A novel low-loss tunable filter using its own coupled lines is proposed in the paper. The filter is based on a substrate-integrated suspended line (SISL) structure with two inner layers, fabricated on a low-cost FR4 substrate. The suspension line and the cavity are completely covered by copper. In the novel structure, the coupled line can be tuned and has a variable coupling coefficient. The performance of the dual-band filter can be flexibly tuned by using the coupled lines. The passband widths can be tuned independently with the range from 0.31 to 0.92 GHz. The center frequencies of the passbands can also be tuned independently, with the tuning range of 1.1 GHz. A low insertion loss of less than 0.54 dB is shown in the proposed filter. The proposed filter shows potential application in future tunable microwave circuit.
{"title":"Low-Cost Low-Loss Tunable Dual-Band Filter Using Coupled Lines With Variable Coupling Coefficients","authors":"Wang Qunliang, Jiang Yanfeng, Wang Yanxiong","doi":"10.1155/2024/5668593","DOIUrl":"https://doi.org/10.1155/2024/5668593","url":null,"abstract":"<p>A novel low-loss tunable filter using its own coupled lines is proposed in the paper. The filter is based on a substrate-integrated suspended line (SISL) structure with two inner layers, fabricated on a low-cost FR4 substrate. The suspension line and the cavity are completely covered by copper. In the novel structure, the coupled line can be tuned and has a variable coupling coefficient. The performance of the dual-band filter can be flexibly tuned by using the coupled lines. The passband widths can be tuned independently with the range from 0.31 to 0.92 GHz. The center frequencies of the passbands can also be tuned independently, with the tuning range of 1.1 GHz. A low insertion loss of less than 0.54 dB is shown in the proposed filter. The proposed filter shows potential application in future tunable microwave circuit.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5668593","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article presents an ultrathin chiral metasurface which can exhibit multiband asymmetric absorption as well as symmetric transmission in a specific frequency band outside the absorption regions. Unlike most electromagnetic metasurface absorbers, the proposed structure does not have a continuous conducting sheet at the bottom which also allows it to act as a bandpass spatial filter. The metasurface has a substrate thickness of only λhigh/62.5 and λlow/34 at the highest and lowest operational free-space wavelengths, respectively. The transmission band is centered at 5.5 GHz, and the asymmetric absorption bands are centered at 3, 3.33, and 4.5 GHz, respectively. The operational bands can be tuned as per user requirements. The metasurface has an angular stability of 45° for both TE and TM incidence. It can be used for radar cross-section (RCS) reduction, electromagnetic shielding, and as a spatial bandpass filter.
{"title":"An Ultrathin Multiband Chiral Metasurface for Transmission and Asymmetric Absorption of Electromagnetic Waves","authors":"Sayan Sarkar, Bhaskar Gupta","doi":"10.1155/2024/2326362","DOIUrl":"https://doi.org/10.1155/2024/2326362","url":null,"abstract":"<p>This article presents an ultrathin chiral metasurface which can exhibit multiband asymmetric absorption as well as symmetric transmission in a specific frequency band outside the absorption regions. Unlike most electromagnetic metasurface absorbers, the proposed structure does not have a continuous conducting sheet at the bottom which also allows it to act as a bandpass spatial filter. The metasurface has a substrate thickness of only <i>λ</i><sub>high</sub>/62.5 and <i>λ</i><sub>low</sub>/34 at the highest and lowest operational free-space wavelengths, respectively. The transmission band is centered at 5.5 GHz, and the asymmetric absorption bands are centered at 3, 3.33, and 4.5 GHz, respectively. The operational bands can be tuned as per user requirements. The metasurface has an angular stability of 45° for both TE and TM incidence. It can be used for radar cross-section (RCS) reduction, electromagnetic shielding, and as a spatial bandpass filter.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2326362","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Peng, Chao Li, Fei Cheng, Li Wu, Wei-wei Xu, Zhi-jie Liu
This article presents a resistor-loaded wideband absorber using a tightly coupled dipole structure. The conversional inherit wide bandwidth tightly coupled dipole which was used as an antenna is adopted as a unit cell. The port of the dipole is loaded with resistors to dissipate the microwave energy. The design principles of the absorber are given. An equivalent circuit model composed of an RLC resonant circuit is proposed to analyze the performance of the absorber. To demonstrate, a 288 mm × 288 mm absorber ranging from 1.96 to 8.08 GHz is fabricated and measured. The measured results agree well with the simulated ones which show that the absorber can work from 2 to 8.18 GHz with an absorption rate of more than 90%. Moreover, the proposed absorber is also insensitive to the polarization angle of the incident wave. When the incident angle changes from 0° to 45°, the absorption rate is nearly unchanged over the operating band.
