首页 > 最新文献

Experimental Astronomy最新文献

英文 中文
Introduction to the SATech-01 satellite HEBS (GECAM-C) SATech-01卫星HEBS (GECAM-C)简介
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-03-28 DOI: 10.1007/s10686-025-09991-x
Xinqiao Li, Xiangyang Wen, Shaolin Xiong, Zhenghua An, Yanbing Xu, Xiaohua Liang, Xiaojing Liu, Sheng Yang, Fan Zhang, Xilei Sun, Shuangnan Zhang, Min Gao, Jinzhou Wang, Dali Zhang, Ke Gong, Yaqing Liu, Xiaoyun Zhao, Zhenxia Zhang, Hong Lu, Wenxi Peng, Rui Qiao, Dongya Guo, Hui Wang, Yanguo Li, Chao Zheng, Chenwei Wang, Yanqiu Zhang, Lu Wang, Zhiqiang Ding, Xiaofeng Zhang

The primary scientific objective of the High Energy Burst Searcher (HEBS) is to serve as a crucial component of the global space monitoring network for high-energy celestial burst sources. HEBS aims to monitor the high-energy electromagnetic counterparts of gravitational wave events, as well as the high-energy radiation from rapid radio bursts, gamma-ray bursts, magnetar flares, and other high-energy celestial phenomena across the entire sky. This effort will provide essential data support for related physical research, including energy spectra, light curves, and positional information. The probe is deployed on the Satech-01 satellite and operates in a 500 km solar-synchronous orbit. HEBS is equipped with two types of detectors: the Gamma Ray Detector (GRD) and the Charged Particle Detector (CPD). The GRD employs lanthanum bromide crystals coupled with silicon photomultiplier (SiPM) technology, as well as sodium iodide crystals paired with SiPM technology, to detect X-rays and gamma rays in the energy range of 6 keV to 5.9 MeV. It enables the localization of gamma-ray bursts and other high-energy events through the coordinated detection of multiple probes oriented in different directions. The CPD utilizes plastic scintillator technology coupled with SiPM to detect charged particles within the energy range of 150 keV to 5 MeV. When combined with the GRD, it effectively identifies and distinguishes space particle events from actual celestial phenomena. The payload processor (Electronics Box, EBOX) features onboard triggering and positioning capabilities, transmitting trigger times and positional data via Beidou short messaging in quasi-real time. This information will guide other telescopes in conducting follow-up observations.

高能暴搜索器(HEBS)的主要科学目标是作为全球高能天体暴源空间监测网络的重要组成部分。HEBS的目标是监测引力波事件的高能电磁对应体,以及整个天空中快速射电暴、伽马射线暴、磁星耀斑和其他高能天体现象产生的高能辐射。这项工作将为相关的物理研究提供必要的数据支持,包括能谱、光曲线和位置信息。该探测器部署在Satech-01卫星上,在500公里的太阳同步轨道上运行。HEBS配备了两种类型的探测器:伽马射线探测器(GRD)和带电粒子探测器(CPD)。GRD采用溴化镧晶体与硅光电倍增管(SiPM)技术相结合,以及碘化钠晶体与SiPM技术相结合,探测6 keV至5.9 MeV能量范围内的x射线和伽马射线。它可以通过多个不同方向的探测器的协调探测来定位伽马射线暴和其他高能事件。CPD利用塑料闪烁体技术与SiPM相结合来检测能量范围在150 keV至5 MeV的带电粒子。当与GRD相结合时,它可以有效地识别和区分空间粒子事件和实际的天体现象。有效载荷处理器(electronic Box, EBOX)具有机载触发和定位能力,通过北斗短消息准实时传输触发时间和位置数据。这些信息将指导其他望远镜进行后续观测。
{"title":"Introduction to the SATech-01 satellite HEBS (GECAM-C)","authors":"Xinqiao Li,&nbsp;Xiangyang Wen,&nbsp;Shaolin Xiong,&nbsp;Zhenghua An,&nbsp;Yanbing Xu,&nbsp;Xiaohua Liang,&nbsp;Xiaojing Liu,&nbsp;Sheng Yang,&nbsp;Fan Zhang,&nbsp;Xilei Sun,&nbsp;Shuangnan Zhang,&nbsp;Min Gao,&nbsp;Jinzhou Wang,&nbsp;Dali Zhang,&nbsp;Ke Gong,&nbsp;Yaqing Liu,&nbsp;Xiaoyun Zhao,&nbsp;Zhenxia Zhang,&nbsp;Hong Lu,&nbsp;Wenxi Peng,&nbsp;Rui Qiao,&nbsp;Dongya Guo,&nbsp;Hui Wang,&nbsp;Yanguo Li,&nbsp;Chao Zheng,&nbsp;Chenwei Wang,&nbsp;Yanqiu Zhang,&nbsp;Lu Wang,&nbsp;Zhiqiang Ding,&nbsp;Xiaofeng Zhang","doi":"10.1007/s10686-025-09991-x","DOIUrl":"10.1007/s10686-025-09991-x","url":null,"abstract":"<div><p>The primary scientific objective of the High Energy Burst Searcher (HEBS) is to serve as a crucial component of the global space monitoring network for high-energy celestial burst sources. HEBS aims to monitor the high-energy electromagnetic counterparts of gravitational wave events, as well as the high-energy radiation from rapid radio bursts, gamma-ray bursts, magnetar flares, and other high-energy celestial phenomena across the entire sky. This effort will provide essential data support for related physical research, including energy spectra, light curves, and positional information. The probe is deployed on the Satech-01 satellite and operates in a 500 km solar-synchronous orbit. HEBS is equipped with two types of detectors: the Gamma Ray Detector (GRD) and the Charged Particle Detector (CPD). The GRD employs lanthanum bromide crystals coupled with silicon photomultiplier (SiPM) technology, as well as sodium iodide crystals paired with SiPM technology, to detect X-rays and gamma rays in the energy range of 6 keV to 5.9 MeV. It enables the localization of gamma-ray bursts and other high-energy events through the coordinated detection of multiple probes oriented in different directions. The CPD utilizes plastic scintillator technology coupled with SiPM to detect charged particles within the energy range of 150 keV to 5 MeV. When combined with the GRD, it effectively identifies and distinguishes space particle events from actual celestial phenomena. The payload processor (Electronics Box, EBOX) features onboard triggering and positioning capabilities, transmitting trigger times and positional data via Beidou short messaging in quasi-real time. This information will guide other telescopes in conducting follow-up observations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel optical design for wide-field imaging in X-ray astronomy 一种用于x射线天文学宽视场成像的新型光学设计
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-03-14 DOI: 10.1007/s10686-025-09992-w
Neeraj K. Tiwari, Santosh V. Vadawale, N. P. S. Mithun

