首页 > 最新文献

Experimental Astronomy最新文献

英文 中文
Calibration of segmented BGO scintillation detectors for space-based gamma-ray polarimeter 天基伽玛射线偏振计中分段BGO闪烁探测器的标定
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1007/s10686-025-09977-9
A. Mkrtchyan, A. Pozanenko, P. Minaev, A. Strizhak, A. Ivashkin, A. Baranov, S. Musin

In the gamma range, polarization detection is particularly difficult. For example, the registration of linear polarization can help in determining the structure of the magnetic field in a jet when generating radiation in gamma-ray bursts. The measurement of linear polarization in the 511 keV line associated with the annihilation of electrons and positrons may be an indicator of the asymmetry of the distribution of radioactive nickel in the scattering shell of Supernovae. The principle of detecting the polarization of gamma radiation is based on the anisotropy of Compton scattering. This property can be used in the development of polarimeters, which are a segmented scintillation detector. The paper presents polarization calibrations for 3 BGO detectors, which are a simplified prototype of a segmented gamma-ray spectrometer (SGS) being developed for the Chibis-AI microsatellite. The complete assembly of the SGS detector consists of 32 BGO bars. Polarization calibrations of the SGS prototype in the 511 keV line were carried out at the experimental facility at the Institute for Nuclear Research of the Russian Academy of Sciences using the isotope (^{22}text {Na}). Also, for comparison, a simulation of the registration of linear polarization was carried out using the Geant4 software package. The experimental results agree withing (2sigma ) of simulations.

在伽马范围内,偏振探测是特别困难的。例如,线极化的登记可以帮助确定在伽马射线爆发中产生辐射时射流中的磁场结构。与电子和正电子湮灭有关的511 keV线的线极化测量可能是放射性镍在超新星散射壳中分布不对称的一个指示。探测伽马辐射偏振的原理是基于康普顿散射的各向异性。这一特性可用于偏振仪的研制,偏振仪是一种分段闪烁探测器。本文介绍了3个BGO探测器的偏振校准,这些探测器是为赤壁星- ai微卫星开发的分段伽玛射线光谱仪(SGS)的简化原型。SGS探测器的完整组件由32个BGO棒组成。在俄罗斯科学院核研究所的实验设施中,使用同位素(^{22}text {Na})对SGS原型机的511 keV线进行了偏振校准。为了比较,利用Geant4软件包对线极化配准进行了仿真。实验结果与(2sigma )模拟结果一致。
{"title":"Calibration of segmented BGO scintillation detectors for space-based gamma-ray polarimeter","authors":"A. Mkrtchyan,&nbsp;A. Pozanenko,&nbsp;P. Minaev,&nbsp;A. Strizhak,&nbsp;A. Ivashkin,&nbsp;A. Baranov,&nbsp;S. Musin","doi":"10.1007/s10686-025-09977-9","DOIUrl":"10.1007/s10686-025-09977-9","url":null,"abstract":"<div><p>In the gamma range, polarization detection is particularly difficult. For example, the registration of linear polarization can help in determining the structure of the magnetic field in a jet when generating radiation in gamma-ray bursts. The measurement of linear polarization in the 511 keV line associated with the annihilation of electrons and positrons may be an indicator of the asymmetry of the distribution of radioactive nickel in the scattering shell of Supernovae. The principle of detecting the polarization of gamma radiation is based on the anisotropy of Compton scattering. This property can be used in the development of polarimeters, which are a segmented scintillation detector. The paper presents polarization calibrations for 3 BGO detectors, which are a simplified prototype of a segmented gamma-ray spectrometer (SGS) being developed for the Chibis-AI microsatellite. The complete assembly of the SGS detector consists of 32 BGO bars. Polarization calibrations of the SGS prototype in the 511 keV line were carried out at the experimental facility at the Institute for Nuclear Research of the Russian Academy of Sciences using the isotope <span>(^{22}text {Na})</span>. Also, for comparison, a simulation of the registration of linear polarization was carried out using the Geant4 software package. The experimental results agree withing <span>(2sigma )</span> of simulations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asteroid family classification with machine learning: Investigative analysis of a novel two-step approach for categorizing known small asteroid families⋆ 用机器学习进行小行星族分类:对一种新的两步方法进行调查分析,用于对已知的小行星族进行分类
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-31 DOI: 10.1007/s10686-025-09982-y
Fatin Abrar Shams, Abdullah Al Mahmud Nafiz, Md. Salman Mohosheu, Maheen Mashrur Hoque, Samiur Rashid Abir, Rashed Hasan Ratul, Md. Mushfiqur Rahman Mushfique, Aftab Ibn Nazim, Rubaiat Rehman Khan, Md Mahmudunnobe, Mohsinul Kabir

The term “asteroid family” refers to a collection of asteroids that share similar proper orbital elements such as semi-major axis, eccentricities, and orbital inclinations. Detecting small asteroid families has proved to be a challenge for a long time because of their extremely low sample size. In general, standalone machine learning classifiers tend to exhibit a bias towards classes with larger sample sizes, resulting in the inadequate classification of asteroid families with limited data. In this paper, a two-step supervised model was proposed for the effective classification of the asteroid families, especially for the tiny, small, and lower groups of medium asteroid families. The proposed model uses two-step classification in an attempt to resolve the challenges that come with the imbalanced dataset where at first a binary classification of small and large families was done with an XGB (Extreme Gradient boosting) classifier and then in the second stage Random Forest classifier was used alongside previously identified binary features to classify asteroid families. The proposed model performed better with higher F1 scores for tiny and small asteroid families compared to other algorithms tested in this work. It also achieved a perfect F1 score for 90 families, among 112 families which were tested. As for the lower group of medium sized asteroid families, it performed slightly worse compared to the previously used machine learning algorithms. Along with this, four dataset imbalance handling techniques have been employed in this work and compared to the proposed algorithm.

