on the stimulation effect and fracture geometry. From the perspective of avoiding “frac-hit” fractures, fracturing the low-stress layer can form an “artificial stress barrier”, which slightly protects the well from interference from other fractures. The staggered well pattern is better than the stacked well pattern. Compared with the stacked pattern, the staggered pattern can reduce the overlap area of fractures by 80 %, which greatly reduces the probability of “frac-hits”. With increasing well spacing from 200 m to 500 m, the fracture area increases by 25 %, and the degree of uneven stimulation between the two pay zones also increases by 6 %. Considering that a small well spacing is prone to “frac hits”, a large well spacing leads to an unstimulated area between two wells, and a 350 m well spacing is optimal. The effective fracture area decreases slightly with increasing perforation cluster spacing, but the fracture geometry becomes much more regular. The results can be helpful for the field design of multiwell fracturing.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105951"},"PeriodicalIF":7.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.ijrmms.2024.105950
Yinlong Ma , Jie Ren , Qingquan Zhou
Impregnated diamond bits (IDBs) are widely used for drilling in hard formations. To improve the drilling efficiency and exposure behavior of IDBs in granite, three types of Cu-based basalt fiber (BF) composite IDBs were designed and prepared by using the medium-frequency induction hot-pressing and sintering method, in which 0 wt% BF and 25 vol% diamond were used in 0BF25D IDB, 1 wt% BF and 25 vol% diamond were used in 1BF25D IDB, 1 wt% BF and 20 vol% diamond were used in 1BF20D IDB. The drilling efficiency of each IDB was tested under different drilling pressures (WOB), and the exposure behavior of IDBs was investigated by scanning electron microscopy and ultra field microstructural characterization. Results show that drilling granite with grade 9 drillability, low drilling pressure can drill successfully with the addition of BF. The average rate of penetration (ROP) of 1BF20D IBD under 6 kN WOB was 4.78 m/h, which was improved by 60 %∼80 %, energy consumption decreased by 66 % for each meter, torque (TOB) decreased, and rotational speed (RPM) was more stable during the drilling process. The addition of BF and reasonable diamond concentration enhanced the holding power of the diamond which promoted the exposure of the diamond. The average exposed height of the diamond in 1BF20D IDB reached 121.2 μm with 22 %–29 % of the whole diamond.
{"title":"Exposure behavior and drilling efficiency of basalt fiber composite impregnated diamond bits in hard granite","authors":"Yinlong Ma , Jie Ren , Qingquan Zhou","doi":"10.1016/j.ijrmms.2024.105950","DOIUrl":"10.1016/j.ijrmms.2024.105950","url":null,"abstract":"<div><div>Impregnated diamond bits (IDBs) are widely used for drilling in hard formations. To improve the drilling efficiency and exposure behavior of IDBs in granite, three types of Cu-based basalt fiber (BF) composite IDBs were designed and prepared by using the medium-frequency induction hot-pressing and sintering method, in which 0 wt% BF and 25 vol% diamond were used in 0BF25D IDB, 1 wt% BF and 25 vol% diamond were used in 1BF25D IDB, 1 wt% BF and 20 vol% diamond were used in 1BF20D IDB. The drilling efficiency of each IDB was tested under different drilling pressures (WOB), and the exposure behavior of IDBs was investigated by scanning electron microscopy and ultra field microstructural characterization. Results show that drilling granite with grade 9 drillability, low drilling pressure can drill successfully with the addition of BF. The average rate of penetration (ROP) of 1BF20D IBD under 6 kN WOB was 4.78 m/h, which was improved by 60 %∼80 %, energy consumption decreased by 66 % for each meter, torque (TOB) decreased, and rotational speed (RPM) was more stable during the drilling process. The addition of BF and reasonable diamond concentration enhanced the holding power of the diamond which promoted the exposure of the diamond. The average exposed height of the diamond in 1BF20D IDB reached 121.2 μm with 22 %–29 % of the whole diamond.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105950"},"PeriodicalIF":7.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.ijrmms.2024.105940
Lei Peng , Mingyao Li , Jianping Zuo , Dejun Liu , Jena Jeong