{"title":"Resistor-Loaded Wideband Polarization Independent Absorber Using Tightly Coupled Dipole Structure","authors":"Jian Peng, Chao Li, Fei Cheng, Li Wu, Wei-wei Xu, Zhi-jie Liu","doi":"10.1155/2024/5321173","DOIUrl":"https://doi.org/10.1155/2024/5321173","url":null,"abstract":"<p>This article presents a resistor-loaded wideband absorber using a tightly coupled dipole structure. The conversional inherit wide bandwidth tightly coupled dipole which was used as an antenna is adopted as a unit cell. The port of the dipole is loaded with resistors to dissipate the microwave energy. The design principles of the absorber are given. An equivalent circuit model composed of an RLC resonant circuit is proposed to analyze the performance of the absorber. To demonstrate, a 288 mm × 288 mm absorber ranging from 1.96 to 8.08 GHz is fabricated and measured. The measured results agree well with the simulated ones which show that the absorber can work from 2 to 8.18 GHz with an absorption rate of more than 90%. Moreover, the proposed absorber is also insensitive to the polarization angle of the incident wave. When the incident angle changes from 0° to 45°, the absorption rate is nearly unchanged over the operating band.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5321173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the increasing use of millimeter-wave radar in automobiles, mutual interference between vehicle-mounted millimeter-wave radar systems is becoming increasingly serious. Mutual interference between vehicle-mounted millimeter-wave radars significantly reduces the accuracy of target parameter estimation and the reliability of target detection. In view of this, this study proposes an interference suppression method that combines the Variational Mode Decomposition (VMD) algorithm and Variation Index Constant False Alarm Rate (VI-CFAR). First, the method performs adaptive decomposition of the intermediate frequency (IF) signals of an interfered vehicle-mounted millimeter-wave radar by VMD in order to obtain several different intrinsic modal functions (IMFs). Then, the relevant IMFs containing target information are identified based on the spectrograms of each IMF, followed by signal reconstruction of the relevant IMFs using VI-CFAR. Finally, the relevant IMFs are superimposed to complete the signal reconstruction. In the case of simultaneous interference by several different interference radars, the results of simulation experiments show that the method can improve the Signal-to-Interference Ratio (SIR) of the target and increase the detection of the interfered target to a greater extent than the Adaptive Noise Cancellation (ANC), Empirical Modal Decomposition (EMD), and Iterative Zeroing methods. According to the SIR results of the simulation experiments, it can be seen that under the static interference of several slightly weak interference sources, the SIR of each target is improved by 8.1, 8.1, 5.8, and 7.9 dB, respectively, after suppressing the interference by the method, whereas in the dynamic cases of simultaneous interference of several strong interference sources and detection of several weak targets, the SIR of each target is improved by 4.6, 2.2, 7.9, and 6.8 dB, respectively. Therefore, the method has some performance advantages.