术语“小行星族”是指具有相似的轨道元素,如半长轴、偏心率和轨道倾角的小行星的集合。长期以来,探测小行星家族一直是一项挑战,因为它们的样本量极低。一般来说,独立的机器学习分类器倾向于对样本量较大的类表现出偏见,导致对数据有限的小行星族进行不充分的分类。本文提出了一种两步监督分类模型,用于对小行星族进行有效分类,特别是对中型小行星族中微小、较小和较低的群体进行有效分类。提出的模型使用两步分类来解决不平衡数据集带来的挑战,其中首先使用XGB(极端梯度增强)分类器对小型和大型家族进行二元分类,然后在第二阶段使用随机森林分类器与先前确定的二元特征一起对小行星家族进行分类。与本工作中测试的其他算法相比,所提出的模型在微小和小型小行星家族中表现更好,F1分数更高。在接受测试的112个家庭中,90个家庭获得了完美的F1分。至于中等大小的小行星家族,与之前使用的机器学习算法相比,它的表现略差。与此同时,本研究采用了四种数据集不平衡处理技术,并与所提出的算法进行了比较。
{"title":"Asteroid family classification with machine learning: Investigative analysis of a novel two-step approach for categorizing known small asteroid families⋆","authors":"Fatin Abrar Shams,&nbsp;Abdullah Al Mahmud Nafiz,&nbsp;Md. Salman Mohosheu,&nbsp;Maheen Mashrur Hoque,&nbsp;Samiur Rashid Abir,&nbsp;Rashed Hasan Ratul,&nbsp;Md. Mushfiqur Rahman Mushfique,&nbsp;Aftab Ibn Nazim,&nbsp;Rubaiat Rehman Khan,&nbsp;Md Mahmudunnobe,&nbsp;Mohsinul Kabir","doi":"10.1007/s10686-025-09982-y","DOIUrl":"10.1007/s10686-025-09982-y","url":null,"abstract":"<div><p>The term “asteroid family” refers to a collection of asteroids that share similar proper orbital elements such as semi-major axis, eccentricities, and orbital inclinations. Detecting small asteroid families has proved to be a challenge for a long time because of their extremely low sample size. In general, standalone machine learning classifiers tend to exhibit a bias towards classes with larger sample sizes, resulting in the inadequate classification of asteroid families with limited data. In this paper, a two-step supervised model was proposed for the effective classification of the asteroid families, especially for the tiny, small, and lower groups of medium asteroid families. The proposed model uses two-step classification in an attempt to resolve the challenges that come with the imbalanced dataset where at first a binary classification of small and large families was done with an XGB (Extreme Gradient boosting) classifier and then in the second stage Random Forest classifier was used alongside previously identified binary features to classify asteroid families. The proposed model performed better with higher F1 scores for tiny and small asteroid families compared to other algorithms tested in this work. It also achieved a perfect F1 score for 90 families, among 112 families which were tested. As for the lower group of medium sized asteroid families, it performed slightly worse compared to the previously used machine learning algorithms. Along with this, four dataset imbalance handling techniques have been employed in this work and compared to the proposed algorithm.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TARA: Concept study for an ESA Voyage Titan exploration mission 塔拉:欧空局泰坦探索任务的概念研究
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-30 DOI: 10.1007/s10686-025-09979-7
Brahma Gopalchetty, Andrew J. Coates

As a study relevant to the ESA’s “Voyage 2050” programme, we present an ambitious L-class mission concept aimed at exploring one of the most intriguing bodies in the Solar System – Titan, Saturn’s largest moon. Titan is a planet-like moon rich in organic compounds and features complex interactions between its interior, surface, and atmosphere, similar to those seen on Earth. Additionally, Titan is one of the few places in the Solar System with the highest potential for eventual habitability. Despite the groundbreaking discoveries made by the Cassini-Huygens mission, Titan still holds many mysteries that demand further exploration using more advanced technologies and diverse exploration vehicles. Our proposed mission, named TARA (Titan Atmospheric Research Ascendant), aims to conduct both orbital and in situ investigations of Titan, surpassing the scientific and technological achievements of Cassini-Huygens. TARA would provide comprehensive and close-up exploration of Titan over extended periods, utilizing capabilities that were previously unattainable. The mission architecture consists of two primary components: an orbiter equipped with an extensive suite of instruments that would orbit Titan, ideally in a low-eccentricity circular polar orbit, and an ornithopter equipped with a set of in situ exploration elements, both aimed to study Titan’s atmospheric dynamics and the evolution of pre-biotic environment. The ideal mission timeline would target an arrival at Titan just before its next northern Spring equinox in 2039, a period of heightened activity for observing Titan’s still poorly understood seasonal atmospheric and surface changes. TARA’s focus on Titan’s northern latitudes would complement NASA’s upcoming Dragonfly mission, which is scheduled to explore Titan’s equatorial regions in the mid-2030s. Together, these missions would provide comprehensive temporal, spatial, and scientific coverage of this fascinating moon.

