首页 > 最新文献

International Journal of Rock Mechanics and Mining Sciences最新文献

英文 中文
Failure characteristics and energy evolution process of delayed and instantaneous basalt rockburst under true triaxial conditions 真三轴条件下延迟和瞬时玄武岩岩爆的破坏特征和能量演化过程
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-17 DOI: 10.1016/j.ijrmms.2024.105909

Rockburst hazards exhibit different spatiotemporal characteristics in deep tunnel excavation. Failure characteristics and energy evolution process of delayed and instantaneous rockburst of basalt rock were investigated based on single-sided unloading experiments under true triaxial conditions. High-speed photography and acoustic emission (AE) monitoring were used, and computed tomography (CT) scanning, fractal theory, and crack classification were employed for failure analysis. A three-dimensional damage model considering variable stiffness of testing machine was established to calculate the energy evolution of rock-machine system during the entire process of rockbursts. Results show that delayed rockburst includes three stages of small particles ejection, rock slab buckling, and violent mixed ejection, while instantaneous rockburst is characterized by rock slab spalling accompanied with slight particles ejection. Delayed rockburst exhibits a progressive failure mode of large-scale expansion of tensile cracks (before failure) to small-scale penetration of shear cracks (upon failure), while instantaneous rockburst shows a large-scale shear failure and abrupt penetration of shear planes upon failure. Delayed rockburst consumes less energy, and most of dissipated energy is converted into kinetic energy of ejected rock fragments, causing a higher intensity level of rockburst; instantaneous rockburst consumes more energy, but almost all dissipated energy comes from internal friction energy of shear failure, causing a higher scale of rock damage. Before rockburst failure, elastic strain energy stored in rock remains basically unchanged, while the energy stored in testing machine continuously decreases, indicating that rockburst is triggered by energy release of loading system. Energy dissipation rate (EDR) can be used as a precursory index for rock failure induced by quasi-static loading such as delayed rockburst. High EDR means damage intensification, stress drop, active AE events, and acceleration of shear crack expansion inside the rock. The findings of this study can provide new perspectives for the mechanisms and early warning of rockbursts.

在深层隧道开挖过程中,岩爆危害表现出不同的时空特征。基于真实三轴条件下的单侧卸载实验,研究了玄武岩延迟岩爆和瞬时岩爆的破坏特征和能量演化过程。采用高速摄影和声发射(AE)监测,并利用计算机断层扫描(CT)、分形理论和裂缝分类进行破坏分析。建立了考虑试验机可变刚度的三维破坏模型,以计算岩爆全过程中岩石-机器系统的能量演化。结果表明,延迟岩爆包括小颗粒喷出、岩板屈曲和剧烈混合喷出三个阶段,而瞬时岩爆的特点是岩板剥落并伴随轻微颗粒喷出。延迟岩爆表现出从大规模拉伸裂缝扩展(破坏前)到小规模剪切裂缝穿透(破坏时)的渐进破坏模式,而瞬时岩爆则表现出大规模剪切破坏和剪切面突然穿透的破坏模式。延迟岩爆消耗的能量较少,大部分耗散能量转化为喷出岩石碎片的动能,导致岩爆强度较高;瞬时岩爆消耗的能量较多,但几乎所有耗散能量都来自剪切破坏的内摩擦能,导致岩石破坏规模较大。岩爆破坏前,岩石中储存的弹性应变能量基本保持不变,而试验机中储存的能量则不断减少,这表明岩爆是由加载系统的能量释放引发的。能量耗散率(EDR)可作为延迟岩爆等准静态加载诱发岩石破坏的前兆指标。高能量耗散率意味着破坏加剧、应力下降、主动 AE 事件以及岩石内部剪切裂缝扩展加速。这项研究的结果可为岩爆的机理和预警提供新的视角。
{"title":"Failure characteristics and energy evolution process of delayed and instantaneous basalt rockburst under true triaxial conditions","authors":"","doi":"10.1016/j.ijrmms.2024.105909","DOIUrl":"10.1016/j.ijrmms.2024.105909","url":null,"abstract":"<div><p>Rockburst hazards exhibit different spatiotemporal characteristics in deep tunnel excavation. Failure characteristics and energy evolution process of delayed and instantaneous rockburst of basalt rock were investigated based on single-sided unloading experiments under true triaxial conditions. High-speed photography and acoustic emission (AE) monitoring were used, and computed tomography (CT) scanning, fractal theory, and crack classification were employed for failure analysis. A three-dimensional damage model considering variable stiffness of testing machine was established to calculate the energy evolution of rock-machine system during the entire process of rockbursts. Results show that delayed rockburst includes three stages of small particles ejection, rock slab buckling, and violent mixed ejection, while instantaneous rockburst is characterized by rock slab spalling accompanied with slight particles ejection. Delayed rockburst exhibits a progressive failure mode of large-scale expansion of tensile cracks (before failure) to small-scale penetration of shear cracks (upon failure), while instantaneous rockburst shows a large-scale shear failure and abrupt penetration of shear planes upon failure. Delayed rockburst consumes less energy, and most of dissipated energy is converted into kinetic energy of ejected rock fragments, causing a higher intensity level of rockburst; instantaneous rockburst consumes more energy, but almost all dissipated energy comes from internal friction energy of shear failure, causing a higher scale of rock damage. Before rockburst failure, elastic strain energy stored in rock remains basically unchanged, while the energy stored in testing machine continuously decreases, indicating that rockburst is triggered by energy release of loading system. Energy dissipation rate (EDR) can be used as a precursory index for rock failure induced by quasi-static loading such as delayed rockburst. High EDR means damage intensification, stress drop, active AE events, and acceleration of shear crack expansion inside the rock. The findings of this study can provide new perspectives for the mechanisms and early warning of rockbursts.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coarse-grained approach to modeling gas transport in swelling porous media 膨胀多孔介质中气体传输的粗粒度建模方法
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-17 DOI: 10.1016/j.ijrmms.2024.105918