Accurate determination of the representative elementary volume (REV) size plays a pivotal role in analysing the mechanical properties and failure processes of heterogeneous rocks in complex engineering environments. In this study, a novel microstructure modelling strategy (NMMS) for determining the REV size is proposed by combining deep learning and an improved phase-field method (PFM). Micro- and macroscale experiments are systematically conducted to determine the real microstructural characteristics and mechanical properties of heterogeneous rocks with different grain sizes. On the basis of this experimental evidence, geometric models of different sizes were reconstructed through deep learning to avoid the limitations of human-based methods, and an improved PFM was used for numerical calculations. These models were then employed to perform numerical tests under uniaxial loading conditions, and the coefficient of variation was introduced to determine the REV size of heterogeneous rocks with different grain sizes. The research findings indicate that the final REV size is the maximum value of the REVs defined by the evaluation properties within an acceptable coefficient of variation. At a criterion of 5% for the coefficient of variation, the REV sizes are 60 mm60 mm, 70 mm70 mm, and 90 mm90 mm for fine-medium-grained (FMG), medium-grained (MG), and coarse-grained (CG) rocks, respectively. Furthermore, the REV determined by the NMMS was applied to investigate the effects of microstructure on macromechanical properties and damage evolution under triaxial loading conditions. The numerical results show that the NMMS can accurately predict the macromechanical properties and microcracking patterns of heterogeneous rocks, especially the intracrystalline cracks in feldspar, the interfacial cracks in gravel, and the “voids” of cracks in biotite. This research can provide some basic references for the optimal choice of the REV size of heterogeneous rocks.
{"title":"Determination of the REV size for heterogeneous rocks with different grain sizes: Deep learning and numerical approaches","authors":"Lei Peng , Mingyao Li , Jianping Zuo , Dejun Liu , Jena Jeong","doi":"10.1016/j.ijrmms.2024.105940","DOIUrl":"10.1016/j.ijrmms.2024.105940","url":null,"abstract":"<div><div>Accurate determination of the representative elementary volume (REV) size plays a pivotal role in analysing the mechanical properties and failure processes of heterogeneous rocks in complex engineering environments. In this study, a novel microstructure modelling strategy (NMMS) for determining the REV size is proposed by combining deep learning and an improved phase-field method (PFM). Micro- and macroscale experiments are systematically conducted to determine the real microstructural characteristics and mechanical properties of heterogeneous rocks with different grain sizes. On the basis of this experimental evidence, geometric models of different sizes were reconstructed through deep learning to avoid the limitations of human-based methods, and an improved PFM was used for numerical calculations. These models were then employed to perform numerical tests under uniaxial loading conditions, and the coefficient of variation was introduced to determine the REV size of heterogeneous rocks with different grain sizes. The research findings indicate that the final REV size is the maximum value of the REVs defined by the evaluation properties within an acceptable coefficient of variation. At a criterion of 5% for the coefficient of variation, the REV sizes are 60 mm<span><math><mo>×</mo></math></span>60 mm, 70 mm<span><math><mo>×</mo></math></span>70 mm, and 90 mm<span><math><mo>×</mo></math></span>90 mm for fine-medium-grained (FMG), medium-grained (MG), and coarse-grained (CG) rocks, respectively. Furthermore, the REV determined by the NMMS was applied to investigate the effects of microstructure on macromechanical properties and damage evolution under triaxial loading conditions. The numerical results show that the NMMS can accurately predict the macromechanical properties and microcracking patterns of heterogeneous rocks, especially the intracrystalline cracks in feldspar, the interfacial cracks in gravel, and the “voids” of cracks in biotite. This research can provide some basic references for the optimal choice of the REV size of heterogeneous rocks.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105940"},"PeriodicalIF":7.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.ijrmms.2024.105945
Salavat Y. Ishbulatov
The stress-strain state of the saturated porous media determines the behavior of fracturing, which defines the efficiency of developing tight oil, shale, coalbed, and thermal energy fields. Therefore, reliable hydromechanical coupled simulations with destruction reconstruction are critical.
