首页 > 最新文献

Experimental Astronomy最新文献

英文 中文
ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter 伊卡洛斯:超越帕克太阳探测器和太阳轨道器的日冕原位研究
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-02-04 DOI: 10.1007/s10686-022-09878-1
Vladimir Krasnoselskikh, Bruce T. Tsurutani, Thierry Dudok de Wit, Simon Walker, Michael Balikhin, Marianne Balat-Pichelin, Marco Velli, Stuart D. Bale, Milan Maksimovic, Oleksiy Agapitov, Wolfgang Baumjohann, Matthieu Berthomier, Roberto Bruno, Steven R. Cranmer, Bart de Pontieu, Domingos de Sousa Meneses, Jonathan Eastwood, Robertus Erdelyi, Robert Ergun, Viktor Fedun, Natalia Ganushkina, Antonella Greco, Louise Harra, Pierre Henri, Timothy Horbury, Hugh Hudson, Justin Kasper, Yuri Khotyaintsev, Matthieu Kretzschmar, Säm Krucker, Harald Kucharek, Yves Langevin, Benoît Lavraud, Jean-Pierre Lebreton, Susan Lepri, Michael Liemohn, Philippe Louarn, Eberhard Moebius, Forrest Mozer, Zdenek Nemecek, Olga Panasenco, Alessandro Retino, Jana Safrankova, Jack Scudder, Sergio Servidio, Luca Sorriso-Valvo, Jan Souček, Adam Szabo, Andris Vaivads, Grigory Vekstein, Zoltan Vörös, Teimuraz Zaqarashvili, Gaetano Zimbardo, Andrei Fedorov

The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique in situ observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.

ICARUS(日冕加速和太阳风向太阳加热的研究)是一个母女卫星任务,是响应欧空局“航行2050”的号召而提出的,其主要科学目标将是确定太阳外层大气中的磁场和等离子体动力学是如何产生日冕、太阳风和整个日球层的。实现这一目标将是罗塞塔石碑的一步,其结果在空间等离子体物理学和天体物理学领域广泛适用。在欧空局的“宇宙视野”路线图中,这些科学目标涉及主题2:“太阳系是如何工作的?”通过研究“从太阳到太阳系边缘”发生的基本过程。伊卡洛斯不仅将提高我们对太阳周围等离子体环境的理解,而且还将了解许多具有热等离子体日冕的磁性活跃恒星。ICARUS I将首次对电磁场、粒子加速、波活动、能量分布以及太阳风从日冕等离子体中产生的区域的直接流动进行直接的原位测量。ICARUS I的近日点高度为太阳半径的1倍,并将穿越主要能量沉积发生的区域。ICARUS I的极地轨道将使其能够穿越产生快风和慢风的区域。它将探测等离子体的局部特征,并提供有关太阳风产生的物理过程的独特信息。ICARUS II将使用遥感仪器观测该区域,同时提供ICARUS I所穿越区域的背景信息以及太阳望远镜观测到的下方太阳大气。因此,它将为理解日球层和太阳大气层之间的磁联系提供桥梁。这些信息对我们理解等离子体物理学和太阳大气的电动力学至关重要。ICARUS II还将发挥非常重要的中继作用,实现与ICARUS I的无线电连接。它将在ICARUS I最接近太阳时接收、收集和存储从ICARUS I传输的信息。它还将在将数据传输到地球之前进行初步数据处理。ICARUS在可能有危险的太阳高能粒子被激发的区域进行这种独特的原位观测,将为我们监测和预测空间辐射环境的能力提供根本性的进步。因此,ICARUS任务的结果将对未来的空间探索,特别是长期载人航天任务至关重要。
{"title":"ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter","authors":"Vladimir Krasnoselskikh,&nbsp;Bruce T. Tsurutani,&nbsp;Thierry Dudok de Wit,&nbsp;Simon Walker,&nbsp;Michael Balikhin,&nbsp;Marianne Balat-Pichelin,&nbsp;Marco Velli,&nbsp;Stuart D. Bale,&nbsp;Milan Maksimovic,&nbsp;Oleksiy Agapitov,&nbsp;Wolfgang Baumjohann,&nbsp;Matthieu Berthomier,&nbsp;Roberto Bruno,&nbsp;Steven R. Cranmer,&nbsp;Bart de Pontieu,&nbsp;Domingos de Sousa Meneses,&nbsp;Jonathan Eastwood,&nbsp;Robertus Erdelyi,&nbsp;Robert Ergun,&nbsp;Viktor Fedun,&nbsp;Natalia Ganushkina,&nbsp;Antonella Greco,&nbsp;Louise Harra,&nbsp;Pierre Henri,&nbsp;Timothy Horbury,&nbsp;Hugh Hudson,&nbsp;Justin Kasper,&nbsp;Yuri Khotyaintsev,&nbsp;Matthieu Kretzschmar,&nbsp;Säm Krucker,&nbsp;Harald Kucharek,&nbsp;Yves Langevin,&nbsp;Benoît Lavraud,&nbsp;Jean-Pierre Lebreton,&nbsp;Susan Lepri,&nbsp;Michael Liemohn,&nbsp;Philippe Louarn,&nbsp;Eberhard Moebius,&nbsp;Forrest Mozer,&nbsp;Zdenek Nemecek,&nbsp;Olga Panasenco,&nbsp;Alessandro Retino,&nbsp;Jana Safrankova,&nbsp;Jack Scudder,&nbsp;Sergio Servidio,&nbsp;Luca Sorriso-Valvo,&nbsp;Jan Souček,&nbsp;Adam Szabo,&nbsp;Andris Vaivads,&nbsp;Grigory Vekstein,&nbsp;Zoltan Vörös,&nbsp;Teimuraz Zaqarashvili,&nbsp;Gaetano Zimbardo,&nbsp;Andrei Fedorov","doi":"10.1007/s10686-022-09878-1","DOIUrl":"10.1007/s10686-022-09878-1","url":null,"abstract":"<div><p>The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct <i>in situ</i> measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique <i>in situ</i> observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"277 - 315"},"PeriodicalIF":3.0,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09878-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4160280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The scientific performance of the microchannel X-ray telescope on board the SVOM mission SVOM任务上的微通道x射线望远镜的科学性能
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-02-01 DOI: 10.1007/s10686-022-09881-6
D. Götz, M. Boutelier, V. Burwitz, R. Chipaux, B. Cordier, C. Feldman, P. Ferrando, A. Fort, F. Gonzalez, A. Gros, S. Hussein, J.-M. Le Duigou, N. Meidinger, K. Mercier, A. Meuris, J. Pearson, N. Renault-Tinacci, F. Robinet, B. Schneider, R. Willingale

The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a narrow field “Lobster-Eye” optical design to be flown on a satellite, namely the Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length (sim ) 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2–10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 μ m pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.