Over the decades, astronomical X-ray telescopes have utilized the Wolter type-1 optical design, which provides stigmatic imaging in axial direction but suffers from coma and higher-order aberrations for off-axis sources. The Wolter-Schwarzschild design, with stigmatic imaging in the axial direction, while suffering from higher-order aberrations, is corrected for coma, thus performing better than the Wolter type-1. The Wolter type-1 and Wolter-Schwarzschild designs are optimized for on-axis but have reduced angular resolution when averaged over a wide field of view, with the averaging weighted by the area covered in the field of view. An optical design that maximizes angular resolution at the edge of the field of view rather than at the center is more suitable for wide-field X-ray telescopes required for deep-sky astronomical surveys or solar observations. A Hyperboloid-Hyperboloid optical design can compromise axial resolution to enhance field angle resolution, hence providing improved area-weighted average angular resolution over the Wolter-Schwarzschild design, but only for fields of view exceeding a specific size. Here, we introduce a new optical design that is free from coma aberration and capable of maximizing angular resolution at any desired field angle. This design consistently outperforms Wolter-1, Wolter-Schwarzschild, and Hyperboloid-Hyperboloid designs when averaged over any field of view size. The improvement in performance remains consistent across variations in other telescope parameters such as diameter, focal length, and mirror lengths. By utilizing this new optical design, we also present a design for a full-disk imaging solar X-ray telescope.

几十年来,天文x射线望远镜采用了Wolter -1型光学设计,这种设计在轴向上提供了污名化成像,但在离轴光源上存在彗差和高阶像差。Wolter- schwarzschild设计,具有轴向的污名化成像,同时遭受高阶像差,校正了彗差,因此性能优于Wolter- 1型。Wolter type-1和Wolter- schwarzschild设计在轴上进行了优化,但在宽视场上平均时,角分辨率会降低,平均值由视场中覆盖的面积加权。在视场边缘而不是中心最大化角分辨率的光学设计更适合用于深空天文调查或太阳观测所需的宽视场x射线望远镜。双曲面光学设计可以降低轴向分辨率以提高视场角分辨率,从而提供比woltter - schwarzschild设计更好的面积加权平均角分辨率,但仅适用于超过特定尺寸的视场。在这里,我们介绍了一种新的光学设计,它没有彗差,能够在任何期望的视场角度最大化角分辨率。当在任何视场尺寸上平均时,这种设计始终优于Wolter-1, Wolter-Schwarzschild和双曲面-双曲面设计。在其他望远镜参数(如直径、焦距和反射镜长度)的变化中,性能的改善保持一致。利用这种新的光学设计,我们还提出了一种全盘成像太阳x射线望远镜的设计。
{"title":"A novel optical design for wide-field imaging in X-ray astronomy","authors":"Neeraj K. Tiwari,&nbsp;Santosh V. Vadawale,&nbsp;N. P. S. Mithun","doi":"10.1007/s10686-025-09992-w","DOIUrl":"10.1007/s10686-025-09992-w","url":null,"abstract":"<div><p>Over the decades, astronomical X-ray telescopes have utilized the Wolter type-1 optical design, which provides stigmatic imaging in axial direction but suffers from coma and higher-order aberrations for off-axis sources. The Wolter-Schwarzschild design, with stigmatic imaging in the axial direction, while suffering from higher-order aberrations, is corrected for coma, thus performing better than the Wolter type-1. The Wolter type-1 and Wolter-Schwarzschild designs are optimized for on-axis but have reduced angular resolution when averaged over a wide field of view, with the averaging weighted by the area covered in the field of view. An optical design that maximizes angular resolution at the edge of the field of view rather than at the center is more suitable for wide-field X-ray telescopes required for deep-sky astronomical surveys or solar observations. A Hyperboloid-Hyperboloid optical design can compromise axial resolution to enhance field angle resolution, hence providing improved area-weighted average angular resolution over the Wolter-Schwarzschild design, but only for fields of view exceeding a specific size. Here, we introduce a new optical design that is free from coma aberration and capable of maximizing angular resolution at any desired field angle. This design consistently outperforms Wolter-1, Wolter-Schwarzschild, and Hyperboloid-Hyperboloid designs when averaged over any field of view size. The improvement in performance remains consistent across variations in other telescope parameters such as diameter, focal length, and mirror lengths. By utilizing this new optical design, we also present a design for a full-disk imaging solar X-ray telescope.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical optimization of a dual-band sun-as-a-star extreme ultraviolet spectrograph for measuring the line-of-sight velocity of coronal mass ejections 用于测量日冕物质抛射视距速度的双波段太阳恒星极紫外光谱仪的光学优化
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-03-08 DOI: 10.1007/s10686-025-09990-y
Sifan Guo, Yufei Feng, Xianyong Bai, Hui Tian, Wei Duan, Xiaoming Zhu, Yajie Chen, Yuanyong Deng, Haiying Zhang, Zhiyong Zhang, Zhiwei Feng, Xiao Yang, Qi Yang, Mohamed Sedik

The detection of Line-of-sight (LOS) velocity of coronal mass ejections (CMEs) is crucial for understanding and forecasting their propagation. The LOS velocity can be derived from the Sun-as-a-star extreme ultraviolet spectrograph based on the Doppler effect. However, the poor spectral resolution of existing instruments is not sufficient for detection. In the paper, we propose a dual-band Sun-as-a-star spectrograph with high spectral resolution for measuring the LOS velocity of CMEs. Based on a multilayer concave grating operating in a normal incident mode, we optimized the parameters of the spectrograph for the wavelength ranges of 18.3( sim )21.3 nm and 49.6( sim )52.9 nm. The spectral resolving power for these two ranges exceeds 1000 and 2000, respectively, which is about three times higher than that of the Extreme ultraviolet Variability Experiment onboard the Solar Dynamics Observatory. B(_4)C/Al and B(_4)C/Mo/Al multilayer structures were optimized to improve the diffraction efficiency across both bands simultaneously. We also evaluated the instrument performance by calculating the photon numbers. Additionally, we discussed the degradation of spectral resolution caused by the stability of satellite platform, determining that the stability should be better than ±7.2(^{prime prime })(( pm )0.002(^circ )) within the exposure time of 60 s. Our investigation provides a new way to observe Sun-as-a-star extreme ultraviolet spectrum.