The proposed innovative simulator has a strong interrelation between fluid flow and rock deformation of porous media and realizes a fully coupled pseudo-transient numerical method by high-performance computing (HPC) tools. To increase the detail of the results in the problem, a finite difference numerical algorithm was implemented in the axisymmetric cylindrical domain, which reduces from three to two dimensions without loss of precision. Highly efficient parallelization using CUDA on the GPU computes meshes of up to one billion cells, allowing the simulation of a total core sample to sub-micrometer resolution in an appropriate time. The algorithm has been validated to find the exact solution to the cylinder problem. The proposed model accounts for cracks propagation with their coalescence within a single computational static grid, which keeps timing close to the continuous model.
This comprehensive implementation enables solving industrial problems, such as modeling core sample damage during rapid decompression. High-resolution simulations help reconstruct fracture propagation, analyze the initial stress state, and identify critical damage factors. The comparison with the exact solution to the cylinder problem confirmed the reliability of the algorithm. The calculation results show a strong dependence of decompression failure on the coalescence and elongation of cracks, influenced significantly by the rock's cohesion. Microcracks length and distribution play a decisive role in the decompressive destruction behavior of the rock sample. For the first time, the simulations demonstrated the decompressive destruction of a core sample during an uncontrolled, rapid core retrieval operation.
饱和多孔介质的应力应变状态决定了压裂行为,而压裂行为决定了致密油、页岩、煤层和热能领域的开发效率。所提出的创新模拟器在多孔介质的流体流动和岩石变形之间具有很强的关联性,并通过高性能计算(HPC)工具实现了完全耦合的伪瞬态数值方法。为了增加问题结果的细节,在轴对称圆柱域中实施了有限差分数值算法,在不损失精度的情况下从三维减少到二维。利用 GPU 上的 CUDA 进行高效并行化,可计算多达 10 亿个单元的网格,从而能够在适当的时间内模拟亚微米分辨率的总核心样本。经过验证,该算法可以找到圆柱体问题的精确解。所提出的模型在单个计算静态网格内考虑了裂纹的传播和凝聚,使时间与连续模型接近。这种全面的实施方法可以解决工业问题,如模拟快速减压过程中的岩心样品损伤。高分辨率模拟有助于重建断裂扩展、分析初始应力状态和识别关键损伤因素。通过与圆柱体问题的精确解进行比较,证实了该算法的可靠性。计算结果显示,减压破坏与裂缝的凝聚和伸长有很大关系,受岩石内聚力的影响很大。微裂缝的长度和分布对岩样的减压破坏行为起着决定性作用。模拟首次证明了岩心样本在不受控制的快速岩心取回过程中的减压破坏。
{"title":"The hydromechanical coupled numerical method in pseudo-3D axisymmetric domain with cracks extension and coalescence applies to the decompression failure problem","authors":"Salavat Y. Ishbulatov","doi":"10.1016/j.ijrmms.2024.105945","DOIUrl":"10.1016/j.ijrmms.2024.105945","url":null,"abstract":"<div><div>The stress-strain state of the saturated porous media determines the behavior of fracturing, which defines the efficiency of developing tight oil, shale, coalbed, and thermal energy fields. Therefore, reliable hydromechanical coupled simulations with destruction reconstruction are critical.</div><div>The proposed innovative simulator has a strong interrelation between fluid flow and rock deformation of porous media and realizes a fully coupled pseudo-transient numerical method by high-performance computing (HPC) tools. To increase the detail of the results in the problem, a finite difference numerical algorithm was implemented in the axisymmetric cylindrical domain, which reduces from three to two dimensions without loss of precision. Highly efficient parallelization using CUDA on the GPU computes meshes of up to one billion cells, allowing the simulation of a total core sample to sub-micrometer resolution in an appropriate time. The algorithm has been validated to find the exact solution to the cylinder problem. The proposed model accounts for cracks propagation with their coalescence within a single computational static grid, which keeps timing close to the continuous model.</div><div>This comprehensive implementation enables solving industrial problems, such as modeling core sample damage during rapid decompression. High-resolution simulations help reconstruct fracture propagation, analyze the initial stress state, and identify critical damage factors. The comparison with the exact solution to the cylinder problem confirmed the reliability of the algorithm. The calculation results show a strong dependence of decompression failure on the coalescence and elongation of cracks, influenced significantly by the rock's cohesion. Microcracks length and distribution play a decisive role in the decompressive destruction behavior of the rock sample. For the first time, the simulations demonstrated the decompressive destruction of a core sample during an uncontrolled, rapid core retrieval operation.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105945"},"PeriodicalIF":7.