In many engineering applications, understanding gas adsorption and its induced swelling in nanoporous materials is crucial. In this study, we propose a novel coarse-grained molecular dynamics (CGMD) model with gas-gas, solid-solid, and gas-solid interactions explicitly controlled to achieve the coupling between gas transport and solid deformation at the microscale. The CGMD model has the capability to recover solid and gas properties, including density, Young's modulus of the solid, and viscosity of the gas to generate a broad range of swelling ratios relevant to nanostructures by using the innovative bead-spring chain networks. A comparison is made between gas transport through deformable and non-deformable nanochannels of varying sizes (35.4–123.9 nm), which is also compared with the macroscopic Hagen-Poiseuille equation. The proposed model has been further tested in a simplified nanoporous medium composed of four randomly distributed spherical solids. The Kozeny-Carman equation can generally describe the relationship between permeability and porosity, but small deviations are observed in the case of swelling porous media. Our results justify the effect of swelling on reducing gas permeability and provide a new approach to modeling gas transport in swelling porous media at the microscale within the framework of CGMD, with potential applications spanning nanofluidics, energy storage technologies, and environmental nanotechnology.

在许多工程应用中,了解纳米多孔材料中的气体吸附及其诱导膨胀至关重要。在本研究中,我们提出了一种新型粗粒度分子动力学(CGMD)模型,该模型明确控制了气体-气体、固体-固体和气体-固体之间的相互作用,从而在微观尺度上实现了气体传输与固体变形之间的耦合。CGMD 模型能够恢复固体和气体的属性,包括密度、固体的杨氏模量和气体的粘度,从而利用创新的珠链网络生成与纳米结构相关的各种膨胀比。比较了气体在不同尺寸(35.4-123.9 nm)的可变形和不可变形纳米通道中的传输情况,并与宏观哈根-普绪耶方程进行了比较。在由四个随机分布的球形固体组成的简化纳米多孔介质中,对所提出的模型进行了进一步测试。Kozeny-Carman方程一般可以描述渗透率与孔隙率之间的关系,但在膨胀多孔介质中会出现微小偏差。我们的研究结果证明了膨胀对降低气体渗透性的影响,并为在 CGMD 框架内模拟微尺度膨胀多孔介质中的气体传输提供了一种新方法,其潜在应用领域涵盖纳米流体、储能技术和环境纳米技术。
{"title":"A coarse-grained approach to modeling gas transport in swelling porous media","authors":"","doi":"10.1016/j.ijrmms.2024.105918","DOIUrl":"10.1016/j.ijrmms.2024.105918","url":null,"abstract":"<div><p>In many engineering applications, understanding gas adsorption and its induced swelling in nanoporous materials is crucial. In this study, we propose a novel coarse-grained molecular dynamics (CGMD) model with gas-gas, solid-solid, and gas-solid interactions explicitly controlled to achieve the coupling between gas transport and solid deformation at the microscale. The CGMD model has the capability to recover solid and gas properties, including density, Young's modulus of the solid, and viscosity of the gas to generate a broad range of swelling ratios relevant to nanostructures by using the innovative bead-spring chain networks. A comparison is made between gas transport through deformable and non-deformable nanochannels of varying sizes (35.4–123.9 nm), which is also compared with the macroscopic Hagen-Poiseuille equation. The proposed model has been further tested in a simplified nanoporous medium composed of four randomly distributed spherical solids. The Kozeny-Carman equation can generally describe the relationship between permeability and porosity, but small deviations are observed in the case of swelling porous media. Our results justify the effect of swelling on reducing gas permeability and provide a new approach to modeling gas transport in swelling porous media at the microscale within the framework of CGMD, with potential applications spanning nanofluidics, energy storage technologies, and environmental nanotechnology.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1365160924002831/pdfft?md5=ac3e93c6ff2eb6649e72cac29cd44033&pid=1-s2.0-S1365160924002831-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal contact and asperities coalescence of rock joints under normal loading: Insights from pressure-sensitive film measurement 正常载荷下岩石节理的分形接触和表面凝聚:压敏薄膜测量的启示
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-17 DOI: 10.1016/j.ijrmms.2024.105908

Direct measurement of the real contact area of rock joints under normal loading is crucial for comprehending the subsurface geological processes. However, measuring this phenomenon quantitatively at site-scale or laboratory-scale is challenging. Here, we investigate the evolution mechanism of the real contact area in rock joints by conducting closure tests on artificial and saw-cut sandstone joints under normal stresses up to 50 MPa. Geometrical shapes of contact patches are quantified by the pressure-sensitive film using the adaptive threshold method. An extensive range of contact stress within contact patches is innovatively measured by integrating the results from multi-type pressure-sensitive films. Experimental results demonstrate that the real contact area increases with the increasing normal stress hyperbolically. Such a nonlinear contact evolution behavior can be attributed to the coalescence of adjacent contact patches. The fractal dimension of composite surface governs the geometrical shapes of contact patches and the distribution of contact stress. The relationship between patch areas and bearing loads follows the Hertzian theory when the patches are small, while it gradually becomes linear with the increasing patch size. A power model with exponential cut-off is proposed to predict the size distribution of contact patches. This work can provide new insights for estimating the patch-dependent seismic nucleation length and slip stability of subsurface joints.