随着毫米波雷达在汽车中的应用越来越广泛,车载毫米波雷达系统之间的相互干扰也越来越严重。车载毫米波雷达之间的相互干扰会大大降低目标参数估计的准确性和目标探测的可靠性。有鉴于此,本研究提出了一种结合变异模式分解(VMD)算法和变异指数恒误报率(VI-CFAR)的干扰抑制方法。首先,该方法通过 VMD 对受干扰的车载毫米波雷达的中频(IF)信号进行自适应分解,以获得多个不同的本征模态函数(IMF)。然后,根据每个 IMF 的频谱图确定包含目标信息的相关 IMF,接着使用 VI-CFAR 对相关 IMF 进行信号重建。最后,将相关 IMF 叠加,完成信号重建。在同时受到几种不同干扰雷达干扰的情况下,模拟实验结果表明,与自适应噪声消除法(ANC)、经验模态分解法(EMD)和迭代归零法相比,该方法能在更大程度上改善目标的信噪比(SIR),提高受干扰目标的探测率。根据仿真实验的 SIR 结果可以看出,在几个稍弱干扰源的静态干扰下,用该方法抑制干扰后,每个目标的 SIR 分别提高了 8.1、8.1、5.8 和 7.9 dB;而在几个强干扰源同时干扰和检测几个弱目标的动态情况下,每个目标的 SIR 分别提高了 4.6、2.2、7.9 和 6.8 dB。因此,该方法具有一定的性能优势。
{"title":"A Novel Millimeter-Wave Radar Interference Suppression Method Based on VMD and VI-CFAR Algorithms","authors":"Chao Lv, Xun Huang, Guozheng Li, Dongqi Liu","doi":"10.1155/2024/2305711","DOIUrl":"https://doi.org/10.1155/2024/2305711","url":null,"abstract":"<p>With the increasing use of millimeter-wave radar in automobiles, mutual interference between vehicle-mounted millimeter-wave radar systems is becoming increasingly serious. Mutual interference between vehicle-mounted millimeter-wave radars significantly reduces the accuracy of target parameter estimation and the reliability of target detection. In view of this, this study proposes an interference suppression method that combines the Variational Mode Decomposition (VMD) algorithm and Variation Index Constant False Alarm Rate (VI-CFAR). First, the method performs adaptive decomposition of the intermediate frequency (IF) signals of an interfered vehicle-mounted millimeter-wave radar by VMD in order to obtain several different intrinsic modal functions (IMFs). Then, the relevant IMFs containing target information are identified based on the spectrograms of each IMF, followed by signal reconstruction of the relevant IMFs using VI-CFAR. Finally, the relevant IMFs are superimposed to complete the signal reconstruction. In the case of simultaneous interference by several different interference radars, the results of simulation experiments show that the method can improve the Signal-to-Interference Ratio (SIR) of the target and increase the detection of the interfered target to a greater extent than the Adaptive Noise Cancellation (ANC), Empirical Modal Decomposition (EMD), and Iterative Zeroing methods. According to the SIR results of the simulation experiments, it can be seen that under the static interference of several slightly weak interference sources, the SIR of each target is improved by 8.1, 8.1, 5.8, and 7.9 dB, respectively, after suppressing the interference by the method, whereas in the dynamic cases of simultaneous interference of several strong interference sources and detection of several weak targets, the SIR of each target is improved by 4.6, 2.2, 7.9, and 6.8 dB, respectively. Therefore, the method has some performance advantages.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2305711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cem Gocen, Ismail Akdag, Tarlan Mahouti, Mehmet A. Belen, Merih Palandöken, Peyman Mahouti
Antenna systems with more complicated geometries have been created as a result of evolving technology and rising performance standards in the industry. The geometric complexity of modern antennas makes it difficult for circuit theory tools or parametric studies to produce adequate findings, making it difficult for designers to create the designs they want. Even though full-wave electromagnetic (EM) modeling tools are widely utilized today, they are computationally expensive for local optimization alone. In order to speed up the stages of the simulation-based design of high-performance systems, many strategies have been devised to solve and/or minimize this challenge. Thanks to their adaptability, affordable computing costs, and widespread usage, surrogate-based models have grown to be a well-known branch. Herein, an innovative knowledge-based methodology for building a coplanar waveguide (CPW)-fed antenna using surrogate models is presented. In this work, a knowledge-based methodology using surrogate modeling is applied as an advanced approach that combines domain-specific knowledge with surrogate models to optimize the performance of a microwave antenna in a computationally efficient manner. For this aim, firstly, a 3D-EM simulator is deployed to generate a dataset for a deep learning-based surrogate model. When compared to the conventional optimization approach using direct deployment of EM simulators which is around 47.2 h, the proposed surrogate model approach has an average cost reduction of over 50% which corresponds to a total computational time of 24.3 h. The collected results are compared to performance metrics for prototype antenna designs as well as simulated outcomes from EM simulators and counterpart works from the literature.