微通道x射线望远镜(MXT)将是第一个基于窄视场“龙虾眼”光学设计的聚焦x射线望远镜,将在卫星上飞行,即中法任务SVOM。SVOM将致力于研究伽马射线暴和更广泛的时域天体物理学。MXT望远镜结构紧凑(焦距(sim ) 1.15 m),重量轻(&lt;42公斤)的仪器,在0.2-10 keV能量范围内敏感。它由40 μ m孔径的微孔光学(mpo)光学系统和低噪声pnCDD x射线探测器组成。在本文中,我们描述了MXT望远镜的预期科学性能,基于2021年秋季进行的端到端校准活动,在卫星上集成SVOM有效载荷之前。
{"title":"The scientific performance of the microchannel X-ray telescope on board the SVOM mission","authors":"D. Götz,&nbsp;M. Boutelier,&nbsp;V. Burwitz,&nbsp;R. Chipaux,&nbsp;B. Cordier,&nbsp;C. Feldman,&nbsp;P. Ferrando,&nbsp;A. Fort,&nbsp;F. Gonzalez,&nbsp;A. Gros,&nbsp;S. Hussein,&nbsp;J.-M. Le Duigou,&nbsp;N. Meidinger,&nbsp;K. Mercier,&nbsp;A. Meuris,&nbsp;J. Pearson,&nbsp;N. Renault-Tinacci,&nbsp;F. Robinet,&nbsp;B. Schneider,&nbsp;R. Willingale","doi":"10.1007/s10686-022-09881-6","DOIUrl":"10.1007/s10686-022-09881-6","url":null,"abstract":"<div><p>The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a narrow field “Lobster-Eye” optical design to be flown on a satellite, namely the Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length <span>(sim )</span> 1.15 m) and light (&lt; 42 kg) instrument, sensitive in the 0.2–10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 <i>μ</i> m pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"487 - 519"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09881-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The structural design and thermo-mechanical performance of the FXT for the EP mission 用于EP任务的FXT的结构设计和热机械性能
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-02-01 DOI: 10.1007/s10686-023-09889-6
Juan Wang, Josef Eder, Jia Ma, YanJi Yang, WeiWei Cui, XiongTao Yang, XuLiang Duan, JianChao Feng, XiaoFeng Zhang, Bing Lu, He Lv, WenXin Sun, FangJun Lu, DaWei Han, YuSa Wang, Tianxiang Chen, Qian Zhang, Xiyan Bi, DongTai Li, JiaWei Zhang, Peter Friedrich, Katinka Hartmann, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecchi, QingJun Tang, HouLei Chen, Yong Chen

The Follow-up X-ray Telescope (FXT) is one of the key payloads onboard EP. It is a Wolter-I type X-ray focusing telescope equipped with two telescope modules (focal length 1.6 m), with a total effective area of ~ 600 cm2 at 1.25 keV and an energy range of 0.3–10 keV. FXT is mainly composed of an X-ray focusing mirror assembly (MA) and a camera assembly with a PNCCD detector module. The two FXT modules are completely independent from each other, thus avoiding a single point failure. We completed the internal composites of FXT structural design, which meets the function and performance requirements of mechanical, thermal, contamination control and X-ray optics. The FXT passed successfully the mechanical, thermal qualification level tests on the spacecraft platform in the phase C.

后续x射线望远镜(FXT)是EP的关键载荷之一。它是Wolter-I型x射线聚焦望远镜,配备两个望远镜模块(焦距1.6 m),在1.25 keV下总有效面积为~ 600 cm2,能量范围为0.3-10 keV。FXT主要由x射线聚焦镜组件(MA)和带PNCCD探测器模块的相机组件组成。两个FXT模块彼此完全独立,从而避免了单点故障。我们完成了FXT内部复合材料的结构设计,满足机械、热学、污染控制和x射线光学的功能和性能要求。FXT成功地通过了C阶段航天器平台上的力学、热定性水平试验。
{"title":"The structural design and thermo-mechanical performance of the FXT for the EP mission","authors":"Juan Wang,&nbsp;Josef Eder,&nbsp;Jia Ma,&nbsp;YanJi Yang,&nbsp;WeiWei Cui,&nbsp;XiongTao Yang,&nbsp;XuLiang Duan,&nbsp;JianChao Feng,&nbsp;XiaoFeng Zhang,&nbsp;Bing Lu,&nbsp;He Lv,&nbsp;WenXin Sun,&nbsp;FangJun Lu,&nbsp;DaWei Han,&nbsp;YuSa Wang,&nbsp;Tianxiang Chen,&nbsp;Qian Zhang,&nbsp;Xiyan Bi,&nbsp;DongTai Li,&nbsp;JiaWei Zhang,&nbsp;Peter Friedrich,&nbsp;Katinka Hartmann,&nbsp;Arnoud Keereman,&nbsp;Andrea Santovincenzo,&nbsp;Dervis Vernani,&nbsp;Giovanni Bianucci,&nbsp;Giuseppe Valsecchi,&nbsp;QingJun Tang,&nbsp;HouLei Chen,&nbsp;Yong Chen","doi":"10.1007/s10686-023-09889-6","DOIUrl":"10.1007/s10686-023-09889-6","url":null,"abstract":"<div><p>The Follow-up X-ray Telescope (FXT) is one of the key payloads onboard EP. It is a Wolter-I type X-ray focusing telescope equipped with two telescope modules (focal length 1.6 m), with a total effective area of ~ 600 cm2 at 1.25 keV and an energy range of 0.3–10 keV. FXT is mainly composed of an X-ray focusing mirror assembly (MA) and a camera assembly with a PNCCD detector module. The two FXT modules are completely independent from each other, thus avoiding a single point failure. We completed the internal composites of FXT structural design, which meets the function and performance requirements of mechanical, thermal, contamination control and X-ray optics. The FXT passed successfully the mechanical, thermal qualification level tests on the spacecraft platform in the phase C.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"639 - 659"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09889-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit 以硒为中心轨道的超低频率射电天文观测
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-01-27 DOI: 10.1007/s10686-022-09887-0
Jingye Yan, Ji Wu, Leonid I. Gurvits, Lin Wu, Li Deng, Fei Zhao, Li Zhou, Ailan Lan, Wenjie Fan, Min Yi, Yang Yang, Zhen Yang, Mingchuan Wei, Jinsheng Guo, Shi Qiu, Fan Wu, Chaoran Hu, Xuelei Chen, Hanna Rothkaehl, Marek Morawski

This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) —- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite Longjiang-2. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon-distances from Earth as order of − 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.