直接测量正常荷载下岩石节理的实际接触面积对于理解地下地质过程至关重要。然而,在现场或实验室范围内定量测量这一现象具有挑战性。在此,我们通过在高达 50 兆帕的法向应力下对人工砂岩和锯切砂岩节理进行闭合试验,研究了岩石节理中真实接触面积的演变机制。采用自适应阈值法,通过压敏薄膜对接触斑块的几何形状进行量化。通过整合多种类型压敏薄膜的结果,创新性地测量了接触斑块内广泛的接触应力。实验结果表明,实际接触面积随着法向应力的增加而呈双曲线增加。这种非线性接触演变行为可归因于相邻接触斑块的凝聚。复合表面的分形维度决定了接触斑块的几何形状和接触应力的分布。当补丁较小时,补丁面积与轴承载荷之间的关系遵循赫兹理论,而随着补丁尺寸的增大,这种关系逐渐变为线性。我们提出了一个指数截止的幂模型来预测接触斑块的尺寸分布。这项工作可为估计与斑块有关的地震成核长度和地下接头的滑移稳定性提供新的见解。
{"title":"Fractal contact and asperities coalescence of rock joints under normal loading: Insights from pressure-sensitive film measurement","authors":"","doi":"10.1016/j.ijrmms.2024.105908","DOIUrl":"10.1016/j.ijrmms.2024.105908","url":null,"abstract":"<div><p>Direct measurement of the real contact area of rock joints under normal loading is crucial for comprehending the subsurface geological processes. However, measuring this phenomenon quantitatively at site-scale or laboratory-scale is challenging. Here, we investigate the evolution mechanism of the real contact area in rock joints by conducting closure tests on artificial and saw-cut sandstone joints under normal stresses up to 50 MPa. Geometrical shapes of contact patches are quantified by the pressure-sensitive film using the adaptive threshold method. An extensive range of contact stress within contact patches is innovatively measured by integrating the results from multi-type pressure-sensitive films. Experimental results demonstrate that the real contact area increases with the increasing normal stress hyperbolically. Such a nonlinear contact evolution behavior can be attributed to the coalescence of adjacent contact patches. The fractal dimension of composite surface governs the geometrical shapes of contact patches and the distribution of contact stress. The relationship between patch areas and bearing loads follows the Hertzian theory when the patches are small, while it gradually becomes linear with the increasing patch size. A power model with exponential cut-off is proposed to predict the size distribution of contact patches. This work can provide new insights for estimating the patch-dependent seismic nucleation length and slip stability of subsurface joints.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised clustering of mining-induced microseismicity provides insights into source mechanisms 采矿诱发微地震的无监督聚类有助于深入了解震源机制
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-17 DOI: 10.1016/j.ijrmms.2024.105905

Microseismic source mechanisms in underground mines can provide information about the rock mass response to mining. Conventional approaches to such studies rely upon moment tensor solutions that are susceptible to modeling assumptions and need reliable information about source locations and high-resolution velocity models. We propose the application of unsupervised clustering to group microseismic events into different classes directly from the waveform data such that the events in a specific class have similar source mechanisms. Our method has three main steps, first using spectral decomposition to separate the source terms from the path-receiver contributions in the observed amplitude spectra of events occurring in spatially dense clusters. Second, reducing the number of features from the source spectra using independent component analysis (ICA). Third, applying a Gaussian mixture model (GMM) to the reduced feature matrix to obtain event clusters. To test our method, we generate synthetic waveform data using the receiver network and the recorded microseismic event locations in an underground potash mine in Saskatchewan. Results show the ability of our method to separate events into different classes corresponding to differences in source mechanisms. Application to field data recorded in the mine during February 2021 successfully discriminates between blasts and microseismic events. The data recorded between 1 March and 30 June 2021 that contain microseismic events only are divided into two dominant classes. Using known moment tensors (MT) of some of these events for labeling, we interpret one of the two classes as having dominant double-couple mechanisms as compared to the other which most likely corresponds to the linear dipole-tensile mechanisms. Our method, combined with some expert knowledge such as MT of some larger magnitude events, can offer an assessment of source types of large microseismic populations as often encountered in induced seismicity.