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The precise forecasting of the weathering degree of surrounding rock holds paramount importance for the scientific design and secure execution of tunnel engineering. The apparent features of the surrounding rock serve as critical indicators for evaluating its weathering degree. This paper endeavors to quantify the rock apparent features based on an improved Computer vision model and establish a multi-source heterogeneous dataset encompassing 10 parameters, thereby facilitating data-driven predictions of the weathering degree. Specifically, the rock appearance parameters are quantified and segmented by an improved Tunnel face feature segmentation (TFFSeg) model, which is tailored to the unique characteristics of groundwater, fractures, and interlayers. Concurrently, the TFFSeg model exhibits significantly enhanced performance for these rock features compared to other widely employed Computer vision methods. Subsequently, this multi-source dataset is further enriched by incorporating rock physical and mechanical parameters as well as tunnel design parameters. Nevertheless, the issue of data incompleteness persists within this dataset. To achieve precise prediction of the weathering degree based on this incomplete dataset, a novel Tree-augmented Bayesian network (TAN-BN) is designed, which is capable of learning from incomplete datasets. The predictive outcomes demonstrate that the proposed TAN-BN surpasses other currently utilized meta models and ensemble models, such as ANN, GBRT, and Naive BN. Finally, sensitivity analysis is conducted to determine the importance rankings of the 10 parameters, offering valuable insights for on-site evaluation of the rock weathering degree at the tunnel face.
{"title":"A novel Tree-augmented Bayesian network for predicting rock weathering degree using incomplete dataset","authors":"Chen Wu , Hongwei Huang , Jiayao Chen , Mingliang Zhou , Shiju Han","doi":"10.1016/j.ijrmms.2024.105933","DOIUrl":"10.1016/j.ijrmms.2024.105933","url":null,"abstract":"<div><div>The precise forecasting of the weathering degree of surrounding rock holds paramount importance for the scientific design and secure execution of tunnel engineering. The apparent features of the surrounding rock serve as critical indicators for evaluating its weathering degree. This paper endeavors to quantify the rock apparent features based on an improved Computer vision model and establish a multi-source heterogeneous dataset encompassing 10 parameters, thereby facilitating data-driven predictions of the weathering degree. Specifically, the rock appearance parameters are quantified and segmented by an improved Tunnel face feature segmentation (TFF<sub>Seg</sub>) model, which is tailored to the unique characteristics of groundwater, fractures, and interlayers. Concurrently, the TFF<sub>Seg</sub> model exhibits significantly enhanced performance for these rock features compared to other widely employed Computer vision methods. Subsequently, this multi-source dataset is further enriched by incorporating rock physical and mechanical parameters as well as tunnel design parameters. Nevertheless, the issue of data incompleteness persists within this dataset. To achieve precise prediction of the weathering degree based on this incomplete dataset, a novel Tree-augmented Bayesian network (TAN-BN) is designed, which is capable of learning from incomplete datasets. The predictive outcomes demonstrate that the proposed TAN-BN surpasses other currently utilized meta models and ensemble models, such as ANN, GBRT, and Naive BN. Finally, sensitivity analysis is conducted to determine the importance rankings of the 10 parameters, offering valuable insights for on-site evaluation of the rock weathering degree at the tunnel face.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105933"},"PeriodicalIF":7.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.ijrmms.2024.105943
Leilei Niu , Wancheng Zhu , Xige Liu , Ji Wang , Kai Liu , Tingyu Chen
The long-term stability of jointed rock masses is usually dominated by fault activation, which may be triggered by the dynamic disturbance generated by blasting during mining activities, leading to the occurrence of disasters such as landslides in open-pit and rockbursts in deep mining. The initial stress and dynamic disturbance are key factors that strongly affect the shear creep behavior of rock fractures. In this work, the shear failure instability of rock fractures of sandstone under creep-impact loading was experimentally investigated by using a creep-impact test machine, which allows for applying creep loading and an additional dynamic disturbance on rock fractures. Three stages of shear creep deformation, creep strain rate, and time-to-failure are examined under different creep stress levels and impact energies. Experimental results show that the tangential and normal creep rates increase with the increase of creep stress and impact energy, but the increment of tangential creep rate is higher than that of the normal creep rate. The time-to-failure of the creeping specimen is shortened under high creep stress and large impact energy, while the time-to-failure after the last dynamic disturbance of the specimen is determined by the total impact energy and creep stress level. By using high-speed photography, it is found that the failure types of rock depend on the magnitude of impact energy and creep stress level; that is, rock mainly slides with low stress levels and shears off with high stress levels. In addition, under different impact energy and creep stress levels, the variation of height is between 0.38 and 0.52, while the defined fracture factor, which describes the degree of failure of serrations, is between 0.30 and 0.54. The findings can provide deep insight into the fault sliding mechanism caused by mining activities, which provides theoretical support for the safe mining of ore in fault fracture zones.