本文介绍了硒心卫星龙江二号上超长波长(ULW)低频干涉仪和光谱仪(LFIS)首次观测结果。我们对卫星进行了简要描述,并重点介绍了LFIS有效载荷。在轨调试确认了仪器的可靠运行状态。我们还提出了一个过渡观测的结果,它提供了几个新方面的独特测量。我们估计这种射电天文仪器在距离地球月球的距离上所需的RFI抑制为- 80 dB。分析了一种分离地球源和卫星源射频干扰(RFI)的方法。研究发现,在低于几兆赫的频率下,RFI电平小于接收机的本底噪声。
{"title":"Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit","authors":"Jingye Yan,&nbsp;Ji Wu,&nbsp;Leonid I. Gurvits,&nbsp;Lin Wu,&nbsp;Li Deng,&nbsp;Fei Zhao,&nbsp;Li Zhou,&nbsp;Ailan Lan,&nbsp;Wenjie Fan,&nbsp;Min Yi,&nbsp;Yang Yang,&nbsp;Zhen Yang,&nbsp;Mingchuan Wei,&nbsp;Jinsheng Guo,&nbsp;Shi Qiu,&nbsp;Fan Wu,&nbsp;Chaoran Hu,&nbsp;Xuelei Chen,&nbsp;Hanna Rothkaehl,&nbsp;Marek Morawski","doi":"10.1007/s10686-022-09887-0","DOIUrl":"10.1007/s10686-022-09887-0","url":null,"abstract":"<div><p>This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) —- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite <i>Longjiang-2</i>. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon-distances from Earth as order of − 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"333 - 353"},"PeriodicalIF":3.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5039693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase 雅典娜x射线集成现场单元:初步定义阶段系统需求审查的统一设计
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-01-27 DOI: 10.1007/s10686-022-09880-7
Didier Barret, Vincent Albouys, Jan-Willem den Herder, Luigi Piro, Massimo Cappi, Juhani Huovelin, Richard Kelley, J. Miguel Mas-Hesse, Stéphane Paltani, Gregor Rauw, Agata Rozanska, Jiri Svoboda, Joern Wilms, Noriko Yamasaki, Marc Audard, Simon Bandler, Marco Barbera, Xavier Barcons, Enrico Bozzo, Maria Teresa Ceballos, Ivan Charles, Elisa Costantini, Thomas Dauser, Anne Decourchelle, Lionel Duband, Jean-Marc Duval, Fabrizio Fiore, Flavio Gatti, Andrea Goldwurm, Roland den Hartog, Brian Jackson, Peter Jonker, Caroline Kilbourne, Seppo Korpela, Claudio Macculi, Mariano Mendez, Kazuhisa Mitsuda, Silvano Molendi, François Pajot, Etienne Pointecouteau, Frederick Porter, Gabriel W. Pratt, Damien Prêle, Laurent Ravera, Kosuke Sato, Joop Schaye, Keisuke Shinozaki, Konrad Skup, Jan Soucek, Tanguy Thibert, Jacco Vink, Natalie Webb, Laurence Chaoul, Desi Raulin, Aurora Simionescu, Jose Miguel Torrejon, Fabio Acero, Graziella Branduardi-Raymont, Stefano Ettori, Alexis Finoguenov, Nicolas Grosso, Jelle Kaastra, Pasquale Mazzotta, Jon Miller, Giovanni Miniutti, Fabrizio Nicastro, Salvatore Sciortino, Hiroya Yamaguchi, Sophie Beaumont, Edoardo Cucchetti, Matteo D’Andrea, Megan Eckart, Philippe Ferrando, Elias Kammoun, Simone Lotti, Jean-Michel Mesnager, Lorenzo Natalucci, Philippe Peille, Jelle de Plaa, Florence Ardellier, Andrea Argan, Elise Bellouard, Jérôme Carron, Elisabetta Cavazzuti, Mauro Fiorini, Pourya Khosropanah, Sylvain Martin, James Perry, Frederic Pinsard, Alice Pradines, Manuela Rigano, Peter Roelfsema, Denis Schwander, Guido Torrioli, Joel Ullom, Isabel Vera, Eduardo Medinaceli Villegas, Monika Zuchniak, Frank Brachet, Ugo Lo Cicero, William Doriese, Malcom Durkin, Valentina Fioretti, Hervé Geoffray, Lionel Jacques, Christian Kirsch, Stephen Smith, Joseph Adams, Emilie Gloaguen, Ruud Hoogeveen, Paul van der Hulst, Mikko Kiviranta, Jan van der Kuur, Aurélien Ledot, Bert-Joost van Leeuwen, Dennis van Loon, Bertrand Lyautey, Yann Parot, Kazuhiro Sakai, Henk van Weers, Shariefa Abdoelkariem, Thomas Adam, Christophe Adami, Corinne Aicardi, Hiroki Akamatsu, Pablo Eleazar Merino Alonso, Roberta Amato, Jérôme André, Matteo Angelinelli, Manuel Anon-Cancela, Shebli Anvar, Ricardo Atienza, Anthony Attard, Natalia Auricchio, Ana Balado, Florian Bancel, Lorenzo Ferrari Barusso, Arturo Bascuñan, Vivian Bernard, Alicia Berrocal, Sylvie Blin, Donata Bonino, François Bonnet, Patrick Bonny, Peter Boorman, Charles Boreux, Ayoub Bounab, Martin Boutelier, Kevin Boyce, Daniele Brienza, Marcel Bruijn, Andrea Bulgarelli, Simona Calarco, Paul Callanan, Alberto Prada Campello, Thierry Camus, Florent Canourgues, Vito Capobianco, Nicolas Cardiel, Florent Castellani, Oscar Cheatom, James Chervenak, Fabio Chiarello, Laurent Clerc, Nicolas Clerc, Beatriz Cobo, Odile Coeur-Joly, Alexis Coleiro, Stéphane Colonges, Leonardo Corcione, Mickael Coriat, Alexandre Coynel, Francesco Cuttaia, Antonino D’Ai, Fabio D’anca, Mauro Dadina, Christophe Daniel, Lea Dauner, Natalie DeNigris, Johannes Dercksen, Michael DiPirro, Eric Doumayrou, Luc Dubbeldam, Michel Dupieux, Simon Dupourqué, Jean Louis Durand, Dominique Eckert, Valvanera Eiriz, Eric Ercolani, Christophe Etcheverry, Fred Finkbeiner, Mariateresa Fiocchi, Hervé Fossecave, Philippe Franssen, Martin Frericks, Stefano Gabici, Florent Gant, Jian-Rong Gao, Fabio Gastaldello, Ludovic Genolet, Simona Ghizzardi, Ma Angeles Alcacera Gil, Elisa Giovannini, Olivier Godet, Javier Gomez-Elvira, Raoul Gonzalez, Manuel Gonzalez, Luciano Gottardi, Dolorès Granat, Michel Gros, Nicolas Guignard, Paul Hieltjes, Adolfo Jesús Hurtado, Kent Irwin, Christian Jacquey, Agnieszka Janiuk, Jean Jaubert, Maria Jiménez, Antoine Jolly, Thierry Jourdan, Sabine Julien, Bartosz Kedziora, Andrew Korb, Ingo Kreykenbohm, Ole König, Mathieu Langer, Philippe Laudet, Philippe Laurent, Monica Laurenza, Jean Lesrel, Sebastiano Ligori, Maximilian Lorenz, Alfredo Luminari, Bruno Maffei, Océane Maisonnave, Lorenzo Marelli, Didier Massonet, Irwin Maussang, Alejandro Gonzalo Melchor, Isabelle Le Mer, Francisco Javier San Millan, Jean-Pierre Millerioux, Teresa Mineo, Gabriele Minervini, Alexeï Molin, David Monestes, Nicola Montinaro, Baptiste Mot, David Murat, Kenichiro Nagayoshi, Yaël Nazé, Loïc Noguès, Damien Pailot, Francesca Panessa, Luigi Parodi, Pascal Petit, Enrico Piconcelli, Ciro Pinto, Jose Miguel Encinas Plaza, Borja Plaza, David Poyatos, Thomas Prouvé, Andy Ptak, Simonetta Puccetti, Elena Puccio, Pascale Ramon, Manuel Reina, Guillaume Rioland, Louis Rodriguez, Anton Roig, Bertrand Rollet, Mauro Roncarelli, Gilles Roudil, Tomasz Rudnicki, Julien Sanisidro, Luisa Sciortino, Vitor Silva, Michael Sordet, Javier Soto-Aguilar, Pierre Spizzi, Christian Surace, Miguel Fernández Sánchez, Emanuele Taralli, Guilhem Terrasa, Régis Terrier, Michela Todaro, Pietro Ubertini, Michela Uslenghi, Jan Geralt Bij de Vaate, Davide Vaccaro, Salvatore Varisco, Peggy Varnière, Laurent Vibert, María Vidriales, Fabrizio Villa, Boris Martin Vodopivec, Angela Volpe, Cor de Vries, Nicholas Wakeham, Gavin Walmsley, Michael Wise, Martin de Wit, Grzegorz Woźniak

The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.