作为一项与欧空局“航行2050”计划相关的研究,我们提出了一个雄心勃勃的l级任务概念,旨在探索太阳系中最有趣的天体之一——土星最大的卫星土卫六。土卫六是一颗类似行星的卫星,富含有机化合物,其内部、表面和大气之间存在复杂的相互作用,与地球上的情况类似。此外,土卫六是太阳系中为数不多的几个最终适合居住的地方之一。尽管卡西尼-惠更斯号任务取得了突破性的发现,但土卫六仍然有许多谜团,需要使用更先进的技术和各种探测工具进行进一步的探索。我们提出的任务名为TARA(泰坦大气研究上升),旨在对泰坦进行轨道和原位调查,超越卡西尼-惠更斯的科技成就。TARA将利用以前无法实现的能力,对土卫六进行长时间的全面和近距离探索。任务架构由两个主要部分组成:一个轨道飞行器配备了大量的仪器,可以绕土卫六运行,理想情况下是在低偏心的圆形极地轨道上运行;另一个翼机配备了一套原位探测元件,都旨在研究土卫六的大气动力学和生命前环境的演变。理想的任务时间表是在2039年土卫六的下一个北方春分之前到达,这段时间是观测土卫六的季节性大气和地表变化的高峰期,但人们对土卫六的季节性大气和地表变化知之甚少。TARA对土卫六北纬地区的关注将补充美国宇航局即将进行的蜻蜓任务,该任务计划在本世纪30年代中期探索土卫六的赤道地区。总之,这些任务将为这颗迷人的卫星提供全面的时间、空间和科学覆盖。
{"title":"TARA: Concept study for an ESA Voyage Titan exploration mission","authors":"Brahma Gopalchetty,&nbsp;Andrew J. Coates","doi":"10.1007/s10686-025-09979-7","DOIUrl":"10.1007/s10686-025-09979-7","url":null,"abstract":"<div><p>As a study relevant to the ESA’s “Voyage 2050” programme, we present an ambitious L-class mission concept aimed at exploring one of the most intriguing bodies in the Solar System – Titan, Saturn’s largest moon. Titan is a planet-like moon rich in organic compounds and features complex interactions between its interior, surface, and atmosphere, similar to those seen on Earth. Additionally, Titan is one of the few places in the Solar System with the highest potential for eventual habitability. Despite the groundbreaking discoveries made by the Cassini-Huygens mission, Titan still holds many mysteries that demand further exploration using more advanced technologies and diverse exploration vehicles. Our proposed mission, named TARA (Titan Atmospheric Research Ascendant), aims to conduct both orbital and in situ investigations of Titan, surpassing the scientific and technological achievements of Cassini-Huygens. TARA would provide comprehensive and close-up exploration of Titan over extended periods, utilizing capabilities that were previously unattainable. The mission architecture consists of two primary components: an orbiter equipped with an extensive suite of instruments that would orbit Titan, ideally in a low-eccentricity circular polar orbit, and an ornithopter equipped with a set of in situ exploration elements, both aimed to study Titan’s atmospheric dynamics and the evolution of pre-biotic environment. The ideal mission timeline would target an arrival at Titan just before its next northern Spring equinox in 2039, a period of heightened activity for observing Titan’s still poorly understood seasonal atmospheric and surface changes. TARA’s focus on Titan’s northern latitudes would complement NASA’s upcoming Dragonfly mission, which is scheduled to explore Titan’s equatorial regions in the mid-2030s. Together, these missions would provide comprehensive temporal, spatial, and scientific coverage of this fascinating moon.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing hole trap production due to proton irradiation in germanium cross-strip detectors 锗交叉带探测器中质子辐照产生空穴阱的特性研究。
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-24 DOI: 10.1007/s10686-025-09978-8
Sean N. Pike, Steven E. Boggs, Gabriel Brewster, Sophia E. Haight, Jarred M. Roberts, Albert Y. Shih, Joanna Szornel, John A. Tomsick, Andreas Zoglauer

We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation. We find that the product of the hole trap density and cross-sectional area, ([nsigma ]_textrm{h}), follows a linear relationship with the proton fluence, (F_textrm{p}), with a slope of ((5.4pm 0.4)times 10^{-11},mathrm {cm/p^{+}}). Third, by utilizing our measurements of physical trapping parameters, we performed calibrations which corrected for the effects of trapping and mitigated degradation to the spectral resolution of the detector.

我们研究了高能质子损伤对锗交叉带探测器中电荷捕获的影响,目的是完成三个重要的测量。首先,我们对一个备用的cosi -气球探测器的光谱分辨率进行了校准和表征,以确定内在俘获的影响,发现由于杂质引起的电子俘获比未损坏的探测器中的空穴俘获更重要。其次,我们对探测器进行了两轮质子辐照,首次量化了质子辐照产生电荷阱的速率。我们发现,空穴阱密度与横截面积的乘积[n σ] h与质子通量F p呈线性关系,斜率为(5.4±0.4)× 10 - 11 cm / p +。第三,利用我们对物理捕获参数的测量,我们进行了校准,修正了捕获的影响,减轻了探测器光谱分辨率的下降。
{"title":"Characterizing hole trap production due to proton irradiation in germanium cross-strip detectors","authors":"Sean N. Pike,&nbsp;Steven E. Boggs,&nbsp;Gabriel Brewster,&nbsp;Sophia E. Haight,&nbsp;Jarred M. Roberts,&nbsp;Albert Y. Shih,&nbsp;Joanna Szornel,&nbsp;John A. Tomsick,&nbsp;Andreas Zoglauer","doi":"10.1007/s10686-025-09978-8","DOIUrl":"10.1007/s10686-025-09978-8","url":null,"abstract":"<div><p>We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation. We find that the product of the hole trap density and cross-sectional area, <span>([nsigma ]_textrm{h})</span>, follows a linear relationship with the proton fluence, <span>(F_textrm{p})</span>, with a slope of <span>((5.4pm 0.4)times 10^{-11},mathrm {cm/p^{+}})</span>. Third, by utilizing our measurements of physical trapping parameters, we performed calibrations which corrected for the effects of trapping and mitigated degradation to the spectral resolution of the detector.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ExoSim 2: the new exoplanet observation simulator applied to the Ariel space mission ExoSim 2:应用于Ariel空间任务的新型系外行星观测模拟器
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-24 DOI: 10.1007/s10686-024-09976-2
Lorenzo V. Mugnai, Andrea Bocchieri, Enzo Pascale, Andrea Lorenzani, Andreas Papageorgiou