地下矿井的微震源机制可以提供岩体对采矿反应的信息。此类研究的传统方法依赖于力矩张量解,而力矩张量解容易受到建模假设的影响,并且需要有关震源位置和高分辨率速度模型的可靠信息。我们建议应用无监督聚类,直接从波形数据中将微地震事件分为不同类别,使特定类别中的事件具有相似的震源机制。我们的方法有三个主要步骤:首先,使用频谱分解法将空间密集聚类中发生的事件的观测振幅频谱中的源项与路径接收器贡献分离开来。其次,利用独立分量分析(ICA)减少源频谱中的特征数量。第三,将高斯混合模型(GMM)应用于减少的特征矩阵,以获得事件集群。为了测试我们的方法,我们使用接收器网络和萨斯喀彻温省一个地下钾盐矿的微震事件记录位置生成合成波形数据。结果表明,我们的方法能够根据震源机制的不同将事件分成不同的类别。应用 2021 年 2 月在该矿记录的现场数据,可成功区分爆破和微震事件。2021 年 3 月 1 日至 6 月 30 日期间记录的数据只包含微震事件,这些数据被分为两个主要类别。利用其中一些事件的已知力矩张量(MT)进行标注,我们将两类事件中的一类解释为主要的双偶机制,而另一类则很可能对应于线性偶极张力机制。我们的方法与一些专家知识(如一些较大震级事件的 MT)相结合,可以对诱发地震中经常遇到的大型微地震群的震源类型进行评估。
{"title":"Unsupervised clustering of mining-induced microseismicity provides insights into source mechanisms","authors":"","doi":"10.1016/j.ijrmms.2024.105905","DOIUrl":"10.1016/j.ijrmms.2024.105905","url":null,"abstract":"<div><p>Microseismic source mechanisms in underground mines can provide information about the rock mass response to mining. Conventional approaches to such studies rely upon moment tensor solutions that are susceptible to modeling assumptions and need reliable information about source locations and high-resolution velocity models. We propose the application of unsupervised clustering to group microseismic events into different classes directly from the waveform data such that the events in a specific class have similar source mechanisms. Our method has three main steps, first using spectral decomposition to separate the source terms from the path-receiver contributions in the observed amplitude spectra of events occurring in spatially dense clusters. Second, reducing the number of features from the source spectra using independent component analysis (ICA). Third, applying a Gaussian mixture model (GMM) to the reduced feature matrix to obtain event clusters. To test our method, we generate synthetic waveform data using the receiver network and the recorded microseismic event locations in an underground potash mine in Saskatchewan. Results show the ability of our method to separate events into different classes corresponding to differences in source mechanisms. Application to field data recorded in the mine during February 2021 successfully discriminates between blasts and microseismic events. The data recorded between 1 March and 30 June 2021 that contain microseismic events only are divided into two dominant classes. Using known moment tensors (MT) of some of these events for labeling, we interpret one of the two classes as having dominant double-couple mechanisms as compared to the other which most likely corresponds to the linear dipole-tensile mechanisms. Our method, combined with some expert knowledge such as MT of some larger magnitude events, can offer an assessment of source types of large microseismic populations as often encountered in induced seismicity.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1365160924002703/pdfft?md5=0bf7dcceead9bd21f4a51e7b8af37328&pid=1-s2.0-S1365160924002703-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small scale laboratory monotonic and cyclic pull out testing on grout and resin encapsulated cable bolts 对灌浆和树脂包裹电缆螺栓进行小规模实验室单调和循环拉拔测试
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-16 DOI: 10.1016/j.ijrmms.2024.105914

Axial studies on cable bolts can be conducted using various scale testing apparatuses. Large scale testing, while providing a powerful platform for testing, is expensive and time consuming. This study presents details of a small scale pull out testing campaign on cable bolts and investigates the results achieved. Six popular types of cable bolts were studied using an anti rotation apparatus while encapsulated in cementitious grout and resin. The resin samples were tested under both monotonic and cyclic loading patterns. The results showed that grouted bulbed cables require higher displacement to reach their maximum load capacity which is lost at failure, while plain cables tend to hold lower loads for a longer time. Resin samples provided strain softening behaviour with low capacities, particularly in absence of cable indentation or bulbs. Cyclic loading tended to adversely affect the post peak behaviour of the resin samples, especially in the bulbed cables. Failed samples inspected after the testing suggested a non-uniform damage profile along the cable with extensive damage at the exit point transitioning into almost no damage at the entry point.

电缆螺栓的轴向研究可通过各种规模的测试设备进行。大规模测试虽然提供了强大的测试平台,但成本高昂且耗时。本研究介绍了电缆螺栓小规模拉拔测试活动的详情,并对取得的结果进行了调查。使用防旋转仪器对六种常用的电缆螺栓进行了研究,同时将其封装在水泥基灌浆料和树脂中。树脂样品在单调和循环加载模式下进行了测试。结果表明,灌浆球形缆索需要较大的位移才能达到最大承载能力,并在失效时失去最大承载能力,而普通缆索往往能在较长时间内保持较低的承载能力。树脂样品具有应变软化行为,但承载能力较低,尤其是在没有电缆压痕或鼓包的情况下。循环加载往往会对树脂样品的峰值后行为产生不利影响,尤其是在有凸起的电缆中。测试后检查的失效样品表明,电缆沿线的损坏情况并不均匀,出口处有大量损坏,而入口处几乎没有损坏。
{"title":"Small scale laboratory monotonic and cyclic pull out testing on grout and resin encapsulated cable bolts","authors":"","doi":"10.1016/j.ijrmms.2024.105914","DOIUrl":"10.1016/j.ijrmms.2024.105914","url":null,"abstract":"<div><p>Axial studies on cable bolts can be conducted using various scale testing apparatuses. Large scale testing, while providing a powerful platform for testing, is expensive and time consuming. This study presents details of a small scale pull out testing campaign on cable bolts and investigates the results achieved. Six popular types of cable bolts were studied using an anti rotation apparatus while encapsulated in cementitious grout and resin. The resin samples were tested under both monotonic and cyclic loading patterns. The results showed that grouted bulbed cables require higher displacement to reach their maximum load capacity which is lost at failure, while plain cables tend to hold lower loads for a longer time. Resin samples provided strain softening behaviour with low capacities, particularly in absence of cable indentation or bulbs. Cyclic loading tended to adversely affect the post peak behaviour of the resin samples, especially in the bulbed cables. Failed samples inspected after the testing suggested a non-uniform damage profile along the cable with extensive damage at the exit point transitioning into almost no damage at the entry point.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136516092400279X/pdfft?md5=c05bdde93b1350dbf1596b1ad9259819&pid=1-s2.0-S136516092400279X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into velocity-dependent shear characteristics of bolted rock joints: A comparative study of fully-grouted and energy-absorbing bolts 洞察螺栓连接岩石接头的速度剪切特性:全灌浆螺栓和吸能螺栓的比较研究
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-15 DOI: 10.1016/j.ijrmms.2024.105910