探测日冕物质抛射(CMEs)的视线速度(LOS)对于了解和预测其传播至关重要。根据多普勒效应,可以从太阳即恒星的极紫外光谱仪中推导出 LOS 速度。然而,现有仪器的光谱分辨率较低,不足以进行探测。本文提出了一种具有高光谱分辨率的双波段日像星摄谱仪,用于测量 CME 的 LOS 速度。基于在正常入射模式下工作的多层凹面光栅,我们优化了波长范围为18.3(sim )21.3 nm和49.6(sim )52.9 nm的摄谱仪参数。这两个波段的光谱分辨能力分别超过1000和2000,比太阳动力学天文台上的极紫外变异实验的分辨能力高出约三倍。我们对 B(_4)C/Al 和 B(_4)C/Mo/Al 多层结构进行了优化,以同时提高两个波段的衍射效率。我们还通过计算光子数评估了仪器的性能。此外,我们还讨论了卫星平台稳定性引起的光谱分辨率下降问题,确定在60秒的曝光时间内,稳定性应优于±7.2(^{prime prime })(( pm )0.002(^circ ))。
{"title":"Optical optimization of a dual-band sun-as-a-star extreme ultraviolet spectrograph for measuring the line-of-sight velocity of coronal mass ejections","authors":"Sifan Guo,&nbsp;Yufei Feng,&nbsp;Xianyong Bai,&nbsp;Hui Tian,&nbsp;Wei Duan,&nbsp;Xiaoming Zhu,&nbsp;Yajie Chen,&nbsp;Yuanyong Deng,&nbsp;Haiying Zhang,&nbsp;Zhiyong Zhang,&nbsp;Zhiwei Feng,&nbsp;Xiao Yang,&nbsp;Qi Yang,&nbsp;Mohamed Sedik","doi":"10.1007/s10686-025-09990-y","DOIUrl":"10.1007/s10686-025-09990-y","url":null,"abstract":"<div><p>The detection of Line-of-sight (LOS) velocity of coronal mass ejections (CMEs) is crucial for understanding and forecasting their propagation. The LOS velocity can be derived from the Sun-as-a-star extreme ultraviolet spectrograph based on the Doppler effect. However, the poor spectral resolution of existing instruments is not sufficient for detection. In the paper, we propose a dual-band Sun-as-a-star spectrograph with high spectral resolution for measuring the LOS velocity of CMEs. Based on a multilayer concave grating operating in a normal incident mode, we optimized the parameters of the spectrograph for the wavelength ranges of 18.3<span>( sim )</span>21.3 nm and 49.6<span>( sim )</span>52.9 nm. The spectral resolving power for these two ranges exceeds 1000 and 2000, respectively, which is about three times higher than that of the Extreme ultraviolet Variability Experiment onboard the Solar Dynamics Observatory. B<span>(_4)</span>C/Al and B<span>(_4)</span>C/Mo/Al multilayer structures were optimized to improve the diffraction efficiency across both bands simultaneously. We also evaluated the instrument performance by calculating the photon numbers. Additionally, we discussed the degradation of spectral resolution caused by the stability of satellite platform, determining that the stability should be better than ±7.2<span>(^{prime prime })</span>(<span>( pm )</span>0.002<span>(^circ )</span>) within the exposure time of 60 s. Our investigation provides a new way to observe Sun-as-a-star extreme ultraviolet spectrum.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous multi-spacecraft observations with VLBI radio telescopes to study the interplanetary phase scintillation 利用VLBI射电望远镜进行多航天器同步观测,研究行星际相位闪烁
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-03-07 DOI: 10.1007/s10686-025-09989-5
N. M. M. Said, G. Molera Calvés, P. Kummamuru, J. Edwards, M. Maoli, G. Cimo’

Ground-based observations of spacecraft signals have been used to study space weather. However, single spacecraft measurements observed from the Earth have limitations in studying the structure and evolution of solar plasma as they are unable to differentiate spatial and temporal variations. To overcome this limitation and improve our understanding of interplanetary scintillation, we simultaneously observed radio signals transmitted by two co-orbiting spacecraft: the ESA Mars Express (MEX) and the Chinese National Space Administration Tianwen-1 (TIW-1). We conducted the observations from April to November 2021 using the University of Tasmania’s VLBI radio telescopes at 8.4 GHz. We employed the Planetary Radio Interferometer and Doppler Experiment (PRIDE) technique to determine the topocentric Doppler measurements and residual phase of the carrier signal. These observables were used to quantify the phase fluctuations of the spacecraft signals caused by solar wind and hydrodynamic turbulence in the interplanetary medium. The measured phase fluctuations RMS from both spacecraft show small differences which are caused by factors such as the spacecraft’s motion, onboard electronics, and variations in the uplink signal path through Earth’s ionosphere. These fluctuations decrease with solar elongation and correlate with solar radio flux at 10.7 cm (2800 MHz), indicating solar activity. The estimated total electron contents along MEX and TIW-1’s radio lines of sight are similar, with higher values at lower solar elongations. Simultaneous multi-spacecraft observations also enable RFI characterization, frequent spacecraft performance comparisons, and investigation of solar activity effects on spacecraft performance and scientific outcomes.