雅典娜x射线积分单元(X-IFU)是自2015年以来研究的高分辨率x射线光谱仪,将于30年代中期在雅典娜空间x射线天文台上飞行。雅典娜是一个多功能天文台,旨在解决炎热和充满活力的宇宙科学主题,由调查科学委员会于2013年11月选择。基于转换边缘传感器(TES)的大格式阵列,X-IFU旨在提供空间分辨x射线光谱,光谱分辨率为2.5 eV(高达7 keV),在5弧分(等效直径)的六角形视场上。X-IFU于2022年6月进入了系统需求审查(SRR),大约在同一时间,由于雅典娜的意外成本超支,ESA要求对X-IFU进行整体重新设计(包括X-IFU低温恒温器和冷却链)。在本文中,在说明了X-IFU的突破性能力之后,我们描述了该仪器在其SRR(即在其初步定义阶段,所谓的B1)的过程中,浏览了所有子系统和相关需求。然后,我们展示了仪器预算,特别强调了一些关键性能参数的预期预算,如仪器效率、光谱分辨率、能量标度知识、计数率能力、非x射线背景和机会效率目标。最后,我们简要讨论了X-IFU仪器科学中心正在进行的关键技术演示活动、校准和预期的活动,并谈到了与仪器开发相关的X-IFU的沟通和推广活动、联盟组织和生命周期评估,旨在最大限度地减少环境足迹。由于迄今为止对X-IFU进行的研究,预计根据欧空局的要求,X-IFU将保持空间分辨率高分辨率x射线光谱的旗舰能力,使雅典娜任务中与X-IFU相关的大多数原始科学目标得以保留。X-IFU将由一个由法国、荷兰和意大利牵头的国际财团提供,欧空局成员国包括比利时、捷克共和国、芬兰、德国、波兰、西班牙和瑞士,美国和日本也将提供额外的资助。
{"title":"The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase","authors":"Didier Barret,&nbsp;Vincent Albouys,&nbsp;Jan-Willem den Herder,&nbsp;Luigi Piro,&nbsp;Massimo Cappi,&nbsp;Juhani Huovelin,&nbsp;Richard Kelley,&nbsp;J. Miguel Mas-Hesse,&nbsp;Stéphane Paltani,&nbsp;Gregor Rauw,&nbsp;Agata Rozanska,&nbsp;Jiri Svoboda,&nbsp;Joern Wilms,&nbsp;Noriko Yamasaki,&nbsp;Marc Audard,&nbsp;Simon Bandler,&nbsp;Marco Barbera,&nbsp;Xavier Barcons,&nbsp;Enrico Bozzo,&nbsp;Maria Teresa Ceballos,&nbsp;Ivan Charles,&nbsp;Elisa Costantini,&nbsp;Thomas Dauser,&nbsp;Anne Decourchelle,&nbsp;Lionel Duband,&nbsp;Jean-Marc Duval,&nbsp;Fabrizio Fiore,&nbsp;Flavio Gatti,&nbsp;Andrea Goldwurm,&nbsp;Roland den Hartog,&nbsp;Brian Jackson,&nbsp;Peter Jonker,&nbsp;Caroline Kilbourne,&nbsp;Seppo Korpela,&nbsp;Claudio Macculi,&nbsp;Mariano Mendez,&nbsp;Kazuhisa Mitsuda,&nbsp;Silvano Molendi,&nbsp;François Pajot,&nbsp;Etienne Pointecouteau,&nbsp;Frederick Porter,&nbsp;Gabriel W. Pratt,&nbsp;Damien Prêle,&nbsp;Laurent Ravera,&nbsp;Kosuke Sato,&nbsp;Joop Schaye,&nbsp;Keisuke Shinozaki,&nbsp;Konrad Skup,&nbsp;Jan Soucek,&nbsp;Tanguy Thibert,&nbsp;Jacco Vink,&nbsp;Natalie Webb,&nbsp;Laurence Chaoul,&nbsp;Desi Raulin,&nbsp;Aurora Simionescu,&nbsp;Jose Miguel Torrejon,&nbsp;Fabio Acero,&nbsp;Graziella Branduardi-Raymont,&nbsp;Stefano Ettori,&nbsp;Alexis Finoguenov,&nbsp;Nicolas Grosso,&nbsp;Jelle Kaastra,&nbsp;Pasquale Mazzotta,&nbsp;Jon Miller,&nbsp;Giovanni Miniutti,&nbsp;Fabrizio Nicastro,&nbsp;Salvatore Sciortino,&nbsp;Hiroya Yamaguchi,&nbsp;Sophie Beaumont,&nbsp;Edoardo Cucchetti,&nbsp;Matteo D’Andrea,&nbsp;Megan Eckart,&nbsp;Philippe Ferrando,&nbsp;Elias Kammoun,&nbsp;Simone Lotti,&nbsp;Jean-Michel Mesnager,&nbsp;Lorenzo Natalucci,&nbsp;Philippe Peille,&nbsp;Jelle de Plaa,&nbsp;Florence Ardellier,&nbsp;Andrea Argan,&nbsp;Elise Bellouard,&nbsp;Jérôme Carron,&nbsp;Elisabetta Cavazzuti,&nbsp;Mauro Fiorini,&nbsp;Pourya Khosropanah,&nbsp;Sylvain Martin,&nbsp;James Perry,&nbsp;Frederic Pinsard,&nbsp;Alice Pradines,&nbsp;Manuela Rigano,&nbsp;Peter Roelfsema,&nbsp;Denis Schwander,&nbsp;Guido Torrioli,&nbsp;Joel Ullom,&nbsp;Isabel Vera,&nbsp;Eduardo Medinaceli Villegas,&nbsp;Monika Zuchniak,&nbsp;Frank Brachet,&nbsp;Ugo Lo Cicero,&nbsp;William Doriese,&nbsp;Malcom Durkin,&nbsp;Valentina Fioretti,&nbsp;Hervé Geoffray,&nbsp;Lionel Jacques,&nbsp;Christian Kirsch,&nbsp;Stephen Smith,&nbsp;Joseph Adams,&nbsp;Emilie Gloaguen,&nbsp;Ruud Hoogeveen,&nbsp;Paul van der Hulst,&nbsp;Mikko Kiviranta,&nbsp;Jan van der Kuur,&nbsp;Aurélien Ledot,&nbsp;Bert-Joost van Leeuwen,&nbsp;Dennis van Loon,&nbsp;Bertrand Lyautey,&nbsp;Yann Parot,&nbsp;Kazuhiro Sakai,&nbsp;Henk van Weers,&nbsp;Shariefa Abdoelkariem,&nbsp;Thomas Adam,&nbsp;Christophe Adami,&nbsp;Corinne Aicardi,&nbsp;Hiroki Akamatsu,&nbsp;Pablo Eleazar Merino Alonso,&nbsp;Roberta Amato,&nbsp;Jérôme André,&nbsp;Matteo Angelinelli,&nbsp;Manuel Anon-Cancela,&nbsp;Shebli Anvar,&nbsp;Ricardo Atienza,&nbsp;Anthony Attard,&nbsp;Natalia Auricchio,&nbsp;Ana Balado,&nbsp;Florian Bancel,&nbsp;Lorenzo Ferrari Barusso,&nbsp;Arturo Bascuñan,&nbsp;Vivian Bernard,&nbsp;Alicia Berrocal,&nbsp;Sylvie Blin,&nbsp;Donata Bonino,&nbsp;François Bonnet,&nbsp;Patrick Bonny,&nbsp;Peter Boorman,&nbsp;Charles Boreux,&nbsp;Ayoub Bounab,&nbsp;Martin Boutelier,&nbsp;Kevin Boyce,&nbsp;Daniele