ExoSim 2 is the next generation of the Exoplanet Observation Simulator (ExoSim) tailored for spectro-photometric observations of transiting exoplanets from space, ground, and sub-orbital platforms. This software is a complete rewrite implemented in Python 3, embracing object-oriented design principles, which allow users to replace each component with their functions when required. ExoSim 2 is publicly available on GitHub, serving as a valuable resource for the scientific community. ExoSim 2 employs a modular architecture using Task classes, encapsulating simulation algorithms and functions. This flexible design facilitates the extensibility and adaptability of ExoSim 2 to diverse instrument configurations to address the evolving needs of the scientific community. Data management within ExoSim 2 is handled by the Signal class, which represents a structured data cube incorporating time, space, and spectral dimensions. The code execution in ExoSim 2 follows a three-step workflow: the creation of focal planes, the production of Sub-Exposure blocks, and the generation of non-destructive reads (NDRs). Each step can be executed independently, optimizing time and computational resources. ExoSim 2 has been extensively validated against other tools like ArielRad and has demonstrated consistency in estimating photon conversion efficiency, saturation time, and signal generation. The simulator has also been validated independently for instantaneous read-out and jitter simulation, and for astronomical signal representation. In conclusion, ExoSim 2 offers a robust and flexible tool for exoplanet observation simulation, capable of adapting to diverse instrument configurations and evolving scientific needs. Its design principles and validation results underscore its potential as a valuable resource in the field of exoplanet research.

ExoSim 2是下一代系外行星观测模拟器(ExoSim),专门用于从太空,地面和亚轨道平台对过境系外行星进行分光光度观测。该软件是在Python 3中完全重写实现的,采用面向对象的设计原则,允许用户在需要时用其功能替换每个组件。ExoSim 2在GitHub上是公开的,是科学界的宝贵资源。ExoSim 2采用模块化架构,使用Task类,封装仿真算法和功能。这种灵活的设计促进了ExoSim 2对不同仪器配置的可扩展性和适应性,以满足科学界不断发展的需求。ExoSim 2中的数据管理由Signal类处理,它代表了一个包含时间、空间和频谱维度的结构化数据立方体。ExoSim 2中的代码执行遵循三步工作流程:创建焦平面,生成亚曝光块,生成非破坏性读取(ndr)。每个步骤都可以独立执行,从而优化了时间和计算资源。ExoSim 2已经与ArielRad等其他工具进行了广泛的验证,并在估计光子转换效率、饱和时间和信号产生方面证明了一致性。该模拟器还独立验证了瞬时读出和抖动模拟,以及天文信号的表示。总之,ExoSim 2为系外行星观测模拟提供了一个强大而灵活的工具,能够适应不同的仪器配置和不断发展的科学需求。它的设计原理和验证结果强调了它作为系外行星研究领域宝贵资源的潜力。
{"title":"ExoSim 2: the new exoplanet observation simulator applied to the Ariel space mission","authors":"Lorenzo V. Mugnai,&nbsp;Andrea Bocchieri,&nbsp;Enzo Pascale,&nbsp;Andrea Lorenzani,&nbsp;Andreas Papageorgiou","doi":"10.1007/s10686-024-09976-2","DOIUrl":"10.1007/s10686-024-09976-2","url":null,"abstract":"<div><p>ExoSim 2 is the next generation of the Exoplanet Observation Simulator (ExoSim) tailored for spectro-photometric observations of transiting exoplanets from space, ground, and sub-orbital platforms. This software is a complete rewrite implemented in Python 3, embracing object-oriented design principles, which allow users to replace each component with their functions when required. ExoSim 2 is publicly available on GitHub, serving as a valuable resource for the scientific community. ExoSim 2 employs a modular architecture using Task classes, encapsulating simulation algorithms and functions. This flexible design facilitates the extensibility and adaptability of ExoSim 2 to diverse instrument configurations to address the evolving needs of the scientific community. Data management within ExoSim 2 is handled by the Signal class, which represents a structured data cube incorporating time, space, and spectral dimensions. The code execution in ExoSim 2 follows a three-step workflow: the creation of focal planes, the production of Sub-Exposure blocks, and the generation of non-destructive reads (NDRs). Each step can be executed independently, optimizing time and computational resources. ExoSim 2 has been extensively validated against other tools like ArielRad and has demonstrated consistency in estimating photon conversion efficiency, saturation time, and signal generation. The simulator has also been validated independently for instantaneous read-out and jitter simulation, and for astronomical signal representation. In conclusion, ExoSim 2 offers a robust and flexible tool for exoplanet observation simulation, capable of adapting to diverse instrument configurations and evolving scientific needs. Its design principles and validation results underscore its potential as a valuable resource in the field of exoplanet research.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09976-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Receiver design for the REACH global 21-cm signal experiment REACH全球21cm信号实验接收机设计
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-17 DOI: 10.1007/s10686-024-09975-3
Ian L. V. Roque, Nima Razavi-Ghods, Steven H. Carey, John A. Ely, Will Handley, Alessio Magro, Riccardo Chiello, Tian Huang, P. Alexander, D. Anstey, G. Bernardi, H. T. J. Bevins, J. Cavillot, W. Croukamp, J. Cumner, E. de Lera Acedo, D. I. L. de Villiers, A. Fialkov, T. Gessey-Jones, Q. Gueuning, A. T. Josaitis, G. Kulkarni, S. A. K. Leeney, R. Maiolino, P. D. Meerburg, S. Mittal, M. Pagano, S. Pegwal, C. Pieterse, J. R. Pritchard, A. Saxena, K. H. Scheutwinkel, P. Scott, E. Shen, P. H. Sims, O. Smirnov, M. Spinelli, K. Zarb-Adami