对航天器信号的地面观测已被用于研究空间天气。然而,从地球上观测到的单航天器测量在研究太阳等离子体的结构和演化方面存在局限性,因为它们无法区分空间和时间变化。为了克服这一限制并提高我们对行星际闪烁的理解,我们同时观测了两个共轨航天器:ESA火星快车(MEX)和中国国家航天局天文一号(TIW-1)传输的无线电信号。我们在2021年4月至11月期间使用塔斯马尼亚大学8.4 GHz的VLBI射电望远镜进行了观测。我们采用行星射电干涉仪和多普勒实验(PRIDE)技术来确定载波信号的地心多普勒测量值和剩余相位。这些观测数据被用来量化由太阳风和行星际介质中的流体动力学湍流引起的航天器信号的相位波动。从两个航天器上测量到的相位波动均方根值显示出微小的差异,这些差异是由航天器的运动、机载电子设备和通过地球电离层的上行信号路径的变化等因素引起的。这些波动随太阳伸长而减小,并与太阳辐射通量在10.7 cm (2800 MHz)相关,表明太阳活动。沿着MEX和TIW-1的射电视线估计的总电子含量是相似的,在太阳延伸率较低的地方有较高的值。同时进行的多航天器观测还使RFI特性、频繁的航天器性能比较以及太阳活动对航天器性能和科学成果的影响的研究成为可能。
{"title":"Simultaneous multi-spacecraft observations with VLBI radio telescopes to study the interplanetary phase scintillation","authors":"N. M. M. Said,&nbsp;G. Molera Calvés,&nbsp;P. Kummamuru,&nbsp;J. Edwards,&nbsp;M. Maoli,&nbsp;G. Cimo’","doi":"10.1007/s10686-025-09989-5","DOIUrl":"10.1007/s10686-025-09989-5","url":null,"abstract":"<div><p>Ground-based observations of spacecraft signals have been used to study space weather. However, single spacecraft measurements observed from the Earth have limitations in studying the structure and evolution of solar plasma as they are unable to differentiate spatial and temporal variations. To overcome this limitation and improve our understanding of interplanetary scintillation, we simultaneously observed radio signals transmitted by two co-orbiting spacecraft: the ESA Mars Express (MEX) and the Chinese National Space Administration Tianwen-1 (TIW-1). We conducted the observations from April to November 2021 using the University of Tasmania’s VLBI radio telescopes at 8.4 GHz. We employed the Planetary Radio Interferometer and Doppler Experiment (PRIDE) technique to determine the topocentric Doppler measurements and residual phase of the carrier signal. These observables were used to quantify the phase fluctuations of the spacecraft signals caused by solar wind and hydrodynamic turbulence in the interplanetary medium. The measured phase fluctuations RMS from both spacecraft show small differences which are caused by factors such as the spacecraft’s motion, onboard electronics, and variations in the uplink signal path through Earth’s ionosphere. These fluctuations decrease with solar elongation and correlate with solar radio flux at 10.7 cm (2800 MHz), indicating solar activity. The estimated total electron contents along MEX and TIW-1’s radio lines of sight are similar, with higher values at lower solar elongations. Simultaneous multi-spacecraft observations also enable RFI characterization, frequent spacecraft performance comparisons, and investigation of solar activity effects on spacecraft performance and scientific outcomes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09989-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The X-ray Integral Field Unit at the end of the Athena reformulation phase 雅典娜重塑阶段结束时的 X 射线积分场装置
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-03-04 DOI: 10.1007/s10686-025-09984-w
Philippe Peille, Didier Barret, Edoardo Cucchetti, Vincent Albouys, Luigi Piro, Aurora Simionescu, Massimo Cappi, Elise Bellouard, Céline Cénac-Morthé, Christophe Daniel, Alice Pradines, Alexis Finoguenov, Richard Kelley, J. Miguel Mas-Hesse, Stéphane Paltani, Gregor Rauw, Agata Rozanska, Jiri Svoboda, Joern Wilms, Marc Audard, Enrico Bozzo, Elisa Costantini, Mauro Dadina, Thomas Dauser, Anne Decourchelle, Jan-Willem den Herder, Andrea Goldwurm, Peter Jonker, Alex Markowitz, Mariano Mendez, Giovanni Miniutti, Silvano Molendi, Fabrizio Nicastro, François Pajot, Etienne Pointecouteau, Gabriel W. Pratt, Joop Schaye, Jacco Vink, Natalie Webb, Simon Bandler, Marco Barbera, Maria Teresa Ceballos, Ivan Charles, Roland den Hartog, W. Bertrand Doriese, Jean-Marc Duval, Flavio Gatti, Brian Jackson, Caroline Kilbourne, Claudio Macculi, Sylvain Martin, Yann Parot, Frederick Porter, Damien Prêle, Laurent Ravera, Stephen Smith, Jan Soucek, Tanguy Thibert, Eija Tuominen, Fabio Acero, Stefano Ettori, Nicolas Grosso, Jelle Kaastra, Pasquale Mazzotta, Jon Miller, Salvatore Sciortino, Sophie Beaumont, Matteo D’Andrea, Jelle de Plaa, Megan Eckart, Luciano Gottardi, Maurice Leutenegger, Simone Lotti, Alexei Molin, Lorenzo Natalucci, Muhammad Qazi Adil, Andrea Argan, Elisabetta Cavazzuti, Mauro Fiorini, Pourya Khosropanah, Eduardo Medinaceli Villegas, Gabriele Minervini, James Perry, Frederic Pinsard, Desi Raulin, Manuela Rigano, Peter Roelfsema, Denis Schwander, Santiago Terron, Guido Torrioli, Joel Ullom, Monika Zuchniak, Laurence Chaoul, Jose Miguel Torrejon, Frank Brachet, Beatriz Cobo, Malcolm Durkin, Valentina Fioretti, Hervé Geoffray, Lionel Jacques, Christian Kirsch, Ugo Lo Cicero, Joseph Adams, Emilie Gloaguen, Manuel Gonzalez, Samuel Hull, Erik Jellyman, Mikko Kiviranta, Kazuhiro Sakai, Emanuele Taralli, Davide Vaccaro, Paul van der Hulst, Jan van der Kuur, Bert-Joost van Leeuwen, Dennis van Loon, Nicholas Wakeham, Natalia Auricchio, Daniele Brienza, Oscar Cheatom, Philippe Franssen, Sabine Julien, Isabelle Le Mer, David Moirin, Vitor Silva, Michela Todaro, Nicolas Clerc, Alexis Coleiro, Andy Ptak, Simonetta Puccetti, Christian Surace, Shariefa Abdoelkariem, Christophe Adami, Corinne Aicardi, Jérôme André, Matteo Angelinelli, Shebli Anvar, Luis Horacio Arnaldi, Anthony Attard, Damian Audley, Florian Bancel, Kimberly Banks, Vivian Bernard, Jan Geralt Bij de Vaate, Donata Bonino, Anthony Bonnamy, Patrick Bonny, Charles Boreux, Ayoub Bounab, Maïmouna Brigitte, Marcel Bruijn, Clément Brysbaert, Andrea Bulgarelli, Simona Calarco, Thierry Camus, Florent Canourgues, Vito Capobianco, Nicolas Cardiel, Edvige Celasco, Si Chen, James Chervenak, Fabio Chiarello, Sébastien Clamagirand, Odile Coeur-Joly, Leonardo Corcione, Mickael Coriat, Anais Coulet, Bernard Courty, Alexandre Coynel, Antonino D’Ai, Eugenio Dambrauskas, Fabio D’anca, Lea Dauner, Matteo De Gerone, Natalie DeNigris, Johannes Dercksen, Martin de Wit, Pieter Dieleman, Michael DiPirro, Eric Doumayrou, Lionel Duband, Luc Dubbeldam, Michel Dupieux, Simon Dupourqué, Jean Louis Durand, Dominique Eckert, Philippe Ferrando, Lorenzo Ferrari Barusso, Fred Finkbeiner, Mariateresa Fiocchi, Hervé Fossecave, Stefano Gabici, Giovanni Gallucci, Florent Gant, Jian-Rong Gao, Fabio Gastaldello, Ludovic Genolet, Simona Ghizzardi, Elisa Giovannini, Margherita Giustini, Alain Givaudan, Olivier Godet, Alicia Gomez, Raoul Gonzalez, Ghassem Gozaliasl, Laurent Grandsire, David Granena, Michel Gros, Corentin Guerin, Emmanuel Guilhem, Gian Paolo Guizzo, Liyi Gu, Kent Irwin, Christian Jacquey, Agnieszka Janiuk, Jean Jaubert, Antoine Jolly, Thierry Jourdan, Jürgen Knödlseder, Ole König, Andrew Korb, Ingo Kreykenbohm, David Lafforgue, Radek Lan, Maélyss Larrieu, Philippe Laudet, Philippe Laurent, Sylvain Laurent, Monica Laurenza, Maël Le Cam, Jean Lesrel, Sebastiano Ligori, Maximilian Lorenz, Alfredo Luminari, Kristin Madsen, Océane Maisonnave, Lorenzo Marelli, Wilfried Marty, Zoé Massida, Didier Massonet, Irwin Maussang, Pablo Eleazar Merino Alonso, Jean Mesquida, Teresa Mineo, Nicola Montinaro, David Murat, Kenichiro Nagayoshi, Yaël Nazé, Loïc Noguès, François Nouals, Cristina Ortega, Francesca Panessa, Luigi Parodi, Enrico Piconcelli, Ciro Pinto, Delphine Porquet, Thomas Prouvé, Michael Punch, Guillaume Rioland, Marc-Olivier Riollet, Louis Rodriguez, Anton Roig, Mauro Roncarelli, Lionel Roucayrol, Gilles Roudil, Lander Ruiz de Ocenda, Luisa Sciortino, Olivier Simonella, Michael Sordet, Ulrich Taubenschuss, Guilhem Terrasa, Régis Terrier, Pietro Ubertini, Ludek Uhlir, Michela Uslenghi, Henk van Weers, Salvatore Varisco, Peggy Varniere, Angela Volpe, Gavin Walmsley, Michael Wise, Andreas Wolnievik, Grzegorz Woźniak