Brienza,&nbsp;Marcel Bruijn,&nbsp;Andrea Bulgarelli,&nbsp;Simona Calarco,&nbsp;Paul Callanan,&nbsp;Alberto Prada Campello,&nbsp;Thierry Camus,&nbsp;Florent Canourgues,&nbsp;Vito Capobianco,&nbsp;Nicolas Cardiel,&nbsp;Florent Castellani,&nbsp;Oscar Cheatom,&nbsp;James Chervenak,&nbsp;Fabio Chiarello,&nbsp;Laurent Clerc,&nbsp;Nicolas Clerc,&nbsp;Beatriz Cobo,&nbsp;Odile Coeur-Joly,&nbsp;Alexis Coleiro,&nbsp;Stéphane Colonges,&nbsp;Leonardo Corcione,&nbsp;Mickael Coriat,&nbsp;Alexandre Coynel,&nbsp;Francesco Cuttaia,&nbsp;Antonino D’Ai,&nbsp;Fabio D’anca,&nbsp;Mauro Dadina,&nbsp;Christophe Daniel,&nbsp;Lea Dauner,&nbsp;Natalie DeNigris,&nbsp;Johannes Dercksen,&nbsp;Michael DiPirro,&nbsp;Eric Doumayrou,&nbsp;Luc Dubbeldam,&nbsp;Michel Dupieux,&nbsp;Simon Dupourqué,&nbsp;Jean Louis Durand,&nbsp;Dominique Eckert,&nbsp;Valvanera Eiriz,&nbsp;Eric Ercolani,&nbsp;Christophe Etcheverry,&nbsp;Fred Finkbeiner,&nbsp;Mariateresa Fiocchi,&nbsp;Hervé Fossecave,&nbsp;Philippe Franssen,&nbsp;Martin Frericks,&nbsp;Stefano Gabici,&nbsp;Florent Gant,&nbsp;Jian-Rong Gao,&nbsp;Fabio Gastaldello,&nbsp;Ludovic Genolet,&nbsp;Simona Ghizzardi,&nbsp;Ma Angeles Alcacera Gil,&nbsp;Elisa Giovannini,&nbsp;Olivier Godet,&nbsp;Javier Gomez-Elvira,&nbsp;Raoul Gonzalez,&nbsp;Manuel Gonzalez,&nbsp;Luciano Gottardi,&nbsp;Dolorès Granat,&nbsp;Michel Gros,&nbsp;Nicolas Guignard,&nbsp;Paul Hieltjes,&nbsp;Adolfo Jesús Hurtado,&nbsp;Kent Irwin,&nbsp;Christian Jacquey,&nbsp;Agnieszka Janiuk,&nbsp;Jean Jaubert,&nbsp;Maria Jiménez,&nbsp;Antoine Jolly,&nbsp;Thierry Jourdan,&nbsp;Sabine Julien,&nbsp;Bartosz Kedziora,&nbsp;Andrew Korb,&nbsp;Ingo Kreykenbohm,&nbsp;Ole König,&nbsp;Mathieu Langer,&nbsp;Philippe Laudet,&nbsp;Philippe Laurent,&nbsp;Monica Laurenza,&nbsp;Jean Lesrel,&nbsp;Sebastiano Ligori,&nbsp;Maximilian Lorenz,&nbsp;Alfredo Luminari,&nbsp;Bruno Maffei,&nbsp;Océane Maisonnave,&nbsp;Lorenzo Marelli,&nbsp;Didier Massonet,&nbsp;Irwin Maussang,&nbsp;Alejandro Gonzalo Melchor,&nbsp;Isabelle Le Mer,&nbsp;Francisco Javier San Millan,&nbsp;Jean-Pierre Millerioux,&nbsp;Teresa Mineo,&nbsp;Gabriele Minervini,&nbsp;Alexeï Molin,&nbsp;David Monestes,&nbsp;Nicola Montinaro,&nbsp;Baptiste Mot,&nbsp;David Murat,&nbsp;Kenichiro Nagayoshi,&nbsp;Yaël Nazé,&nbsp;Loïc Noguès,&nbsp;Damien Pailot,&nbsp;Francesca Panessa,&nbsp;Luigi Parodi,&nbsp;Pascal Petit,&nbsp;Enrico Piconcelli,&nbsp;Ciro Pinto,&nbsp;Jose Miguel Encinas Plaza,&nbsp;Borja Plaza,&nbsp;David Poyatos,&nbsp;Thomas Prouvé,&nbsp;Andy Ptak,&nbsp;Simonetta Puccetti,&nbsp;Elena Puccio,&nbsp;Pascale Ramon,&nbsp;Manuel Reina,&nbsp;Guillaume Rioland,&nbsp;Louis Rodriguez,&nbsp;Anton Roig,&nbsp;Bertrand Rollet,&nbsp;Mauro Roncarelli,&nbsp;Gilles Roudil,&nbsp;Tomasz Rudnicki,&nbsp;Julien Sanisidro,&nbsp;Luisa Sciortino,&nbsp;Vitor Silva,&nbsp;Michael Sordet,&nbsp;Javier Soto-Aguilar,&nbsp;Pierre Spizzi,&nbsp;Christian Surace,&nbsp;Miguel Fernández Sánchez,&nbsp;Emanuele Taralli,&nbsp;Guilhem Terrasa,&nbsp;Régis Terrier,&nbsp;Michela Todaro,&nbsp;Pietro Ubertini,&nbsp;Michela Uslenghi,&nbsp;Jan Geralt Bij de Vaate,&nbsp;Davide Vaccaro,&nbsp;Salvatore Varisco,&nbsp;Peggy Varnière,&nbsp;Laurent Vibert,&nbsp;María Vidriales,&nbsp;Fabrizio Villa,&nbsp;Boris Martin Vodopivec,&nbsp;Angela Volpe,&nbsp;Cor de Vries,&nbsp;Nicholas Wakeham,&nbsp;Gavin Walmsley,&nbsp;Michael Wise,&nbsp;Martin de Wit,&nbsp;Grzegorz Woźniak","doi":"10.1007/s10686-022-09880-7","DOIUrl":"10.1007/s10686-022-09880-7","url":null,"abstract":"<div><p>The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. <i>The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.</i></p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"373 - 426"},"PeriodicalIF":3.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5045818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Pulsar search acceleration using FPGAs and OpenCL templates 脉冲星搜索加速使用fpga和OpenCL模板
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-01-23 DOI: 10.1007/s10686-022-09888-z
Julian Oppermann, Mitchell B. Mickaliger, Oliver Sinnen