In geotechnical engineering, activities such as landslides, rockfalls, blasting, and excavation often subject jointed rock masses to dynamic shear loads, impacting project stability. With continuous innovation of anchoring support technology, the appearance of energy-absorbing bolts has provided more options for rock support. This study selected fully-grouted bolts and energy-absorbing bolts, considering the roughness of natural rock joints. Indoor shear tests were conducted on bolted specimens at varying shear velocities. A comprehensive analysis was conducted on the failure morphology of joint surfaces and the fracture characteristics of bolts. Subsequently, the shear performance of both bolt types was quantitatively assessed through absorbed shear energy. At the interface between fully-grouted bolts and joint surfaces, stress concentration phenomena were observed. In contrast, energy-absorbing bolts exhibited significant necking phenomena. Under external forces, the bolt body detached from the grout, enabling it to accommodate large deformations of the rock mass and absorb energy. The results indicate that energy-absorbing bolts demonstrate better adaptability and energy absorption capacity under high-velocity shearing, while fully-grouted bolts exhibit higher peak shear stresses. Based on the experimental findings, for projects requiring consideration of dynamic shear loads and energy absorption capabilities, energy-absorbing bolts may be more suitable, providing additional safety assurance. Conversely, fully-grouted bolts may be more appropriate for applications with higher requirements for shear resistance, such as structural support under general static loads.

在岩土工程中,滑坡、落石、爆破和挖掘等活动经常会使节理岩体承受动态剪切荷载,从而影响工程的稳定性。随着锚固支护技术的不断创新,吸能螺栓的出现为岩石支护提供了更多选择。考虑到天然岩石节理的粗糙度,本研究选择了全灌浆螺栓和吸能螺栓。在不同剪切速度下对螺栓试样进行了室内剪切试验。对接合面的破坏形态和螺栓的断裂特性进行了综合分析。随后,通过吸收的剪切能量对两种类型螺栓的剪切性能进行了定量评估。在全灌浆螺栓和接合面之间的界面上,观察到了应力集中现象。相反,吸能螺栓则表现出明显的缩颈现象。在外力作用下,螺栓体脱离灌浆,使其能够适应岩体的大变形并吸收能量。结果表明,吸能螺栓在高速剪切下具有更好的适应性和能量吸收能力,而全灌浆螺栓则表现出更高的峰值剪应力。根据实验结果,对于需要考虑动态剪切载荷和能量吸收能力的项目,吸能螺栓可能更适合,可提供额外的安全保证。相反,全灌浆螺栓可能更适用于对抗剪能力要求较高的应用,如一般静态载荷下的结构支撑。
{"title":"Insights into velocity-dependent shear characteristics of bolted rock joints: A comparative study of fully-grouted and energy-absorbing bolts","authors":"","doi":"10.1016/j.ijrmms.2024.105910","DOIUrl":"10.1016/j.ijrmms.2024.105910","url":null,"abstract":"<div><p>In geotechnical engineering, activities such as landslides, rockfalls, blasting, and excavation often subject jointed rock masses to dynamic shear loads, impacting project stability. With continuous innovation of anchoring support technology, the appearance of energy-absorbing bolts has provided more options for rock support. This study selected fully-grouted bolts and energy-absorbing bolts, considering the roughness of natural rock joints. Indoor shear tests were conducted on bolted specimens at varying shear velocities. A comprehensive analysis was conducted on the failure morphology of joint surfaces and the fracture characteristics of bolts. Subsequently, the shear performance of both bolt types was quantitatively assessed through absorbed shear energy. At the interface between fully-grouted bolts and joint surfaces, stress concentration phenomena were observed. In contrast, energy-absorbing bolts exhibited significant necking phenomena. Under external forces, the bolt body detached from the grout, enabling it to accommodate large deformations of the rock mass and absorb energy. The results indicate that energy-absorbing bolts demonstrate better adaptability and energy absorption capacity under high-velocity shearing, while fully-grouted bolts exhibit higher peak shear stresses. Based on the experimental findings, for projects requiring consideration of dynamic shear loads and energy absorption capabilities, energy-absorbing bolts may be more suitable, providing additional safety assurance. Conversely, fully-grouted bolts may be more appropriate for applications with higher requirements for shear resistance, such as structural support under general static loads.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Cerchar abrasive parameters of monomineralic rocks and its application for evaluating cutting efficiency 单矿物岩石的 Cerchar 磨料参数研究及其在切削效率评估中的应用
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-14 DOI: 10.1016/j.ijrmms.2024.105895

The Cerchar test is the most commonly used method for evaluating rock abrasivity and estimating tool wear. The conventional test results are reported based on the measured changes of the wear parts, and little attention is paid to what happens on the rock surface and scratching force. Since the cutting process is the interactive behavior between cutting tools and rock materials, the changes in both parts are important to represent rock-tool interaction and evaluate cutting efficiency. In the present study, the Cerchar tests have been carried out on eleven types of monomineralic rocks by using an improved West apparatus. The related abrasive parameters have been comprehensively and systematically analyzed, including stylus tip wear, rock material loss, applied horizontal force, and scratching energy. The variation characteristics of those abrasive parameters have been studied. The specific abrasivity ratio (SAR) and scratching specific energy (SSE), which represent the tool wear and energy consumption per unit of rock removal respectively, have been developed to evaluate the cutting efficiency of different rocks. The results show that the SAR and SSE values of the tested rocks have comparable data ranges and variation trends due to the same mathematical treatment of the indices. Under the given rock removal volume, the SAR and SSE could be used to compare and classify the relative cutting efficiency of different rocks. The lower the SAR and SSE values, the less stylus wear and lower energy consumption in the cutting process, indicating higher cutting efficiency. According to their values, the cutting efficiency of the tested rocks is divided into four categories: high cutting efficiency, medium cutting efficiency, low cutting efficiency, and very low cutting efficiency. The SAR-based and SSE-based classifications are consistent for most of the tested rocks, and the SAR-based classification is lower to higher abrasive rocks (pyroxene, hematite, and quartz) due to it considering the influence of stylus tip wear. Hence the SAR-based classification is more suitable for hard and highly abrasive rocks.