{"title":"Knowledge-Based Methodology of CPW-Fed Open Stub Loaded C-Shaped Microstrip Antenna by Surrogate-Based Modeling","authors":"Cem Gocen, Ismail Akdag, Tarlan Mahouti, Mehmet A. Belen, Merih Palandöken, Peyman Mahouti","doi":"10.1155/2024/6247693","DOIUrl":"https://doi.org/10.1155/2024/6247693","url":null,"abstract":"<p>Antenna systems with more complicated geometries have been created as a result of evolving technology and rising performance standards in the industry. The geometric complexity of modern antennas makes it difficult for circuit theory tools or parametric studies to produce adequate findings, making it difficult for designers to create the designs they want. Even though full-wave electromagnetic (EM) modeling tools are widely utilized today, they are computationally expensive for local optimization alone. In order to speed up the stages of the simulation-based design of high-performance systems, many strategies have been devised to solve and/or minimize this challenge. Thanks to their adaptability, affordable computing costs, and widespread usage, surrogate-based models have grown to be a well-known branch. Herein, an innovative knowledge-based methodology for building a coplanar waveguide (CPW)-fed antenna using surrogate models is presented. In this work, a knowledge-based methodology using surrogate modeling is applied as an advanced approach that combines domain-specific knowledge with surrogate models to optimize the performance of a microwave antenna in a computationally efficient manner. For this aim, firstly, a 3D-EM simulator is deployed to generate a dataset for a deep learning-based surrogate model. When compared to the conventional optimization approach using direct deployment of EM simulators which is around 47.2 h, the proposed surrogate model approach has an average cost reduction of over 50% which corresponds to a total computational time of 24.3 h. The collected results are compared to performance metrics for prototype antenna designs as well as simulated outcomes from EM simulators and counterpart works from the literature.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6247693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shailesh, Garima Srivastava, Sachin Kumar, Arpan Desai, Bhawna Goyal, Abdulkarem H. M. Almawgani, Turki Alsuwian
A sixteen-port circularly polarized (CP) ultrawideband (UWB) multiple-input−multiple-output (MIMO) belt antenna is designed and developed for wireless body area network (WBAN) applications. The proposed antenna comprises sixteen modified octagon-like ring antenna elements with a common ground. These antenna elements are designed on leather material and can be worn as a belt. Each antenna element contains a microstrip line feed and a modified octagon-like open-ended ring radiator to generate circular polarization. The belt antenna provides an impedance bandwidth (S11 ≤ −10 dB) of 3.08–11 GHz (112.5%) and a 3 dB axial ratio bandwidth (ARBW) of 4.7–7.07 GHz (40.27%). The envelope correlation coefficient (ECC) amongst the resonating elements is <0.003. Additionally, the bending analysis and specific absorption rate (SAR) of the presented antenna are examined. The overall size of the belt antenna is 30 mm × 574 mm × 1 mm. The designed belt antenna is suitable for WBAN applications due to its leather material, good on-body performance, and nearly identical simulated and experimental results.
设计并开发了一种十六端口圆极化(CP)超宽带(UWB)多输入多输出(MIMO)腰带天线,用于无线体域网(WBAN)应用。拟议的天线由十六个改进的八角形环状天线元件组成,具有公共接地。这些天线元件设计在皮革材料上,可作为腰带佩戴。每个天线元件都包含一个微带线馈线和一个改进的八角形开口环形辐射器,以产生圆极化。腰带天线的阻抗带宽(S11 ≤ -10 dB)为 3.08-11 GHz(112.5%),3 dB 轴向比带宽(ARBW)为 4.7-7.07 GHz(40.27%)。谐振元件之间的包络相关系数(ECC)为 0.003。此外,还对所介绍天线的弯曲分析和比吸收率(SAR)进行了研究。腰带天线的整体尺寸为 30 mm × 574 mm × 1 mm。所设计的腰带天线采用皮革材料,具有良好的贴身性能,模拟结果与实验结果几乎完全一致,因此适用于 WBAN 应用。
{"title":"Circularly Polarized Sixteen-Port Flexible UWB MIMO Antenna Featuring Polarization Diversity for WBAN Applications","authors":"Shailesh, Garima Srivastava, Sachin Kumar, Arpan Desai, Bhawna Goyal, Abdulkarem H. M. Almawgani, Turki Alsuwian","doi":"10.1155/2024/8442770","DOIUrl":"https://doi.org/10.1155/2024/8442770","url":null,"abstract":"<p>A sixteen-port circularly polarized (CP) ultrawideband (UWB) multiple-input−multiple-output (MIMO) belt antenna is designed and developed for wireless body area network (WBAN) applications. The proposed antenna comprises sixteen modified octagon-like ring antenna elements with a common ground. These antenna elements are designed on leather material and can be worn as a belt. Each antenna element contains a microstrip line feed and a modified octagon-like open-ended ring radiator to generate circular polarization. The belt antenna provides an impedance bandwidth (<i>S</i><sub>11</sub> ≤ −10 dB) of 3.08–11 GHz (112.5%) and a 3 dB axial ratio bandwidth (ARBW) of 4.7–7.07 GHz (40.27%). The envelope correlation coefficient (ECC) amongst the resonating elements is <0.003. Additionally, the bending analysis and specific absorption rate (SAR) of the presented antenna are examined. The overall size of the belt antenna is 30 mm × 574 mm × 1 mm. The designed belt antenna is suitable for WBAN applications due to its leather material, good on-body performance, and nearly identical simulated and experimental results.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8442770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of Ids is less than 2.44 × 10−6. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to Vds, which is tedious and complicated. The proposed model can be directly used to fit the Gm. The verification results show that the MSE of the Gm is less than 1.07 × 10−4, which proves the effectiveness of the equation.