We detail the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach. For five hours of integration on a custom-made source with comparable impedance to that of the antenna used in the field, we demonstrate a calibration RMSE of 80 mK. This paper therefore documents the state of the calibrator and data analysis in December 2022 in Cambridge before shipping to South Africa.

我们详细介绍了设计用于测量21厘米中性氢线的REACH辐射测量系统。包括辐射计架构和端到端系统模拟,以及对高可校准系统开发固有挑战的讨论。在此之后,我们分享了基于使用过约束最小二乘方法计算噪声波参数的实验室结果。在与现场使用的天线阻抗相当的定制源上集成五个小时,我们展示了80 mK的校准RMSE。因此,本文记录了2022年12月在剑桥运输到南非之前的校定器和数据分析的状态。
{"title":"Receiver design for the REACH global 21-cm signal experiment","authors":"Ian L. V. Roque,&nbsp;Nima Razavi-Ghods,&nbsp;Steven H. Carey,&nbsp;John A. Ely,&nbsp;Will Handley,&nbsp;Alessio Magro,&nbsp;Riccardo Chiello,&nbsp;Tian Huang,&nbsp;P. Alexander,&nbsp;D. Anstey,&nbsp;G. Bernardi,&nbsp;H. T. J. Bevins,&nbsp;J. Cavillot,&nbsp;W. Croukamp,&nbsp;J. Cumner,&nbsp;E. de Lera Acedo,&nbsp;D. I. L. de Villiers,&nbsp;A. Fialkov,&nbsp;T. Gessey-Jones,&nbsp;Q. Gueuning,&nbsp;A. T. Josaitis,&nbsp;G. Kulkarni,&nbsp;S. A. K. Leeney,&nbsp;R. Maiolino,&nbsp;P. D. Meerburg,&nbsp;S. Mittal,&nbsp;M. Pagano,&nbsp;S. Pegwal,&nbsp;C. Pieterse,&nbsp;J. R. Pritchard,&nbsp;A. Saxena,&nbsp;K. H. Scheutwinkel,&nbsp;P. Scott,&nbsp;E. Shen,&nbsp;P. H. Sims,&nbsp;O. Smirnov,&nbsp;M. Spinelli,&nbsp;K. Zarb-Adami","doi":"10.1007/s10686-024-09975-3","DOIUrl":"10.1007/s10686-024-09975-3","url":null,"abstract":"<div><p>We detail the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach. For five hours of integration on a custom-made source with comparable impedance to that of the antenna used in the field, we demonstrate a calibration RMSE of 80 mK. This paper therefore documents the state of the calibrator and data analysis in December 2022 in Cambridge before shipping to South Africa.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09975-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic positioning for deep sea neutrino telescopes with a system of piezo sensors integrated into glass spheres 用集成在玻璃球中的压电传感器系统对深海中微子望远镜进行声学定位
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-04 DOI: 10.1007/s10686-024-09971-7
A. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, J. Boumaaza, M. Bouta, M. C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J. A. B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A. F. Díaz, B. De Martino, C. Distefano, I. Di Palma, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, A. Eddymaoui, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, H. van Haren, A. J. Heijboer, Y. Hello, L. Hennig, J. J. Hernández-Rey, J. Hößl, F. Huang, G. Illuminati, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, S. Loucatos, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, S. Navas, E. Nezri, B. Ó Fearraigh, E. Oukacha, A. Păun, G. E. Păvălaş, S. Peña-Martínez, M. Perrin-Terrin, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J. D. Zornoza, J. Zúñiga

Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding 2000 m. It comprised nearly 900 glass spheres with 432 mm diameter and 15 mm thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such – otherwise empty – glass spheres. These sensors recorded signals from acoustic emitters with frequencies from 46545 to 60235 Hz. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with (varvec{v_e approx 5,{textbf {mm}}/mu text {s}}) and a slow (late) one with (varvec{v_ell approx ,2,{textbf {mm}}/mu text {s}}). Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.