Cerchar 试验是评估岩石磨损性和估计工具磨损的最常用方法。传统的测试结果是根据测量到的磨损部分的变化来报告的,很少关注岩石表面和刮擦力的变化。由于切削过程是切削工具与岩石材料之间的交互行为,因此这两部分的变化对于表示岩石与工具之间的交互作用和评估切削效率非常重要。在本研究中,使用改进的 West 仪器对 11 种单质岩石进行了 Cerchar 试验。对相关的磨料参数进行了全面系统的分析,包括测尖磨损、岩石材料损耗、施加的水平力和划痕能量。研究了这些磨料参数的变化特征。开发了比磨蚀率(SAR)和划痕比能量(SSE),分别表示单位岩石去除量的工具磨损和能量消耗,用于评估不同岩石的切割效率。结果表明,由于对指标进行了相同的数学处理,被测岩石的 SAR 值和 SSE 值具有可比的数据范围和变化趋势。在给定的岩石去除量下,SAR 和 SSE 可用来比较和划分不同岩石的相对切割效率。SAR 和 SSE 值越低,切割过程中的测针磨损越小,能耗越低,说明切割效率越高。根据它们的数值,测试岩石的切割效率被分为四类:高切割效率、中等切割效率、低切割效率和极低切割效率。基于 SAR 的分类和基于 SSE 的分类对大多数测试岩石都是一致的,而基于 SAR 的分类由于考虑了测尖磨损的影响,对高磨蚀性岩石(辉石、赤铁矿和石英)的分类较低。因此,基于 SAR 的分类方法更适用于坚硬和高磨蚀性岩石。
{"title":"Study of Cerchar abrasive parameters of monomineralic rocks and its application for evaluating cutting efficiency","authors":"","doi":"10.1016/j.ijrmms.2024.105895","DOIUrl":"10.1016/j.ijrmms.2024.105895","url":null,"abstract":"<div><p>The Cerchar test is the most commonly used method for evaluating rock abrasivity and estimating tool wear. The conventional test results are reported based on the measured changes of the wear parts, and little attention is paid to what happens on the rock surface and scratching force. Since the cutting process is the interactive behavior between cutting tools and rock materials, the changes in both parts are important to represent rock-tool interaction and evaluate cutting efficiency. In the present study, the Cerchar tests have been carried out on eleven types of monomineralic rocks by using an improved West apparatus. The related abrasive parameters have been comprehensively and systematically analyzed, including stylus tip wear, rock material loss, applied horizontal force, and scratching energy. The variation characteristics of those abrasive parameters have been studied. The specific abrasivity ratio (<em>SAR</em>) and scratching specific energy (<em>SSE</em>), which represent the tool wear and energy consumption per unit of rock removal respectively, have been developed to evaluate the cutting efficiency of different rocks. The results show that the <em>SAR</em> and <em>SSE</em> values of the tested rocks have comparable data ranges and variation trends due to the same mathematical treatment of the indices. Under the given rock removal volume, the <em>SAR</em> and <em>SSE</em> could be used to compare and classify the relative cutting efficiency of different rocks. The lower the <em>SAR</em> and <em>SSE</em> values, the less stylus wear and lower energy consumption in the cutting process, indicating higher cutting efficiency. According to their values, the cutting efficiency of the tested rocks is divided into four categories: high cutting efficiency, medium cutting efficiency, low cutting efficiency, and very low cutting efficiency. The <em>SAR</em>-based and <em>SSE</em>-based classifications are consistent for most of the tested rocks, and the <em>SAR</em>-based classification is lower to higher abrasive rocks (pyroxene, hematite, and quartz) due to it considering the influence of stylus tip wear. Hence the <em>SAR</em>-based classification is more suitable for hard and highly abrasive rocks.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles 寒冷地区山体滑坡的引发机制:冻融循环的作用
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-13 DOI: 10.1016/j.ijrmms.2024.105906

Freeze-thaw cycles are recognized as one of the key triggers for some major landslides in cold regions around the world. Though the effects of freeze-thaw cycles on the rock strength degradation have been studied extensively, little effort has been made to qualitatively evaluate how it contributes to the evolution from a stable rock slope to a large-scale mass movement. In this study, we use a discrete element-based numerical model to simulate the entire process of the initiation of landslide under the action of freeze-thaw cycles in a slope with randomly distributed initial cracks. The main goal of this work is to quantitatively describe the landslide evolution process regarding the slope displacement, crack propagation, stress chain and load-bearing structure. Our results show the essence of the displacement evolution of a landslide subjected to freeze-thaw cycles; namely frost heave pressure induces the generation of new cracks, leading to the failure and reconstruction of the load-bearing structure of the slope. Deep-seated landslides can occur when the slope is crossed by a fault; otherwise, the slope is prone to surface erosion or shallow landslides.