{"title":"Shear creep deformation of rock fracture distrubed by dynamic loading","authors":"Leilei Niu , Wancheng Zhu , Xige Liu , Ji Wang , Kai Liu , Tingyu Chen","doi":"10.1016/j.ijrmms.2024.105943","DOIUrl":"10.1016/j.ijrmms.2024.105943","url":null,"abstract":"<div><div>The long-term stability of jointed rock masses is usually dominated by fault activation, which may be triggered by the dynamic disturbance generated by blasting during mining activities, leading to the occurrence of disasters such as landslides in open-pit and rockbursts in deep mining. The initial stress and dynamic disturbance are key factors that strongly affect the shear creep behavior of rock fractures. In this work, the shear failure instability of rock fractures of sandstone under creep-impact loading was experimentally investigated by using a creep-impact test machine, which allows for applying creep loading and an additional dynamic disturbance on rock fractures. Three stages of shear creep deformation, creep strain rate, and time-to-failure are examined under different creep stress levels and impact energies. Experimental results show that the tangential and normal creep rates increase with the increase of creep stress and impact energy, but the increment of tangential creep rate is higher than that of the normal creep rate. The time-to-failure of the creeping specimen is shortened under high creep stress and large impact energy, while the time-to-failure after the last dynamic disturbance of the specimen is determined by the total impact energy and creep stress level. By using high-speed photography, it is found that the failure types of rock depend on the magnitude of impact energy and creep stress level; that is, rock mainly slides with low stress levels and shears off with high stress levels. In addition, under different impact energy and creep stress levels, the variation of height is between 0.38 and 0.52, while the defined fracture factor, which describes the degree of failure of serrations, is between 0.30 and 0.54. The findings can provide deep insight into the fault sliding mechanism caused by mining activities, which provides theoretical support for the safe mining of ore in fault fracture zones.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105943"},"PeriodicalIF":7.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.ijrmms.2024.105936
Jianxiong Yang , Fujun Xue , Jianfeng Liu , Bin Chen , Jingjing Dai
Fluid flow in subsurface tight reservoirs containing pores, microcracks and macrocracks is notably influenced by the characteristics of macro/micro-cracks. A novel hybrid multiscale model is proposed to address the response of macrocracks and pores/microcracks in different spatial scales. Specifically, an equivalent macroscopic model (EMM) deduced from locally periodic representative element volume (REV) is developed using the asymptotic homogenization method to represent the poroelastic behavior of porous medium with microcracks. Simultaneously, the macrocracks are modeled explicitly using the discrete fracture model (DFM), where the hydraulic properties of cracks influenced by fluid pressure gradient is represented by the nonlinear opening/closure behavior. The obtained hybrid model takes into account the heterogeneous nature of fractured rock masses containing pores, micro/macro-cracks, which is fundamental to describe fluid flow behavior in fracture-matrix system. Specialized finite elements, regular meshing technique and adaptive time stepping algorithm are adopted to improve the computational efficiency. The hybrid multiscale model is firstly validated step by step to demonstrate the accuracy and then used to simulate fluid flow in fractured rock reservoir, shedding light on the underlying mechanisms of the enhanced flow capacity resulting from microcrack distribution, connectivity, and macrocrack stimulation.