在深海中,位置校准通常是通过安装在已知位置的三个或更多声发射器的声倍增法完成的。与将水听器作为暴露在环境压力下的接收器相比,声音信号可以与粘在现有电子设备或深海基础设施测量仪器容器内部的压电陶瓷相耦合。从2006年到2022年,ANTARES中微子望远镜在地中海2000米深处运行。它由近900个直径432毫米、厚度15毫米的玻璃球组成,配备了光电倍增管,用于探测带电基本粒子轨迹产生的切伦科夫光。在ANTARES的一个实验装置中,压电传感器被粘在这样的玻璃球的内部——否则就是空的。这些传感器记录频率从46545到60235赫兹的声发射器发出的信号。通过玻璃球传播的两种波是由水中的波激发的结果。这些可以定性地与零阶的对称和非对称兰姆波相关联:快速(早期)的有(varvec{v_e approx 5,{textbf {mm}}/mu text {s}}),缓慢(晚期)的有(varvec{v_ell approx ,2,{textbf {mm}}/mu text {s}})。考虑到这些发现,可以提高位置校准的准确性。结果可以转移到目前正在地中海多个地点建造的KM3NeT中微子望远镜上,为此,将压电传感器粘在玻璃球内部的概念已被用于监测光电倍增管的位置。
{"title":"Acoustic positioning for deep sea neutrino telescopes with a system of piezo sensors integrated into glass spheres","authors":"A. Albert,&nbsp;S. Alves,&nbsp;M. André,&nbsp;M. Ardid,&nbsp;S. Ardid,&nbsp;J.-J. Aubert,&nbsp;J. Aublin,&nbsp;B. Baret,&nbsp;S. Basa,&nbsp;Y. Becherini,&nbsp;B. Belhorma,&nbsp;M. Bendahman,&nbsp;F. Benfenati,&nbsp;V. Bertin,&nbsp;S. Biagi,&nbsp;J. Boumaaza,&nbsp;M. Bouta,&nbsp;M. C. Bouwhuis,&nbsp;H. Brânzaş,&nbsp;R. Bruijn,&nbsp;J. Brunner,&nbsp;J. Busto,&nbsp;B. Caiffi,&nbsp;D. Calvo,&nbsp;S. Campion,&nbsp;A. Capone,&nbsp;F. Carenini,&nbsp;J. Carr,&nbsp;V. Carretero,&nbsp;S. Celli,&nbsp;L. Cerisy,&nbsp;M. Chabab,&nbsp;R. Cherkaoui El Moursli,&nbsp;T. Chiarusi,&nbsp;M. Circella,&nbsp;J. A. B. Coelho,&nbsp;A. Coleiro,&nbsp;R. Coniglione,&nbsp;P. Coyle,&nbsp;A. Creusot,&nbsp;A. F. Díaz,&nbsp;B. De Martino,&nbsp;C. Distefano,&nbsp;I. Di Palma,&nbsp;C. Donzaud,&nbsp;D. Dornic,&nbsp;D. Drouhin,&nbsp;T. Eberl,&nbsp;A. Eddymaoui,&nbsp;T. van Eeden,&nbsp;D. van Eijk,&nbsp;S. El Hedri,&nbsp;N. El Khayati,&nbsp;A. Enzenhöfer,&nbsp;P. Fermani,&nbsp;G. Ferrara,&nbsp;F. Filippini,&nbsp;L. Fusco,&nbsp;S. Gagliardini,&nbsp;J. García,&nbsp;C. Gatius Oliver,&nbsp;P. Gay,&nbsp;N. Geißelbrecht,&nbsp;H. Glotin,&nbsp;R. Gozzini,&nbsp;R. Gracia Ruiz,&nbsp;K. Graf,&nbsp;C. Guidi,&nbsp;L. Haegel,&nbsp;H. van Haren,&nbsp;A. J. Heijboer,&nbsp;Y. Hello,&nbsp;L. Hennig,&nbsp;J. J. Hernández-Rey,&nbsp;J. Hößl,&nbsp;F. Huang,&nbsp;G. Illuminati,&nbsp;B. Jisse-Jung,&nbsp;M. de Jong,&nbsp;P. de Jong,&nbsp;M. Kadler,&nbsp;O. Kalekin,&nbsp;U. Katz,&nbsp;A. Kouchner,&nbsp;I. Kreykenbohm,&nbsp;V. Kulikovskiy,&nbsp;R. Lahmann,&nbsp;M. Lamoureux,&nbsp;A. Lazo,&nbsp;D. Lefèvre,&nbsp;E. Leonora,&nbsp;G. Levi,&nbsp;S. Le Stum,&nbsp;S. Loucatos,&nbsp;J. Manczak,&nbsp;M. Marcelin,&nbsp;A. Margiotta,&nbsp;A. Marinelli,&nbsp;J. A. Martínez-Mora,&nbsp;P. Migliozzi,&nbsp;A. Moussa,&nbsp;R. Muller,&nbsp;S. Navas,&nbsp;E. Nezri,&nbsp;B. Ó Fearraigh,&nbsp;E. Oukacha,&nbsp;A. Păun,&nbsp;G. E. Păvălaş,&nbsp;S. Peña-Martínez,&nbsp;M. Perrin-Terrin,&nbsp;P. Piattelli,&nbsp;C. Poirè,&nbsp;V. Popa,&nbsp;T. Pradier,&nbsp;N. Randazzo,&nbsp;D. Real,&nbsp;G. Riccobene,&nbsp;A. Romanov,&nbsp;A. Sánchez-Losa,&nbsp;A. Saina,&nbsp;F. Salesa Greus,&nbsp;D. F. E. Samtleben,&nbsp;M. Sanguineti,&nbsp;P. Sapienza,&nbsp;F. Schüssler,&nbsp;J. Seneca,&nbsp;M. Spurio,&nbsp;Th. Stolarczyk,&nbsp;M. Taiuti,&nbsp;Y. Tayalati,&nbsp;B. Vallage,&nbsp;G. Vannoye,&nbsp;V. Van Elewyck,&nbsp;S. Viola,&nbsp;D. Vivolo,&nbsp;J. Wilms,&nbsp;S. Zavatarelli,&nbsp;A. Zegarelli,&nbsp;J. D. Zornoza,&nbsp;J. Zúñiga","doi":"10.1007/s10686-024-09971-7","DOIUrl":"10.1007/s10686-024-09971-7","url":null,"abstract":"<div><p>Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding <b>2000 m</b>. It comprised nearly 900 glass spheres with <b>432 mm</b> diameter and <b>15 mm</b> thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such – otherwise empty – glass spheres. These sensors recorded signals from acoustic emitters with frequencies from <b>46545 to 60235 Hz</b>. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with <span>(varvec{v_e approx 5,{textbf {mm}}/mu text {s}})</span> and a slow (late) one with <span>(varvec{v_ell approx ,2,{textbf {mm}}/mu text {s}})</span>. Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09971-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground testing and calibration of focal plane detector flight model on board the first pathfinder of CATCH CATCH第一探路者机载焦平面探测器飞行模型地面测试与标定
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-30 DOI: 10.1007/s10686-024-09966-4
Panping Li, Kang Zhao, Xiangyang Wen, Zhengwei Li, Min Gao, Qian-Qing Yin, Lian Tao, Qingchang Zhao, Yusa Wang, Zijian Zhao, Shujie Zhao, Yiming Huang, Jingyu Xiao, Yifan Zhang, Bin Meng, Sheng Yang, Wen Chen, Heng Zhou, Yong Yang, Huilin He, Ruican Ma, Shuai Yang, Guoli Huang, YaJun Li, Jiewei Cao, Shu-Jin Hou, Xiaojing Liu, Jinzhou Wang, Liang Sun, Shuang-Nan Zhang, Shaolin Xiong, Xiang Ma, Yue Huang, Liming Song