冻融循环被认为是世界各地寒冷地区一些重大山体滑坡的主要诱因之一。尽管人们已经广泛研究了冻融循环对岩石强度退化的影响,但很少有人对冻融循环如何促使稳定的岩石边坡演变为大规模的大规模运动进行定性评估。在本研究中,我们使用基于离散元的数值模型模拟了在冻融循环作用下,初始裂缝随机分布的斜坡发生滑坡的全过程。这项工作的主要目标是定量描述滑坡的演变过程,包括斜坡位移、裂缝扩展、应力链和承载结构。我们的研究结果表明了受冻融循环影响的滑坡位移演变的本质,即冻土隆起压力诱发新裂缝的产生,从而导致滑坡的破坏和承重结构的重建。当斜坡被断层穿越时,就会发生深层滑坡;反之,斜坡就容易发生表面侵蚀或浅层滑坡。
{"title":"Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles","authors":"","doi":"10.1016/j.ijrmms.2024.105906","DOIUrl":"10.1016/j.ijrmms.2024.105906","url":null,"abstract":"<div><p>Freeze-thaw cycles are recognized as one of the key triggers for some major landslides in cold regions around the world. Though the effects of freeze-thaw cycles on the rock strength degradation have been studied extensively, little effort has been made to qualitatively evaluate how it contributes to the evolution from a stable rock slope to a large-scale mass movement. In this study, we use a discrete element-based numerical model to simulate the entire process of the initiation of landslide under the action of freeze-thaw cycles in a slope with randomly distributed initial cracks. The main goal of this work is to quantitatively describe the landslide evolution process regarding the slope displacement, crack propagation, stress chain and load-bearing structure. Our results show the essence of the displacement evolution of a landslide subjected to freeze-thaw cycles; namely frost heave pressure induces the generation of new cracks, leading to the failure and reconstruction of the load-bearing structure of the slope. Deep-seated landslides can occur when the slope is crossed by a fault; otherwise, the slope is prone to surface erosion or shallow landslides.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-mechanical modelling of spalling around the deposition boreholes in an underground nuclear waste repository during its thermal phase 地下核废料贮存库热阶段贮存孔周围剥落的热机械建模
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-11 DOI: 10.1016/j.ijrmms.2024.105898

This paper presents a three-dimensional numerical analysis of multiple fracture growth leading to the development of excavation disturbed zones and spalling around deposition boreholes in a geological disposal facility. The development of fracture patterns is simulated with the Imperial College Geomechanics Toolkit, a finite-element based simulator that can model the simultaneous nucleation, growth, and coalescence of multiple fractures in quasi-brittle rock. In these simulations, fractures develop due to the stress concentrations around the borehole wall, caused by the local in situ stresses, and due to the thermal stresses caused by the radioactive decay of the waste. Fracture patterns, and the extent of the spalled zone, are computed after the borehole drilling, heating, and cooling stages, at the Forsmark repository site in Sweden. The effect of temperature on the nucleation and growth of spalling fractures, as well as on the reactivation of pre-existing fractures, is assessed qualitatively, by comparing fracture patterns, and quantitatively, in terms of the maximum spalling depth, width, and increase in the total fractured surface area. Overall, the simulations presented herein indicate that thermal spalling will increase the depths (away from the borehole) and angular widths of the spalled zone, but is not likely to lead to major increases in fracture aperture, and concomitant increases in hydraulic transmissivity and permeability of the spalled zone, above that which has already been caused by mechanical spalling.

本文对地质弃置设施中沉积钻孔周围导致挖掘扰动区和剥落发展的多重断裂生长进行了三维数值分析。该工具包是一种基于有限元的模拟器,可以模拟准脆性岩石中多条裂缝的同时成核、生长和凝聚。在这些模拟中,裂缝的形成是由于钻孔壁周围的应力集中(由局部原位应力和废物放射性衰变引起的热应力造成)。在瑞典福斯马克(Forsmark)储存库现场,经过钻孔、加热和冷却阶段后,对断裂模式和剥落区的范围进行了计算。通过比较断裂形态,对温度对剥落裂缝的成核和生长以及对原已存在裂缝的再活化的影响进行了定性评估,并根据最大剥落深度、宽度和总断裂表面积的增加情况进行了定量评估。总之,本文介绍的模拟结果表明,热剥蚀会增加剥蚀区的深度(远离井眼)和角宽度,但不可能导致裂缝孔径的大幅增加,以及剥蚀区水力渗透率和渗透性的随之增加,而不会超过机械剥蚀已经造成的增加。
{"title":"Thermo-mechanical modelling of spalling around the deposition boreholes in an underground nuclear waste repository during its thermal phase","authors":"","doi":"10.1016/j.ijrmms.2024.105898","DOIUrl":"10.1016/j.ijrmms.2024.105898","url":null,"abstract":"<div><p>This paper presents a three-dimensional numerical analysis of multiple fracture growth leading to the development of excavation disturbed zones and spalling around deposition boreholes in a geological disposal facility. The development of fracture patterns is simulated with the Imperial College Geomechanics Toolkit, a finite-element based simulator that can model the simultaneous nucleation, growth, and coalescence of multiple fractures in quasi-brittle rock. In these simulations, fractures develop due to the stress concentrations around the borehole wall, caused by the local <em>in situ</em> stresses, and due to the thermal stresses caused by the radioactive decay of the waste. Fracture patterns, and the extent of the spalled zone, are computed after the borehole drilling, heating, and cooling stages, at the Forsmark repository site in Sweden. The effect of temperature on the nucleation and growth of spalling fractures, as well as on the reactivation of pre-existing fractures, is assessed qualitatively, by comparing fracture patterns, and quantitatively, in terms of the maximum spalling depth, width, and increase in the total fractured surface area. Overall, the simulations presented herein indicate that thermal spalling will increase the depths (away from the borehole) and angular widths of the spalled zone, but is not likely to lead to major increases in fracture aperture, and concomitant increases in hydraulic transmissivity and permeability of the spalled zone, above that which has already been caused by mechanical spalling.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1365160924002636/pdfft?md5=8dc145ff00d8b69d4e0f7a78d3985aee&pid=1-s2.0-S1365160924002636-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibrating high-dimensional rock creep constitutive models for geological disaster prevention: An application of data assimilation methods 为地质灾害预防校准高维岩石蠕变构造模型:数据同化方法的应用
IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-10 DOI: 10.1016/j.ijrmms.2024.105911