The Athena mission entered a redefinition phase in July 2022, driven by the imperative to reduce the mission cost at completion for the European Space Agency below an acceptable target, while maintaining the flagship nature of its science return. This notably called for a complete redesign of the X-ray Integral Field Unit (X-IFU) cryogenic architecture towards a simpler active cooling chain. Passive cooling via successive radiative panels at spacecraft level is now used to provide a 50 K thermal environment to an X-IFU owned cryostat. 4.5 K cooling is achieved via a single remote active cryocooler unit, while a multi-stage Adiabatic Demagnetization Refrigerator ensures heat lift down to the 50 mK required by the detectors. Amidst these changes, the core concept of the readout chain remains robust, employing Transition Edge Sensor microcalorimeters and a SQUID-based Time-Division Multiplexing scheme. Noteworthy is the introduction of a slower pixel. This enables an increase in the multiplexing factor (from 34 to 48) without compromising the instrument energy resolution, hence keeping significant system margins to the new 4 eV resolution requirement. This allows reducing the number of channels by more than a factor two, and thus the resource demands on the system, while keeping a 4’ field of view (compared to 5’ before). In this article, we will give an overview of this new architecture, before detailing its anticipated performances. Finally, we will present the new X-IFU schedule, with its short term focus on demonstration activities towards a mission adoption in early 2027