The Square Kilometre Array (SKA) is the world’s largest radio telescope currently under construction, and will employ elaborate signal processing to detect new pulsars, i.e. highly magnetised rotating neutron stars. This paper addresses the acceleration of demanding computations for this pulsar search on Field-Programmable Gate Arrays (FPGAs) using a new high-level design process based on OpenCL templates that is transferable to other scientific problems. The successful FPGA acceleration of large-scale scientific workloads requires custom architectures that fully exploit the parallel computing capabilities of modern reconfigurable hardware and are amenable to substantial design space exploration. OpenCL-based high-level synthesis toolchains, with their ability to express interconnected multi-kernel pipelines in a single source language, excel in this domain. However, the achievable performance strongly depends on how well the compiler can infer desirable hardware structures from the code. One key aspect to excellent performance is commonly the uninterrupted, high-bandwidth streaming of data into and through the design. This is difficult to achieve in complex designs when data order needs to be re-arranged, e.g. transposed. It is equally hard to pre-fetch and burst-load from DDR memory when reading occurs in non-trivial patterns. In this paper, we propose new approaches to these two problems that use OpenCL-based code templates.

We demonstrate the practical benefits of these approaches with the acceleration of a key component in the SKA’s pulsar search pipeline: the Fourier Domain Acceleration Search (FDAS) module. Using our proposed methodology, we are able to develop a more scalable FDAS accelerator architecture than previously possible. We explore its design space to eventually achieve a 10x throughput improvement over a prior, thoroughly optimised implementation in plain OpenCL.

平方公里阵列(SKA)是目前正在建设的世界上最大的射电望远镜,它将采用复杂的信号处理来探测新的脉冲星,即高磁化旋转的中子星。本文利用基于OpenCL模板的新的高级设计过程,解决了在现场可编程门阵列(fpga)上对脉冲星搜索的苛刻计算的加速问题,该过程可转移到其他科学问题。成功的FPGA加速大规模科学工作负载需要定制架构,充分利用现代可重构硬件的并行计算能力,并适应大量的设计空间探索。基于opencl的高级合成工具链具有用单一源语言表达相互连接的多内核管道的能力,在这一领域表现出色。然而,可实现的性能很大程度上取决于编译器从代码中推断出所需硬件结构的能力。卓越性能的一个关键方面通常是不间断的、高带宽的数据流进入和通过设计。这在复杂的设计中很难实现,因为数据顺序需要重新排列,例如转置。当读取以非平凡模式发生时,从DDR内存中预取和突发加载同样困难。在本文中,我们提出了使用基于opencl的代码模板来解决这两个问题的新方法。我们通过加速SKA脉冲星搜索管道中的一个关键组件:傅里叶域加速搜索(FDAS)模块,展示了这些方法的实际好处。使用我们提出的方法,我们能够开发出比以前更可扩展的FDAS加速器架构。我们探索了它的设计空间,最终实现了10倍的吞吐量提高,比之前完全优化的纯OpenCL实现。
{"title":"Pulsar search acceleration using FPGAs and OpenCL templates","authors":"Julian Oppermann,&nbsp;Mitchell B. Mickaliger,&nbsp;Oliver Sinnen","doi":"10.1007/s10686-022-09888-z","DOIUrl":"10.1007/s10686-022-09888-z","url":null,"abstract":"<div><p>The Square Kilometre Array (SKA) is the world’s largest radio telescope currently under construction, and will employ elaborate signal processing to detect new pulsars, i.e. highly magnetised rotating neutron stars. This paper addresses the acceleration of demanding computations for this pulsar search on Field-Programmable Gate Arrays (FPGAs) using a new high-level design process based on OpenCL templates that is transferable to other scientific problems. The successful FPGA acceleration of large-scale scientific workloads requires custom architectures that fully exploit the parallel computing capabilities of modern reconfigurable hardware and are amenable to substantial design space exploration. OpenCL-based high-level synthesis toolchains, with their ability to express interconnected multi-kernel pipelines in a single source language, excel in this domain. However, the achievable performance strongly depends on how well the compiler can infer desirable hardware structures from the code. One key aspect to excellent performance is commonly the uninterrupted, high-bandwidth streaming of data into and through the design. This is difficult to achieve in complex designs when data order needs to be re-arranged, e.g. transposed. It is equally hard to pre-fetch and burst-load from DDR memory when reading occurs in non-trivial patterns. In this paper, we propose new approaches to these two problems that use OpenCL-based code templates.</p><p>We demonstrate the practical benefits of these approaches with the acceleration of a key component in the SKA’s pulsar search pipeline: the Fourier Domain Acceleration Search (FDAS) module. Using our proposed methodology, we are able to develop a more scalable FDAS accelerator architecture than previously possible. We explore its design space to eventually achieve a 10x throughput improvement over a prior, thoroughly optimised implementation in plain OpenCL.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"239 - 266"},"PeriodicalIF":3.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09888-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4896279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector 利用带有μ子探测器的广泛空气阵雨阵列估算宇宙伽马射线通量中的强子相互作用模型依赖
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-01-17 DOI: 10.1007/s10686-022-09883-4
S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe

Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet ASγ, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.