{"title":"A hybrid multiscale model for fluid flow in fractured rocks using homogenization method with discrete fracture networks","authors":"Jianxiong Yang , Fujun Xue , Jianfeng Liu , Bin Chen , Jingjing Dai","doi":"10.1016/j.ijrmms.2024.105936","DOIUrl":"10.1016/j.ijrmms.2024.105936","url":null,"abstract":"<div><div>Fluid flow in subsurface tight reservoirs containing pores, microcracks and macrocracks is notably influenced by the characteristics of macro/micro-cracks. A novel hybrid multiscale model is proposed to address the response of macrocracks and pores/microcracks in different spatial scales. Specifically, an equivalent macroscopic model (EMM) deduced from locally periodic representative element volume (REV) is developed using the asymptotic homogenization method to represent the poroelastic behavior of porous medium with microcracks. Simultaneously, the macrocracks are modeled explicitly using the discrete fracture model (DFM), where the hydraulic properties of cracks influenced by fluid pressure gradient is represented by the nonlinear opening/closure behavior. The obtained hybrid model takes into account the heterogeneous nature of fractured rock masses containing pores, micro/macro-cracks, which is fundamental to describe fluid flow behavior in fracture-matrix system. Specialized finite elements, regular meshing technique and adaptive time stepping algorithm are adopted to improve the computational efficiency. The hybrid multiscale model is firstly validated step by step to demonstrate the accuracy and then used to simulate fluid flow in fractured rock reservoir, shedding light on the underlying mechanisms of the enhanced flow capacity resulting from microcrack distribution, connectivity, and macrocrack stimulation.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105936"},"PeriodicalIF":7.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.ijrmms.2024.105934
Songtao Ji , Xingping Lai , Feng Cui , Yong Liu , Ruikai Pan , Jurij Karlovšek
Hard roof is the primary concern of strata control in underground mining. Various techniques have been utilized to fracture the hard roof and control the failure of strata. Understanding the impact of cracks on strata behaviour is vital for optimizing strata control strategies. In this study, the hard roof was regarded as a beam structure with different loading, support, and boundary conditions. The equivalent spring model was adopted to represent the edge-cracked section of the hard roof, which allows additional rotation at the crack location. A piecewise-defined function was developed for solving equations of hard roof in the vicinity of the crack section. By combining the hard roof beam model and the equivalent spring model, the impact of a crack on the hard roof can be measured. A case study was carried out to explore the impacts of crack location and crack depth on the mechanical state of the hard roof. Results showcase the failure of the hard roof controlled by the crack depth and greatly influenced by the crack location. From the perspective of coal burst prevention, roof fracturing should be implemented at the high-stress area of strata, whereas it has been challenging in practice to determine such a location precisely. To address this challenge, it was suggested that hard roof fracturing should be carried out before coal seam de-stressing, increasing the likelihood of a crack occurring in a high-stress area. By adopting the proposed method, the mechanical state of the edge-cracked hard roof can be quantified.