雅典娜任务于2022年7月进入了重新定义阶段,这是由于欧洲航天局必须在任务完成后将任务成本降低到可接受的目标以下,同时保持其科学返回的旗舰性质。这特别要求对x射线积分现场单元(X-IFU)低温结构进行彻底的重新设计,以实现更简单的主动冷却链。通过航天器水平的连续辐射板进行被动冷却,现在用于为X-IFU拥有的低温恒温器提供50 K的热环境。4.5 K冷却是通过一个远程主动制冷机单元实现的,而多级绝热消磁制冷机确保热提升降至探测器所需的50 mK。在这些变化中,读出链的核心概念仍然稳健,采用过渡边缘传感器微热量计和基于squid的时分复用方案。值得注意的是引入了一个较慢的像素。这可以在不影响仪器能量分辨率的情况下增加多路复用因子(从34到48),从而保持显著的系统裕度,以满足新的4 eV分辨率要求。这允许将通道数量减少两倍以上,从而减少对系统的资源需求,同时保持4 ‘的视野(与之前的5 ’相比)。在本文中,我们将概述这种新体系结构,然后详细介绍其预期性能。最后,我们将介绍新的X-IFU时间表,其短期重点是在2027年初采用任务的演示活动
{"title":"The X-ray Integral Field Unit at the end of the Athena reformulation phase","authors":"Philippe Peille,&nbsp;Didier Barret,&nbsp;Edoardo Cucchetti,&nbsp;Vincent Albouys,&nbsp;Luigi Piro,&nbsp;Aurora Simionescu,&nbsp;Massimo Cappi,&nbsp;Elise Bellouard,&nbsp;Céline Cénac-Morthé,&nbsp;Christophe Daniel,&nbsp;Alice Pradines,&nbsp;Alexis Finoguenov,&nbsp;Richard Kelley,&nbsp;J. Miguel Mas-Hesse,&nbsp;Stéphane Paltani,&nbsp;Gregor Rauw,&nbsp;Agata Rozanska,&nbsp;Jiri Svoboda,&nbsp;Joern Wilms,&nbsp;Marc Audard,&nbsp;Enrico Bozzo,&nbsp;Elisa Costantini,&nbsp;Mauro Dadina,&nbsp;Thomas Dauser,&nbsp;Anne Decourchelle,&nbsp;Jan-Willem den Herder,&nbsp;Andrea Goldwurm,&nbsp;Peter Jonker,&nbsp;Alex Markowitz,&nbsp;Mariano Mendez,&nbsp;Giovanni Miniutti,&nbsp;Silvano Molendi,&nbsp;Fabrizio Nicastro,&nbsp;François Pajot,&nbsp;Etienne Pointecouteau,&nbsp;Gabriel W. Pratt,&nbsp;Joop Schaye,&nbsp;Jacco Vink,&nbsp;Natalie Webb,&nbsp;Simon Bandler,&nbsp;Marco Barbera,&nbsp;Maria Teresa Ceballos,&nbsp;Ivan Charles,&nbsp;Roland den Hartog,&nbsp;W. Bertrand Doriese,&nbsp;Jean-Marc Duval,&nbsp;Flavio Gatti,&nbsp;Brian Jackson,&nbsp;Caroline Kilbourne,&nbsp;Claudio Macculi,&nbsp;Sylvain Martin,&nbsp;Yann Parot,&nbsp;Frederick Porter,&nbsp;Damien Prêle,&nbsp;Laurent Ravera,&nbsp;Stephen Smith,&nbsp;Jan Soucek,&nbsp;Tanguy Thibert,&nbsp;Eija Tuominen,&nbsp;Fabio Acero,&nbsp;Stefano Ettori,&nbsp;Nicolas Grosso,&nbsp;Jelle Kaastra,&nbsp;Pasquale Mazzotta,&nbsp;Jon Miller,&nbsp;Salvatore Sciortino,&nbsp;Sophie Beaumont,&nbsp;Matteo D’Andrea,&nbsp;Jelle de Plaa,&nbsp;Megan Eckart,&nbsp;Luciano Gottardi,&nbsp;Maurice Leutenegger,&nbsp;Simone Lotti,&nbsp;Alexei Molin,&nbsp;Lorenzo Natalucci,&nbsp;Muhammad Qazi Adil,&nbsp;Andrea Argan,&nbsp;Elisabetta Cavazzuti,&nbsp;Mauro Fiorini,&nbsp;Pourya Khosropanah,&nbsp;Eduardo Medinaceli Villegas,&nbsp;Gabriele Minervini,&nbsp;James Perry,&nbsp;Frederic Pinsard,&nbsp;Desi Raulin,&nbsp;Manuela Rigano,&nbsp;Peter Roelfsema,&nbsp;Denis Schwander,&nbsp;Santiago Terron,&nbsp;Guido Torrioli,&nbsp;Joel Ullom,&nbsp;Monika Zuchniak,&nbsp;Laurence Chaoul,&nbsp;Jose Miguel Torrejon,&nbsp;Frank Brachet,&nbsp;Beatriz Cobo,&nbsp;Malcolm Durkin,&nbsp;Valentina Fioretti,&nbsp;Hervé Geoffray,&nbsp;Lionel Jacques,&nbsp;Christian Kirsch,&nbsp;Ugo Lo Cicero,&nbsp;Joseph Adams,&nbsp;Emilie Gloaguen,&nbsp;Manuel Gonzalez,&nbsp;Samuel Hull,&nbsp;Erik Jellyman,&nbsp;Mikko Kiviranta,&nbsp;Kazuhiro Sakai,&nbsp;Emanuele Taralli,&nbsp;Davide Vaccaro,&nbsp;Paul van der Hulst,&nbsp;Jan van der Kuur,&nbsp;Bert-Joost van Leeuwen,&nbsp;Dennis van Loon,&nbsp;Nicholas Wakeham,&nbsp;Natalia Auricchio,&nbsp;Daniele Brienza,&nbsp;Oscar Cheatom,&nbsp;Philippe Franssen,&nbsp;Sabine Julien,&nbsp;Isabelle Le Mer,&nbsp;David Moirin,&nbsp;Vitor Silva,&nbsp;Michela Todaro,&nbsp;Nicolas Clerc,&nbsp;Alexis Coleiro,&nbsp;Andy Ptak,&nbsp;Simonetta Puccetti,&nbsp;Christian Surace,&nbsp;Shariefa Abdoelkariem,&nbsp;Christophe Adami,&nbsp;Corinne Aicardi,&nbsp;Jérôme André,&nbsp;Matteo Angelinelli,&nbsp;Shebli Anvar,&nbsp;Luis Horacio Arnaldi,&nbsp;Anthony Attard,&nbsp;Damian Audley,&nbsp;Florian Bancel,&nbsp;Kimberly Banks,&nbsp;Vivian Bernard,&nbsp;Jan Geralt Bij de Vaate,&nbsp;Donata Bonino,&nbsp;Anthony Bonnamy,&nbsp;Patrick Bonny,&nbsp;Charles Boreux,&nbsp;Ayoub Bounab,&nbsp;Maïmouna Brigitte,&nbsp;Marcel Bruijn,&nbsp;Clément Brysbaert,&nbsp;Andrea Bulgarelli,&nbsp;Simona Calarco,&nbsp;Thierry Camus,&nbsp;Florent Canourgues,&nbsp;Vito Capobianco,&nbsp;Nicolas Cardiel,&nbsp;Edvige Celasco,&nbsp;Si Chen,&nbsp;James Chervenak,&nbsp;Fabio Chiarello,&nbsp;Sébastien Clamagirand,&nbsp;Odile Coeur-Joly,&nbsp;Leonardo Corcione,&nbsp;Mickael Coriat,&nbsp;Anais Coulet,&nbsp;Bernard Courty,&nbsp;Alexandre Coynel,&nbsp;Antonino D’Ai,&nbsp;Eugenio Dambrauskas,&nbsp;Fabio D’anca,&nbsp;Lea Dauner,&nbsp;Matteo De Gerone,&nbsp;Natalie DeNigris,&nbsp;Johannes Dercksen,&nbsp;Martin de Wit,&nbsp;Pieter Dieleman,&nbsp;Michael DiPirro,&nbsp;Eric Doumayrou,&nbsp;Lionel Duband,&nbsp;Luc Dubbeldam,&nbsp;Michel Dupieux,&nbsp;Simon Dupourqué,&nbsp;Jean Louis Durand,&nbsp;Dominique Eckert,&nbsp;Philippe Ferrando,&nbsp;Lorenzo Ferrari Barusso,&nbsp;Fred Finkbeiner,&nbsp;Mariateresa Fiocchi,&nbsp;Hervé Fossecave,&nbsp;Stefano Gabici,&nbsp;Giovanni Gallucci,&nbsp;Florent Gant,&nbsp;Jian-Rong Gao,&nbsp;Fabio Gastaldello,&nbsp;Ludovic Genolet,&nbsp;Simona Ghizzardi,&nbsp;Elisa Giovannini,&nbsp;Margherita Giustini,&nbsp;Alain Givaudan,&nbsp;Olivier Godet,&nbsp;Alicia Gomez,&nbsp;Raoul Gonzalez,&nbsp;Ghassem Gozaliasl,&nbsp;Laurent Grandsire,&nbsp;David Granena,&nbsp;Michel Gros,&nbsp;Corentin Guerin,&nbsp;Emmanuel Guilhem,&nbsp;Gian Paolo Guizzo,&nbsp;Liyi Gu,&nbsp;Kent Irwin,&nbsp;Christian Jacquey,&nbsp;Agnieszka Janiuk,&nbsp;Jean Jaubert,&nbsp;Antoine Jolly,&nbsp;Thierry Jourdan,&nbsp;Jürgen Knödlseder,&nbsp;Ole König,&nbsp;Andrew Korb,&nbsp;Ingo Kreykenbohm,&nbsp;David Lafforgue,&nbsp;Radek Lan,&nbsp;Maélyss Larrieu,&nbsp;Philippe Laudet,&nbsp;Philippe Laurent,&nbsp;Sylvain Laurent,&nbsp;Monica Laurenza,&nbsp;Maël Le Cam,&nbsp;Jean Lesrel,&nbsp;Sebastiano Ligori,&nbsp;Maximilian Lorenz,&nbsp;Alfredo Luminari,&nbsp;Kristin Madsen,&nbsp;Océane Maisonnave,&nbsp;Lorenzo Marelli,&nbsp;Wilfried Marty,&nbsp;Zoé Massida,&nbsp;Didier Massonet,&nbsp;Irwin Maussang,&nbsp;Pablo Eleazar Merino Alonso,&nbsp;Jean Mesquida,&nbsp;Teresa Mineo,&nbsp;Nicola Montinaro,&nbsp;David Murat,&nbsp;Kenichiro Nagayoshi,&nbsp;Yaël Nazé,&nbsp;Loïc Noguès,&nbsp;François Nouals,&nbsp;Cristina Ortega,&nbsp;Francesca Panessa,&nbsp;Luigi Parodi,&nbsp;Enrico Piconcelli,&nbsp;Ciro Pinto,&nbsp;Delphine Porquet,&nbsp;Thomas Prouvé,&nbsp;Michael Punch,&nbsp;Guillaume Rioland,&nbsp;Marc-Olivier Riollet,&nbsp;Louis Rodriguez,&nbsp;Anton Roig,&nbsp;Mauro Roncarelli,&nbsp;Lionel Roucayrol,&nbsp;Gilles Roudil,&nbsp;Lander Ruiz de Ocenda,&nbsp;Luisa Sciortino,&nbsp;Olivier Simonella,&nbsp;Michael Sordet,&nbsp;Ulrich Taubenschuss,&nbsp;Guilhem Terrasa,&nbsp;Régis Terrier,&nbsp;Pietro Ubertini,&nbsp;Ludek Uhlir,&nbsp;Michela Uslenghi,&nbsp;Henk van Weers,&nbsp;Salvatore Varisco,&nbsp;Peggy Varniere,&nbsp;Angela Volpe,&nbsp;Gavin Walmsley,&nbsp;Michael Wise,&nbsp;Andreas Wolnievik,&nbsp;Grzegorz Woźniak","doi":"10.1007/s10686-025-09984-w","DOIUrl":"10.1007/s10686-025-09984-w","url":null,"abstract":"<div><p>The Athena mission entered a redefinition phase in July 2022, driven by the imperative to reduce the mission cost at completion for the European Space Agency below an acceptable target, while maintaining the flagship nature of its science return. This notably called for a complete redesign of the X-ray Integral Field Unit (X-IFU) cryogenic architecture towards a simpler active cooling chain. Passive cooling via successive radiative panels at spacecraft level is now used to provide a 50 K thermal environment to an X-IFU owned cryostat. 4.5 K cooling is achieved via a single remote active cryocooler unit, while a multi-stage Adiabatic Demagnetization Refrigerator ensures heat lift down to the 50 mK required by the detectors. Amidst these changes, the core concept of the readout chain remains robust, employing Transition Edge Sensor microcalorimeters and a SQUID-based Time-Division Multiplexing scheme. Noteworthy is the introduction of a slower pixel. This enables an increase in the multiplexing factor (from 34 to 48) without compromising the instrument energy resolution, hence keeping significant system margins to the new 4 eV resolution requirement. This allows reducing the number of channels by more than a factor two, and thus the resource demands on the system, while keeping a 4’ field of view (compared to 5’ before). In this article, we will give an overview of this new architecture, before detailing its anticipated performances. Finally, we will present the new X-IFU schedule, with its short term focus on demonstration activities towards a mission adoption in early 2027</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mission analysis, design and operations plan of India’s first polarimetry satellite: X-ray Polarimetry Satellite (XPoSat) 印度首颗偏振测量卫星:x射线偏振测量卫星(XPoSat)的任务分析、设计和运行计划
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-25 DOI: 10.1007/s10686-025-09988-6
Himani Saini, K. V. Madhu, Ritu Karidhal