通过西藏ASγ、HAWC和LHAASO实验,利用空气阵雨观测高能伽马射线的技术取得了显著进展。这些观测对北部天空次pev区域的伽马射线天文学做出了重大贡献。此外,在南方的天空中,ALPACA实验正在玻利维亚查卡尔塔亚高原海拔4740米的地方进行。本实验利用蒙特卡罗模拟计算的伽马射线探测效率,利用实际数据从源内和源外事件的数量之差估计伽马射线通量,而伽马射线探测效率又依赖于强子相互作用模型。尽管宇宙射线背景事件的数量可以通过实验估计,但这种模型依赖性影响了对伽马射线探测效率的估计。然而,以往的报告假设模式依赖性可以忽略不计,并没有将其包括在伽马射线通量估计的误差中。利用ALPACA的原型实验ALPAQUITA,首次定量评价了模型对强子相互作用模型的依赖性。我们估计在ALPAQUITA进行的典型伽马射线通量估计中,模型对强子相互作用的依赖性小于3.6%;这与其他不确定性相比可以忽略不计,如能量范围为6至300 TeV的能量尺度不确定性,这是由蒙特卡罗统计占主导地位。3.6%模型依赖的上限预计适用于ALPACA。
{"title":"Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector","authors":"S. Okukawa,&nbsp;M. Anzorena,&nbsp;S. Asano,&nbsp;C. A. H. Condori,&nbsp;E. de la Fuente,&nbsp;A. Gomi,&nbsp;K. Hibino,&nbsp;N. Hotta,&nbsp;A. Jimenez-Meza,&nbsp;Y. Katayose,&nbsp;C. Kato,&nbsp;S. Kato,&nbsp;T. Kawashima,&nbsp;K. Kawata,&nbsp;T. Koi,&nbsp;H. Kojima,&nbsp;D. Kurashige,&nbsp;J. Lozoya,&nbsp;R. Mayta,&nbsp;P. Miranda,&nbsp;K. Munakata,&nbsp;K. Nagaya,&nbsp;Y. Nakamura,&nbsp;Y. Nakazawa,&nbsp;C. Nina,&nbsp;M. Nishizawa,&nbsp;S. Ogio,&nbsp;M. Ohnishi,&nbsp;A. Oshima,&nbsp;M. Raljevic,&nbsp;H. Rivera,&nbsp;T. Saito,&nbsp;Y. Sakakibara,&nbsp;T. Sako,&nbsp;T. K. Sako,&nbsp;S. Shibata,&nbsp;A. Shiomi,&nbsp;M. Subieta,&nbsp;N. Tajima,&nbsp;W. Takano,&nbsp;M. Takita,&nbsp;Y. Tameda,&nbsp;K. Tanaka,&nbsp;R. Ticona,&nbsp;I. Toledano-Juarez,&nbsp;H. Tsuchiya,&nbsp;Y. Tsunesada,&nbsp;S. Udo,&nbsp;K. Yamazaki,&nbsp;Y. Yokoe","doi":"10.1007/s10686-022-09883-4","DOIUrl":"10.1007/s10686-022-09883-4","url":null,"abstract":"<div><p>Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet AS<i>γ</i>, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"325 - 342"},"PeriodicalIF":3.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4680569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A simulation study for the expected performance of Sharjah-Sat-1 payload improved X-Ray Detector (iXRD) in the orbital background radiation 沙迦- sat -1有效载荷改进型x射线探测器(iXRD)轨道背景辐射预期性能仿真研究
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-01-07 DOI: 10.1007/s10686-022-09885-2
Ali M. Altıngün, Emrah Kalemci, Efe Öztaban

Sharjah-Sat-1 is a 3U cubesat with a CdZnTe based hard X-ray detector, called iXRD (improved X-ray Detector) as a scientific payload with the primary objective of monitoring bright X-ray sources in the galaxy. We investigated the effects of the in-orbit background radiation on the iXRD based on Geant4 simulations. Several background components were included in the simulations such as the cosmic diffuse gamma-rays, galactic cosmic rays (protons and alpha particles), trapped protons and electrons, and albedo radiation arising from the upper layer of the atmosphere. The most dominant component is the albedo photon radiation which contributes at low and high energies alike in the instrument energy range of 20 keV - 200 keV. On the other hand, the cosmic diffuse gamma-ray contribution is the strongest between 20 keV and 60 keV in which most of the astrophysics source flux is expected. The third effective component is the galactic cosmic protons. The radiation due to the trapped particles, the albedo neutrons, and the cosmic alpha particles are negligible when the polar regions and the South Atlantic Anomaly region are excluded in the analysis. The total background count rates are (sim )0.36 and (sim )0.85 counts/s for the energy bands of 20 - 60 keV and 20 - 200 keV, respectively. We performed charge transportation simulations to determine the spectral response of the iXRD and used it in sensitivity calculations as well. The simulation framework was validated with experimental studies. The estimated sensitivity of 180 mCrab between the energy band of 20 keV - 100 keV indicates that the iXRD could achieve its scientific goals.

沙迦- sat -1是一颗3U立方体卫星,带有一个基于CdZnTe的硬x射线探测器,称为iXRD(改进型x射线探测器),作为科学有效载荷,其主要目标是监测银河系中的明亮x射线源。基于Geant4仿真,研究了在轨背景辐射对iXRD的影响。模拟中包括了几个背景成分,如宇宙漫射伽马射线、银河宇宙射线(质子和α粒子)、捕获的质子和电子以及来自大气层上层的反照率辐射。最主要的成分是反照率光子辐射,它在仪器能量范围为20 keV - 200 keV的低能和高能都有贡献。另一方面,宇宙漫射伽马射线的贡献在20kev和60kev之间是最强的,这是大多数天体物理源通量的预期范围。第三个有效成分是银河宇宙质子。当分析中排除极地和南大西洋异常区时,捕获粒子、反照率中子和宇宙α粒子的辐射可以忽略不计。在20 ~ 60 keV和20 ~ 200 keV波段,总背景计数率分别为(sim ) 0.36和(sim ) 0.85次/s。我们进行了电荷输运模拟来确定iXRD的光谱响应,并将其用于灵敏度计算。通过实验研究验证了仿真框架的有效性。在20 keV - 100 keV的能量带之间估计180 mCrab的灵敏度表明iXRD可以实现其科学目标。
{"title":"A simulation study for the expected performance of Sharjah-Sat-1 payload improved X-Ray Detector (iXRD) in the orbital background radiation","authors":"Ali M. Altıngün,&nbsp;Emrah Kalemci,&nbsp;Efe Öztaban","doi":"10.1007/s10686-022-09885-2","DOIUrl":"10.1007/s10686-022-09885-2","url":null,"abstract":"<div><p>Sharjah-Sat-1 is a 3U cubesat with a CdZnTe based hard X-ray detector, called iXRD (improved X-ray Detector) as a scientific payload with the primary objective of monitoring bright X-ray sources in the galaxy. We investigated the effects of the in-orbit background radiation on the iXRD based on Geant4 simulations. Several background components were included in the simulations such as the cosmic diffuse gamma-rays, galactic cosmic rays (protons and alpha particles), trapped protons and electrons, and albedo radiation arising from the upper layer of the atmosphere. The most dominant component is the albedo photon radiation which contributes at low and high energies alike in the instrument energy range of 20 keV - 200 keV. On the other hand, the cosmic diffuse gamma-ray contribution is the strongest between 20 keV and 60 keV in which most of the astrophysics source flux is expected. The third effective component is the galactic cosmic protons. The radiation due to the trapped particles, the albedo neutrons, and the cosmic alpha particles are negligible when the polar regions and the South Atlantic Anomaly region are excluded in the analysis. The total background count rates are <span>(sim )</span>0.36 and <span>(sim )</span>0.85 counts/s for the energy bands of 20 - 60 keV and 20 - 200 keV, respectively. We performed charge transportation simulations to determine the spectral response of the iXRD and used it in sensitivity calculations as well. The simulation framework was validated with experimental studies. The estimated sensitivity of 180 mCrab between the energy band of 20 keV - 100 keV indicates that the iXRD could achieve its scientific goals.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"117 - 140"},"PeriodicalIF":3.0,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09885-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4302679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CATCH: chasing all transients constellation hunters space mission 捕捉:追逐所有瞬态星座猎人的太空任务
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-01-06 DOI: 10.1007/s10686-022-09879-0
Panping Li, Qian-Qing Yin, Zhengwei Li, Lian Tao, Xiangyang Wen, Shuang-Nan Zhang, Liqiang Qi, Juan Zhang, Donghua Zhao, Dalin Li, Xizheng Yu, Qingcui Bu, Wen Chen, Yupeng Chen, Yiming Huang, Yue Huang, Ge Jin, Gang Li, Hongbang Liu, Xiaojing Liu, Ruican Ma, Wenxi Peng, Ruijing Tang, Yusa Wang, Jingyu Xiao, Shaolin Xiong, Sheng Yang, Yanji Yang, Chen Zhang, Tianchong Zhang, Liang Zhang, Xuan Zhang, Haisheng Zhao, Kang Zhao, Qingchang Zhao, Shujie Zhao, Xing Zhou