{"title":"An Improved Nonlinear I-V Model for GaN HEMTs","authors":"Qingyu Yuan, Yixin Zhang, Xiaodong Luan, Jun Zhang, Chunxu Xie, Jiali Cheng","doi":"10.1155/2024/8834864","DOIUrl":"https://doi.org/10.1155/2024/8834864","url":null,"abstract":"<p>In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of <i>I</i><sub>ds</sub> is less than 2.44 × 10<sup>−6</sup>. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to <i>V</i><sub>ds</sub>, which is tedious and complicated. The proposed model can be directly used to fit the <i>G</i><sub><i>m</i></sub>. The verification results show that the MSE of the <i>G</i><sub><i>m</i></sub> is less than 1.07 × 10<sup>−4</sup>, which proves the effectiveness of the equation.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8834864","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the continuous development of the radar field, millimeter-wave radar target detection, as a major tool, faces important challenges in improving detection performance. Especially in some application scenarios, due to multitarget interference and other reasons, the detection performance of the traditional variability index (VI) constant false alarm rate (CFAR) (VI-CFAR) algorithm decreases significantly in the case where both side windows contain interfering targets. To solve this problem, this paper introduces an innovative algorithm, Kullback–Leibler Divergence and Otsu’s Method Enhanced VI-CFAR (KLOVI-CFAR), to better adapt to the multitarget background environment. By combining the KL scattering and Otsu method, we realize the adaptive rejection of outliers in the reference window and further automatically select the detection algorithm adapted to the processed background environment. The results of simulation experiments verify the excellent detection performance of KLOVI-CFAR in multitarget environments with interfering targets in both side windows. The algorithm not only effectively improves the detection capability and antijamming but also shows good detection performance in homogeneous environment and clutter edge cases. The research results in this paper provide a useful reference for improving the radar target detection algorithm.
{"title":"Constant False Alarm Detection Algorithm Based on KL Scattering","authors":"Chao Lv, Guozheng Li, Xun Huang, Dongqi Liu","doi":"10.1155/2024/2218790","DOIUrl":"https://doi.org/10.1155/2024/2218790","url":null,"abstract":"<p>With the continuous development of the radar field, millimeter-wave radar target detection, as a major tool, faces important challenges in improving detection performance. Especially in some application scenarios, due to multitarget interference and other reasons, the detection performance of the traditional variability index (VI) constant false alarm rate (CFAR) (VI-CFAR) algorithm decreases significantly in the case where both side windows contain interfering targets. To solve this problem, this paper introduces an innovative algorithm, Kullback–Leibler Divergence and Otsu’s Method Enhanced VI-CFAR (KLOVI-CFAR), to better adapt to the multitarget background environment. By combining the KL scattering and Otsu method, we realize the adaptive rejection of outliers in the reference window and further automatically select the detection algorithm adapted to the processed background environment. The results of simulation experiments verify the excellent detection performance of KLOVI-CFAR in multitarget environments with interfering targets in both side windows. The algorithm not only effectively improves the detection capability and antijamming but also shows good detection performance in homogeneous environment and clutter edge cases. The research results in this paper provide a useful reference for improving the radar target detection algorithm.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2218790","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiport network model (MNM) of microstrip patch antennas is an extension of cavity model analysis. In MNM, electromagnetic fields present under and outside patch are modeled separately and the patch is considered as a planar element with multiple ports at its edges. The MNM approach was previously used for the analysis of different patches such as rectangular and circular. However, MNM analysis for irregular-shaped hexagonal patch antenna is not studied yet. Analysis of hexagonal patch antenna is required for its several advantages over other patches such as equivalent surface current distribution with less size compared to circular patch and higher bandwidth. In this work, the irregular-shaped hexagonal patch antenna is analyzed using MNM technique. The antenna is decomposed into rectangular and right-angle triangular segments. Multiport impedance (Z) matrices are calculated for all elements based on Green’s functions of corresponding shapes. Finally, the current distribution of the complete patch is obtained by connecting these elements using Z matrices. The irregular-shaped patch antenna is fabricated, and its responses are measured to verify the results obtained from MNM analysis. MNM can estimate antenna performance with ~3.5% average error with respect to simulated responses in terms of antenna performance parameters.