X-ray Polarimeter Satellite (XPoSat) is India’s first landmark mission dedicated to X-ray polarimetry, with the aim of measuring and studying X-rays emitted by bright astronomical objects such as black hole X-ray binaries, pulsar wind nebulae, and accretion-powered pulsars. Polar Satellite Launch Vehicle-C58 (PSLV-C58) launched the XPoSat mission on 1st January 2024, equipped with two significant, scientific instruments: XSPECT (X-ray Spectroscopy and Timing) and POLIX (POLarimeter Instrument in X-rays). With the launch of XPoSat, a new and important fourth dimension of polarization has been added. POLIX became the first in the world to provide measurements of polarization in 8–30 kilo electron Volt (keV) energy band. XSPECT is a spectroscopy payload responsible for providing timing and spectral information in 0.8–15 keV energy band of X-ray emissions from about 54 potential identified cosmic X-ray sources. Astronomical sources emitting X-rays are sites of strong gravity, and strong magnetic fields and have a variety of geometries for scattering, which are expected to give rise to polarization signatures in these sources. This article provides a comprehensive overview from mission specifications to mission design, mission planning, mission analysis, and mission operations aspects of spacecraft configuration, operations, and on-orbit operations of XPoSat mission with the science brought by the first-time flown payload in high energy bands, which will allow astronomers to explore materials under intense magnetic and gravitational fields. The challenges involved in planning and executing the mission operations with critical scenarios have also been highlighted.

x射线偏振测量卫星(XPoSat)是印度首个致力于x射线偏振测量的里程碑式任务,旨在测量和研究明亮天体(如黑洞x射线双星、脉冲星风星云和吸积动力脉冲星)发射的x射线。极地卫星运载火箭- c58 (PSLV-C58)于2024年1月1日发射了XPoSat任务,配备了两个重要的科学仪器:XSPECT (x射线光谱和定时)和POLIX (x射线偏振计仪器)。随着XPoSat的发射,增加了一个新的、重要的第四个极化维度。POLIX成为世界上第一个提供8-30千电子伏特(keV)能带偏振测量的仪器。XSPECT是一个光谱有效载荷,负责提供来自54个潜在确定的宇宙x射线源的0.8-15 keV波段x射线发射的定时和光谱信息。发射x射线的天文源是强重力和强磁场的场所,并且具有各种散射几何形状,预计会在这些源中产生极化特征。本文从XPoSat任务的任务规格、任务设计、任务规划、任务分析、任务操作等方面,对XPoSat任务的航天器配置、运行、在轨运行等方面进行了全面概述,并结合高能量带首次飞行载荷带来的科学知识,为天文学家探索强磁场和引力场下的物质提供了条件。还强调了规划和执行具有关键情况的特派团行动所涉及的挑战。
{"title":"Mission analysis, design and operations plan of India’s first polarimetry satellite: X-ray Polarimetry Satellite (XPoSat)","authors":"Himani Saini,&nbsp;K. V. Madhu,&nbsp;Ritu Karidhal","doi":"10.1007/s10686-025-09988-6","DOIUrl":"10.1007/s10686-025-09988-6","url":null,"abstract":"<div><p><b>X</b>-ray <b>Po</b>larimeter <b>Sat</b>ellite (XPoSat) is India’s first landmark mission dedicated to X-ray polarimetry, with the aim of measuring and studying X-rays emitted by bright astronomical objects such as black hole X-ray binaries, pulsar wind nebulae, and accretion-powered pulsars. Polar Satellite Launch Vehicle-C58 (PSLV-C58) launched the XPoSat mission on 1st January 2024, equipped with two significant, scientific instruments: XSPECT (X-ray Spectroscopy and Timing) and POLIX (POLarimeter Instrument in X-rays). With the launch of XPoSat, a new and important fourth dimension of polarization has been added. POLIX became the first in the world to provide measurements of polarization in <b>8–30</b> kilo electron Volt (keV) energy band. XSPECT is a spectroscopy payload responsible for providing timing and spectral information in 0.8–15 keV energy band of X-ray emissions from about 54 potential identified cosmic X-ray sources. Astronomical sources emitting X-rays are sites of strong gravity, and strong magnetic fields and have a variety of geometries for scattering, which are expected to give rise to polarization signatures in these sources. This article provides a comprehensive overview from mission specifications to mission design, mission planning, mission analysis, and mission operations aspects of spacecraft configuration, operations, and on-orbit operations of XPoSat mission with the science brought by the first-time flown payload in high energy bands, which will allow astronomers to explore materials under intense magnetic and gravitational fields. The challenges involved in planning and executing the mission operations with critical scenarios have also been highlighted.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Sliding Flux Ramp Demodulation algorithm with high sampling rate in Microwave SQUID Multiplexer 微波SQUID复用器中高采样率的滑动磁通斜坡解调算法
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-17 DOI: 10.1007/s10686-025-09986-8
Guofu Liao, Congzhan Liu, Zhengwei Li, Daikang Yan, Xiangxiang Ren, Yongjie Zhang, Laiyu Zhang, Yu Xu, Shibo Shu, He Gao, Yifei Zhang, Xuefeng Lu, Xufang Li, He Xu, Di Wu