{"title":"The failure of edge-cracked hard roof in underground mining: An analytical study","authors":"Songtao Ji , Xingping Lai , Feng Cui , Yong Liu , Ruikai Pan , Jurij Karlovšek","doi":"10.1016/j.ijrmms.2024.105934","DOIUrl":"10.1016/j.ijrmms.2024.105934","url":null,"abstract":"<div><div>Hard roof is the primary concern of strata control in underground mining. Various techniques have been utilized to fracture the hard roof and control the failure of strata. Understanding the impact of cracks on strata behaviour is vital for optimizing strata control strategies. In this study, the hard roof was regarded as a beam structure with different loading, support, and boundary conditions. The equivalent spring model was adopted to represent the edge-cracked section of the hard roof, which allows additional rotation at the crack location. A piecewise-defined function was developed for solving equations of hard roof in the vicinity of the crack section. By combining the hard roof beam model and the equivalent spring model, the impact of a crack on the hard roof can be measured. A case study was carried out to explore the impacts of crack location and crack depth on the mechanical state of the hard roof. Results showcase the failure of the hard roof controlled by the crack depth and greatly influenced by the crack location. From the perspective of coal burst prevention, roof fracturing should be implemented at the high-stress area of strata, whereas it has been challenging in practice to determine such a location precisely. To address this challenge, it was suggested that hard roof fracturing should be carried out before coal seam de-stressing, increasing the likelihood of a crack occurring in a high-stress area. By adopting the proposed method, the mechanical state of the edge-cracked hard roof can be quantified.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105934"},"PeriodicalIF":7.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.ijrmms.2024.105928
M.B. Abdullahi , S.R. Jufar , J.H. Lee , M.D. Le
Elastic (seismic) wave stimulation is considered one of the unconventional enhanced oil recovery (EOR) methods. Increasing water quantity in the high permeability layer of a mature oil reservoir is highly challenging and can significantly decrease the ultimate recovery due to the reservoir heterogeneity. Using seismic waves can be considered low-cost, environmentally friendly, and illuminates the entire reservoir size compared to conventional EOR methods. A numerical model is developed by extending the Quintal approach for seismic attenuation due to wave-induced fluid flow (WIFF) to incorporate capillary pressure in partially saturated porous media and shift undrained boundary conditions to exclude external flow stress for drained boundary conditions. Therefore, the fluid distribution due to the capillary effect makes the developed finite element method (FEM) u-p model more widely applicable for oil recovery in mature reservoirs. A two-layer partially saturated media was subjected to compressive seismic stress at low frequency (3 Hz). The results indicated that the vertical displacement gradients of the bottom and upper layers decline with excitation time for both fully and partially saturated media. On the other hand, partially saturated pore pressure gradients of both the upper and bottom layers have higher amplitudes with excitation time than fully saturated pore pressure gradients due to the influence of capillar pressure. The cumulative crossflow oil volume for 180 days of continuous stimulation was 1176 bbl, 1032 bbl, and 648 bbl in low permeability layers: 200 md, 100 md, and 50 md, respectively. Therefore, the developed model has the potential for field-scale EOR applications. The study also suggests coupling elastic EOR with CO2 flooding to recover more oil due to increasing fluid mobility and relative permeability to oil in low-permeability reservoirs or tight formations.
{"title":"A coupled displacement-pressure model for elastic waves induce fluid flow in mature sandstone reservoirs","authors":"M.B. Abdullahi , S.R. Jufar , J.H. Lee , M.D. Le","doi":"10.1016/j.ijrmms.2024.105928","DOIUrl":"10.1016/j.ijrmms.2024.105928","url":null,"abstract":"<div><div>Elastic (seismic) wave stimulation is considered one of the unconventional enhanced oil recovery (EOR) methods. Increasing water quantity in the high permeability layer of a mature oil reservoir is highly challenging and can significantly decrease the ultimate recovery due to the reservoir heterogeneity. Using seismic waves can be considered low-cost, environmentally friendly, and illuminates the entire reservoir size compared to conventional EOR methods. A numerical model is developed by extending the Quintal approach for seismic attenuation due to wave-induced fluid flow (WIFF) to incorporate capillary pressure in partially saturated porous media and shift undrained boundary conditions to exclude external flow stress for drained boundary conditions. Therefore, the fluid distribution due to the capillary effect makes the developed finite element method (FEM) u-p model more widely applicable for oil recovery in mature reservoirs. A two-layer partially saturated media was subjected to compressive seismic stress at low frequency (3 Hz). The results indicated that the vertical displacement gradients of the bottom and upper layers decline with excitation time for both fully and partially saturated media. On the other hand, partially saturated pore pressure gradients of both the upper and bottom layers have higher amplitudes with excitation time than fully saturated pore pressure gradients due to the influence of capillar pressure. The cumulative crossflow oil volume for 180 days of continuous stimulation was 1176 bbl, 1032 bbl, and 648 bbl in low permeability layers: 200 md, 100 md, and 50 md, respectively. Therefore, the developed model has the potential for field-scale EOR applications. The study also suggests coupling elastic EOR with CO<sub>2</sub> flooding to recover more oil due to increasing fluid mobility and relative permeability to oil in low-permeability reservoirs or tight formations.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105928"},"PeriodicalIF":7.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}