In time-domain astronomy, a substantial number of transients will be discovered by multi-wavelength and multi-messenger observatories, posing a great challenge for follow-up capabilities. We have thus proposed an intelligent X-ray constellation, the Chasing All Transients Constellation Hunters (CATCH) space mission. Consisting of 126 micro-satellites in three types, CATCH will have the capability to perform follow-up observations for a large number of different types of transients simultaneously. Each satellite in the constellation will carry lightweight X-ray optics and use a deployable mast to increase the focal length. The combination of different optics and detector systems enables different types of satellites to have multiform observation capabilities, including timing, spectroscopy, imaging, and polarization. Controlled by the intelligent system, different satellites can cooperate to perform uninterrupted monitoring, all-sky follow-up observations, and scanning observations with a flexible field of view (FOV) and multi-dimensional observations. Therefore, CATCH will be a powerful mission to study the dynamic universe. Here, we present the current design of the spacecraft, optics, detector system, constellation configuration and observing modes, as well as the development plan.

在时域天文学中,多波长和多信使天文台将发现大量的瞬变现象,这对后续能力提出了很大的挑战。因此,我们提出了一个智能x射线星座,追逐所有瞬态星座猎人(CATCH)太空任务。CATCH由三种类型的126颗微型卫星组成,将有能力同时对大量不同类型的瞬变进行后续观测。星座中的每颗卫星都将携带轻型x射线光学器件,并使用可展开的桅杆来增加焦距。不同光学和探测器系统的组合使不同类型的卫星具有多种形式的观测能力,包括定时、光谱、成像和极化。在智能系统的控制下,不同卫星可以协同进行不间断监测、全天跟踪观测、灵活视场扫描观测和多维度观测。因此,CATCH将是一项研究动态宇宙的强大任务。在这里,我们介绍了目前航天器的设计,光学,探测器系统,星座配置和观测模式,以及发展计划。
{"title":"CATCH: chasing all transients constellation hunters space mission","authors":"Panping Li,&nbsp;Qian-Qing Yin,&nbsp;Zhengwei Li,&nbsp;Lian Tao,&nbsp;Xiangyang Wen,&nbsp;Shuang-Nan Zhang,&nbsp;Liqiang Qi,&nbsp;Juan Zhang,&nbsp;Donghua Zhao,&nbsp;Dalin Li,&nbsp;Xizheng Yu,&nbsp;Qingcui Bu,&nbsp;Wen Chen,&nbsp;Yupeng Chen,&nbsp;Yiming Huang,&nbsp;Yue Huang,&nbsp;Ge Jin,&nbsp;Gang Li,&nbsp;Hongbang Liu,&nbsp;Xiaojing Liu,&nbsp;Ruican Ma,&nbsp;Wenxi Peng,&nbsp;Ruijing Tang,&nbsp;Yusa Wang,&nbsp;Jingyu Xiao,&nbsp;Shaolin Xiong,&nbsp;Sheng Yang,&nbsp;Yanji Yang,&nbsp;Chen Zhang,&nbsp;Tianchong Zhang,&nbsp;Liang Zhang,&nbsp;Xuan Zhang,&nbsp;Haisheng Zhao,&nbsp;Kang Zhao,&nbsp;Qingchang Zhao,&nbsp;Shujie Zhao,&nbsp;Xing Zhou","doi":"10.1007/s10686-022-09879-0","DOIUrl":"10.1007/s10686-022-09879-0","url":null,"abstract":"<div><p>In time-domain astronomy, a substantial number of transients will be discovered by multi-wavelength and multi-messenger observatories, posing a great challenge for follow-up capabilities. We have thus proposed an intelligent X-ray constellation, the Chasing All Transients Constellation Hunters (<i>CATCH</i>) space mission. Consisting of 126 micro-satellites in three types, <i>CATCH</i> will have the capability to perform follow-up observations for a large number of different types of transients simultaneously. Each satellite in the constellation will carry lightweight X-ray optics and use a deployable mast to increase the focal length. The combination of different optics and detector systems enables different types of satellites to have multiform observation capabilities, including timing, spectroscopy, imaging, and polarization. Controlled by the intelligent system, different satellites can cooperate to perform uninterrupted monitoring, all-sky follow-up observations, and scanning observations with a flexible field of view (FOV) and multi-dimensional observations. Therefore, <i>CATCH</i> will be a powerful mission to study the dynamic universe. Here, we present the current design of the spacecraft, optics, detector system, constellation configuration and observing modes, as well as the development plan.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"447 - 486"},"PeriodicalIF":3.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09879-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4249463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
SULIS: A coronal magnetism explorer for ESA’s Voyage 2050 苏利斯:这是欧空局2050年航次的日冕磁力探测器
IF 3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2022-12-21 DOI: 10.1007/s10686-022-09877-2
E. Scullion, H. Morgan, H. Lin, V. Fedun, R. Morton

Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.

磁场支配着日冕的结构和动力学。为了了解日冕的真实性质和长期存在的日冕加热问题,需要在大视场(FOV)上以足够高的分辨率(空间和时间)测量日冕的矢量磁场。尽管磁场在日冕物理学中具有重要意义,尽管最近在太阳磁场遥感方面取得了巨大进展,但对日冕磁场强度和方向的可靠测量尚不存在。这在很大程度上是由于日冕磁场的弱,先前估计在1-10 G的量级,以及观测极其微弱的日冕辐射的困难。随着太阳立方体卫星的链接成像光谱偏振测量(SULIS)任务,我们计划最终观察,详细和长期的,不间断的日冕磁场测量使用一个新的和非常实惠的仪器设计概念。这对于研究当地大气日冕加热过程,以及测量磁云的性质,特别是对地球有效的地球日冕物质抛射(cme)的性质,对于更准确地预测严重的空间天气活动,将具有深远的意义。
{"title":"SULIS: A coronal magnetism explorer for ESA’s Voyage 2050","authors":"E. Scullion,&nbsp;H. Morgan,&nbsp;H. Lin,&nbsp;V. Fedun,&nbsp;R. Morton","doi":"10.1007/s10686-022-09877-2","DOIUrl":"10.1007/s10686-022-09877-2","url":null,"abstract":"<div><p>Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"317 - 334"},"PeriodicalIF":3.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09877-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4814665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Experimental Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1