CATCH-1, as the first satellite of Chasing All Transients Constellation Hunters (CATCH) space mission, was successfully launched into its expected orbit on June 22, 2024. The flight model underwent environmental tests before launch, including thermal cycling, thermal vacuum, and mechanical evaluations. The CATCH-1 detector system is equipped with a 4-pixel Silicon Drift Detector (SDD) array. To ensure the reliability and redundancy of the CATCH-1 detector system, two sets of data acquisition systems were independently designed and calibrated. Our focus is on presenting the ground calibration results of CATCH-1, which demonstrate a strong linear correlation between energy and channel. The main data acquisition system achieves an energy resolution of (sim ) 120 eV@4 keV, while the backup data acquisition system has a slightly lower energy resolution of around 150 eV@4 keV, both meeting the design requirement of (le ) 160 eV@4 keV. Additionally, the time resolution is ( sim 4,mu s), complying with the design requirement of (le 10,mu s). The calibration database now includes the ground calibration results of CATCH-1, establishing a dependable basis for future data analysis. The development experience, calibration, and test results of this detector system will also provide a solid foundation for subsequent tasks such as CATCH-2.

2024年6月22日,“CATCH-1”作为“全瞬变星座猎手”(CATCH)太空任务的首颗卫星,成功发射进入预定轨道。飞行模型在发射前进行了环境测试,包括热循环、热真空和机械评估。CATCH-1探测器系统配备了一个4像素硅漂移探测器(SDD)阵列。为保证CATCH-1探测器系统的可靠性和冗余性,独立设计和标定了两套数据采集系统。我们的重点是展示CATCH-1的地面校准结果,这些结果表明能量和信道之间存在很强的线性相关性。主数据采集系统的能量分辨率为(sim ) 120 eV@4 keV,备用数据采集系统的能量分辨率略低,在150 eV@4 keV左右,均满足了(le ) 160 eV@4 keV的设计要求。时间分辨率为( sim 4,mu s),符合(le 10,mu s)的设计要求。校正数据库现已包括CATCH-1的地面校正结果,为今后的数据分析奠定了可靠的基础。该探测器系统的开发经验、校准和测试结果也将为后续的CATCH-2等任务提供坚实的基础。
{"title":"Ground testing and calibration of focal plane detector flight model on board the first pathfinder of CATCH","authors":"Panping Li,&nbsp;Kang Zhao,&nbsp;Xiangyang Wen,&nbsp;Zhengwei Li,&nbsp;Min Gao,&nbsp;Qian-Qing Yin,&nbsp;Lian Tao,&nbsp;Qingchang Zhao,&nbsp;Yusa Wang,&nbsp;Zijian Zhao,&nbsp;Shujie Zhao,&nbsp;Yiming Huang,&nbsp;Jingyu Xiao,&nbsp;Yifan Zhang,&nbsp;Bin Meng,&nbsp;Sheng Yang,&nbsp;Wen Chen,&nbsp;Heng Zhou,&nbsp;Yong Yang,&nbsp;Huilin He,&nbsp;Ruican Ma,&nbsp;Shuai Yang,&nbsp;Guoli Huang,&nbsp;YaJun Li,&nbsp;Jiewei Cao,&nbsp;Shu-Jin Hou,&nbsp;Xiaojing Liu,&nbsp;Jinzhou Wang,&nbsp;Liang Sun,&nbsp;Shuang-Nan Zhang,&nbsp;Shaolin Xiong,&nbsp;Xiang Ma,&nbsp;Yue Huang,&nbsp;Liming Song","doi":"10.1007/s10686-024-09966-4","DOIUrl":"10.1007/s10686-024-09966-4","url":null,"abstract":"<div><p><i>CATCH</i>-1, as the first satellite of Chasing All Transients Constellation Hunters (<i>CATCH</i>) space mission, was successfully launched into its expected orbit on June 22, 2024. The flight model underwent environmental tests before launch, including thermal cycling, thermal vacuum, and mechanical evaluations. The <i>CATCH</i>-1 detector system is equipped with a 4-pixel Silicon Drift Detector (SDD) array. To ensure the reliability and redundancy of the <i>CATCH</i>-1 detector system, two sets of data acquisition systems were independently designed and calibrated. Our focus is on presenting the ground calibration results of <i>CATCH</i>-1, which demonstrate a strong linear correlation between energy and channel. The main data acquisition system achieves an energy resolution of <span>(sim )</span> 120 eV@4 keV, while the backup data acquisition system has a slightly lower energy resolution of around 150 eV@4 keV, both meeting the design requirement of <span>(le )</span> 160 eV@4 keV. Additionally, the time resolution is <span>( sim 4,mu s)</span>, complying with the design requirement of <span>(le 10,mu s)</span>. The calibration database now includes the ground calibration results of <i>CATCH</i>-1, establishing a dependable basis for future data analysis. The development experience, calibration, and test results of this detector system will also provide a solid foundation for subsequent tasks such as <i>CATCH</i>-2.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Wind pattern at the incursion site of Pangong Tso near Merak Village 美叻村附近班公措入侵点风型研究
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-24 DOI: 10.1007/s10686-024-09972-6
Belur Ravindra, Deepangkar Sarkar, Shantikumar Singh Ningombam, Stanzin Tundup, Namgyal Dorje, Angchuk Dorje, Prabhu Kesavan, Dipankar Banerjee