The study of rock creep phenomena is of paramount importance due to its potential to trigger geological disasters, such as landslides. To predict and prevent such disasters, creep constitutive models are widely employed to comprehend the time-dependent deformation of rocks. These models encompass various mechanical parameters that describe the intricate stress-strain behaviors. Nevertheless, significant challenges persist in achieving accurate and consistent parameter estimation and state prediction. In this study, we introduce three advanced data assimilation (DA) methods, including one Markov chain Monte Carlo method, DREAM(KZS), and two ensemble smoother methods, ESMDA and ILUES. This marks the first application of such methods for calibrating rock creep models in the scenario of geological disaster prevention. We conducted numerical simulations under both low- and high-dimensional conditions to assess the performance of these DA methods. For the single partition model, all three DA methods demonstrated promising results. In the high-dimensional case, DREAM(KZS) displayed inefficiency, while both ESMDA and ILUES proved to be still effective. ESMDA offered improved data matching but tended to underestimate parameter uncertainties, whereas ILUES excelled in addressing the issue of equifinality. In a real-world case focusing on characterizing creep deformation at the Mogu tilting deformation body near the Lianghekou Dam, China, we employed all three DA methods, and they collectively demonstrated satisfactory performance. Particularly noteworthy is the enhanced performance of the DREAM(KZS) method during the accelerated creep phase, even in the presence of limited data. The findings of this research bear significant importance in reducing uncertainties associated with model parameters in the realm of rock mechanics, thereby advancing our capabilities in predicting and preventing disasters.

由于岩石蠕变现象有可能引发山体滑坡等地质灾害,因此研究岩石蠕变现象至关重要。为了预测和预防此类灾害,人们广泛采用蠕变构造模型来理解岩石随时间变化的变形。这些模型包含各种机械参数,用于描述复杂的应力-应变行为。然而,在实现准确一致的参数估计和状态预测方面仍存在巨大挑战。在本研究中,我们介绍了三种先进的数据同化(DA)方法,包括一种马尔可夫链蒙特卡洛方法 DREAM(KZS),以及两种集合平滑方法 ESMDA 和 ILUES。这标志着此类方法首次应用于地质灾害防治场景中的岩石蠕变模型校准。我们在低维和高维条件下进行了数值模拟,以评估这些DA方法的性能。在单分区模型中,所有三种设计方法都取得了可喜的成果。在高维情况下,DREAM(KZS) 显示出了低效率,而 ESMDA 和 ILUES 被证明仍然有效。ESMDA改进了数据匹配,但往往低估了参数的不确定性,而ILUES在解决等差数列问题方面表现出色。在一个以中国两河口大坝附近莫古倾斜变形体蠕变变形特征为重点的实际案例中,我们采用了所有三种数据分析方法,它们都表现出了令人满意的性能。尤其值得注意的是,即使在数据有限的情况下,DREAM(KZS)方法在加速蠕变阶段的性能也得到了提升。这项研究成果对于减少岩石力学领域模型参数的不确定性,从而提高我们预测和预防灾害的能力具有重要意义。
{"title":"Calibrating high-dimensional rock creep constitutive models for geological disaster prevention: An application of data assimilation methods","authors":"","doi":"10.1016/j.ijrmms.2024.105911","DOIUrl":"10.1016/j.ijrmms.2024.105911","url":null,"abstract":"<div><p>The study of rock creep phenomena is of paramount importance due to its potential to trigger geological disasters, such as landslides. To predict and prevent such disasters, creep constitutive models are widely employed to comprehend the time-dependent deformation of rocks. These models encompass various mechanical parameters that describe the intricate stress-strain behaviors. Nevertheless, significant challenges persist in achieving accurate and consistent parameter estimation and state prediction. In this study, we introduce three advanced data assimilation (DA) methods, including one Markov chain Monte Carlo method, DREAM<sub>(KZS)</sub>, and two ensemble smoother methods, ESMDA and ILUES. This marks the first application of such methods for calibrating rock creep models in the scenario of geological disaster prevention. We conducted numerical simulations under both low- and high-dimensional conditions to assess the performance of these DA methods. For the single partition model, all three DA methods demonstrated promising results. In the high-dimensional case, DREAM<sub>(KZS)</sub> displayed inefficiency, while both ESMDA and ILUES proved to be still effective. ESMDA offered improved data matching but tended to underestimate parameter uncertainties, whereas ILUES excelled in addressing the issue of equifinality. In a real-world case focusing on characterizing creep deformation at the Mogu tilting deformation body near the Lianghekou Dam, China, we employed all three DA methods, and they collectively demonstrated satisfactory performance. Particularly noteworthy is the enhanced performance of the DREAM<sub>(KZS)</sub> method during the accelerated creep phase, even in the presence of limited data. The findings of this research bear significant importance in reducing uncertainties associated with model parameters in the realm of rock mechanics, thereby advancing our capabilities in predicting and preventing disasters.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Rock Mechanics and Mining Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1