{"title":"Design and Analysis of Irregular Hexagonal Patch Antenna Using Multiport Network Model (MNM)","authors":"Mishor Biswas, Soham Ghosh, Suman Dey, Kaushik Patra, Bhaskar Gupta","doi":"10.1155/2024/8343100","DOIUrl":"https://doi.org/10.1155/2024/8343100","url":null,"abstract":"<p>Multiport network model (MNM) of microstrip patch antennas is an extension of cavity model analysis. In MNM, electromagnetic fields present under and outside patch are modeled separately and the patch is considered as a planar element with multiple ports at its edges. The MNM approach was previously used for the analysis of different patches such as rectangular and circular. However, MNM analysis for irregular-shaped hexagonal patch antenna is not studied yet. Analysis of hexagonal patch antenna is required for its several advantages over other patches such as equivalent surface current distribution with less size compared to circular patch and higher bandwidth. In this work, the irregular-shaped hexagonal patch antenna is analyzed using MNM technique. The antenna is decomposed into rectangular and right-angle triangular segments. Multiport impedance (<i>Z</i>) matrices are calculated for all elements based on Green’s functions of corresponding shapes. Finally, the current distribution of the complete patch is obtained by connecting these elements using <i>Z</i> matrices. The irregular-shaped patch antenna is fabricated, and its responses are measured to verify the results obtained from MNM analysis. MNM can estimate antenna performance with ~3.5% average error with respect to simulated responses in terms of antenna performance parameters.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8343100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents radio frequency energy harvesting (RFEH) using a rectenna system for 3.1 and 5.75 GHz frequencies. The antenna used in this work is a Vivaldi antenna with a new structure. Mounting the newly designed parasitic element on the proposed Vivaldi antenna has improved the gain and directivity of the antenna. The parasitic element is introduced as the director element. The arms of the director element are expanded exponentially. We simulated the proposed antenna design in CST Studio Suite and simulated the proposed rectifier in an advanced design system (ADS). The substrates chosen for the antenna and rectifier are of low-cost type. We have used the voltage doubler technique for the rectifier. Good impedance matching using two stubs has made it possible to connect the rectifier to the antenna. We obtained RF to DC measurement results for the proposed design, which are 56.3% for 3.1 GHz at 8.5 dBm input power and 33.4% for 5.75 GHz at 6.5 dBm input power, respectively. After combining the antenna and the rectifier, the maximum efficiency measured for the power input of 5 dBm at the frequency of 3.1 GHz is equal to 50.8%, which is suitable for energy harvesting.
{"title":"Mounted Director Element on Dual-Band Vivaldi Antenna for Wireless Energy Harvesting Application","authors":"Saeed Hosseini, Changiz Ghobadi, Javad Nourinia, Majid Shokri","doi":"10.1155/2024/5552790","DOIUrl":"https://doi.org/10.1155/2024/5552790","url":null,"abstract":"<p>This paper presents radio frequency energy harvesting (RFEH) using a rectenna system for 3.1 and 5.75 GHz frequencies. The antenna used in this work is a Vivaldi antenna with a new structure. Mounting the newly designed parasitic element on the proposed Vivaldi antenna has improved the gain and directivity of the antenna. The parasitic element is introduced as the director element. The arms of the director element are expanded exponentially. We simulated the proposed antenna design in CST Studio Suite and simulated the proposed rectifier in an advanced design system (ADS). The substrates chosen for the antenna and rectifier are of low-cost type. We have used the voltage doubler technique for the rectifier. Good impedance matching using two stubs has made it possible to connect the rectifier to the antenna. We obtained RF to DC measurement results for the proposed design, which are 56.3% for 3.1 GHz at 8.5 dBm input power and 33.4% for 5.75 GHz at 6.5 dBm input power, respectively. After combining the antenna and the rectifier, the maximum efficiency measured for the power input of 5 dBm at the frequency of 3.1 GHz is equal to 50.8%, which is suitable for energy harvesting.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5552790","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}