This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.

这项研究分析了在列拉达克Merak村Pangong Tso附近拟议的国家大型太阳望远镜(NLST)站点收集的12年的风速和风向数据。坎贝尔科学仪器公司(Campbell Scientific Instruments)于2008年安装的气象站一直在持续监测气象参数,包括风速和风向。数据显示,西北风一直以西北为主,特别是在早晨,风速通常低于5米/秒。虽然季节变化影响风速和风向,但总体趋势保持稳定。为了评估该站点是否适合进行天文观测,我们使用2008年至2020年的再分析数据比较了各个著名天文站点的高空风速。在10 m、50 m和500 m处,地表风速与高空风速有很强的相关性。对200毫巴压力级风速的统计分析表明,拉帕尔马风速为18.76米/秒,是最有利的地点。另一方面,拉新罗的风速最高,为34.76米/秒。Merak的估计风速为30.99米/秒,加上有利的风向和较低的地表风速,表明它可能是一个很有希望的天文观测地点。
{"title":"Study of Wind pattern at the incursion site of Pangong Tso near Merak Village","authors":"Belur Ravindra,&nbsp;Deepangkar Sarkar,&nbsp;Shantikumar Singh Ningombam,&nbsp;Stanzin Tundup,&nbsp;Namgyal Dorje,&nbsp;Angchuk Dorje,&nbsp;Prabhu Kesavan,&nbsp;Dipankar Banerjee","doi":"10.1007/s10686-024-09972-6","DOIUrl":"10.1007/s10686-024-09972-6","url":null,"abstract":"<div><p>This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1. Aditya-L1上的太阳紫外线成像望远镜(SUIT)的科学滤光片特征。
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s10686-024-09973-5
Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Sreejith Padinhatteeri, A. N. Ramaprakash, Durgesh Tripathi, Soumya Roy, Gazi A. Ahmed, Rwitika Chatterjee, Avyarthana Ghosh, Sankarasubramanian K., Aafaque Khan, Nidhi Mehandiratta, Netra Pillai, Swapnil Singh

The Solar Ultraviolet Imaging Telescope (SUIT ) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of SUIT to effectively capture critical solar features in the anticipated layer of the solar atmosphere.

Aditya-L1任务上的太阳紫外成像望远镜(SUIT)被设计用于在200 - 400nm波长上观测太阳。该望远镜使用了16个以不同组合的特定波长调谐的二向色滤光片来实现其科学目标。为了精确测量和解释,重要的是表征这些过滤器的光谱变化作为空间位置和倾斜角度的函数。此外,我们还测量了带内传输的带外和带内传输特性。在本文中,我们介绍了实验设置、测试方法和分析结果。研究结果表明,所有滤光片的传输特性都满足预期的传输空间变化和特定倾角下的传输频带性能。除滤波器BB01和NB01外,所有滤波器的带外传输率都低于带内传输率的1%。这些结果证实了SUIT在预期的太阳大气层中有效捕获关键太阳特征的能力。
{"title":"Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1.","authors":"Janmejoy Sarkar,&nbsp;Rushikesh Deogaonkar,&nbsp;Ravi Kesharwani,&nbsp;Sreejith Padinhatteeri,&nbsp;A. N. Ramaprakash,&nbsp;Durgesh Tripathi,&nbsp;Soumya Roy,&nbsp;Gazi A. Ahmed,&nbsp;Rwitika Chatterjee,&nbsp;Avyarthana Ghosh,&nbsp;Sankarasubramanian K.,&nbsp;Aafaque Khan,&nbsp;Nidhi Mehandiratta,&nbsp;Netra Pillai,&nbsp;Swapnil Singh","doi":"10.1007/s10686-024-09973-5","DOIUrl":"10.1007/s10686-024-09973-5","url":null,"abstract":"<div><p>The Solar Ultraviolet Imaging Telescope (<i>SUIT </i>) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of <i>SUIT </i>to effectively capture critical solar features in the anticipated layer of the solar atmosphere.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1