Microwave SQUID Multiplexing ((mu )MUX) is a widely used technique in the low-temperature detectors community as it offers a high capacity for reading large-scale Transition-Edge Sensor (TES) arrays. This paper proposes a Sliding Flux Ramp Demodulation (SFRD) algorithm for (mu )MUX readout system. It can achieve a sampling rate in the order of MHz while maintaining a multiplexing ratio of about one thousand. Advancing of this large array readout technique makes it possible to observe scientific objects with improved time resolution and event count rate. This will be highly helpful for TES calorimeters in X-ray applications, such as X-ray astrophysics missions.

微波SQUID多路复用((mu ) MUX)是一种广泛应用于低温探测器社区的技术,因为它提供了高容量的读取大规模过渡边缘传感器(TES)阵列。提出了一种适用于(mu ) MUX读出系统的滑动磁通斜坡解调(SFRD)算法。它可以实现兆赫数量级的采样率,同时保持约一千的复用比。这种大阵列读出技术的发展,使观测科学对象的时间分辨率和事件计数率的提高成为可能。这将对TES量热计在x射线应用(如x射线天体物理任务)中的应用有很大帮助。
{"title":"The Sliding Flux Ramp Demodulation algorithm with high sampling rate in Microwave SQUID Multiplexer","authors":"Guofu Liao,&nbsp;Congzhan Liu,&nbsp;Zhengwei Li,&nbsp;Daikang Yan,&nbsp;Xiangxiang Ren,&nbsp;Yongjie Zhang,&nbsp;Laiyu Zhang,&nbsp;Yu Xu,&nbsp;Shibo Shu,&nbsp;He Gao,&nbsp;Yifei Zhang,&nbsp;Xuefeng Lu,&nbsp;Xufang Li,&nbsp;He Xu,&nbsp;Di Wu","doi":"10.1007/s10686-025-09986-8","DOIUrl":"10.1007/s10686-025-09986-8","url":null,"abstract":"<div><p>Microwave SQUID Multiplexing (<span>(mu )</span>MUX) is a widely used technique in the low-temperature detectors community as it offers a high capacity for reading large-scale Transition-Edge Sensor (TES) arrays. This paper proposes a Sliding Flux Ramp Demodulation (SFRD) algorithm for <span>(mu )</span>MUX readout system. It can achieve a sampling rate in the order of MHz while maintaining a multiplexing ratio of about one thousand. Advancing of this large array readout technique makes it possible to observe scientific objects with improved time resolution and event count rate. This will be highly helpful for TES calorimeters in X-ray applications, such as X-ray astrophysics missions.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SVOM-GRM trigger performance study and verification som - grm触发器性能研究和验证
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-07 DOI: 10.1007/s10686-025-09983-x
Jiang He, Jian-Chao Sun, Yong-Wei Dong, Bo-Bing Wu, Shi-Jie Zheng, Lu Li, Jiang-Tao Liu, Xin Liu, Hao-Li Shi, Li-Ming Song, Rui-Jie Wang, Juan Zhang, Li Zhang, Shuang-Nan Zhang, Xiao-Yun Zhao, Xing-Guang Liu

The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a collaborative satellite developed by China and France, specifically designed for observing and studying Gamma-Ray Bursts (GRBs) as well as other variable sources. Among its four on-board payloads, the Gamma-Ray Monitor (GRM) is responsible for detecting high-energy photons ranging from 15 keV to 5 MeV, equipped with real-time triggering and localization capabilities. In this paper, we primarily focus on investigating the triggering performance of GRM. Firstly, the energy response matrix of each detector is obtained by using the Geant4 simulation toolkit. Based on the results of background simulations and given samples of GRB, the instrument’s sensitivity and the detection efficiency to GRBs from different directions are estimated. The results demonstrate that GRM exhibits superior sensitivity to GRBs with harder energy spectrum, enabling more than (80%) of the GRBs to be triggered within its field of view. By considering satellite orbit and attitude, we conduct a 3-year simulation of GRB observations which reveals that approximately 106 GRBs can be detected annually in the energy range of 50-300 keV by GRM. Moreover, it is observed that optimal triggering energy range correlates with the hardness index values of the GRBs. Finally, we discuss the on-orbit triggering algorithm that has been implemented by GRM along with developing a ground-based multi-timescale search algorithm for identifying potential GRB events. Our work contributes to understanding the on-orbit triggering performance characteristics demonstrated by GRM, while also providing a benchmark for refining ground-based strategies focused on detecting new instances of GRBs, thus amplifying the scientific output obtained from utilizing GRM’s capabilities.

天基多波段天文可变物体监测仪(SVOM)是中国和法国合作研制的一颗卫星,专门用于观测和研究伽马射线暴(GRBs)以及其他可变源。在其四个机载有效载荷中,伽马射线监测器(GRM)负责探测15 keV至5 MeV的高能光子,配备实时触发和定位能力。在本文中,我们主要研究GRM的触发性能。首先,利用Geant4仿真工具包获得各探测器的能量响应矩阵;根据背景模拟结果和给定的GRB样本,估计了该仪器对不同方向GRB的灵敏度和探测效率。结果表明,GRM对具有较硬能谱的grb具有优越的灵敏度,在其视场内可以触发超过(80%)的grb。在考虑卫星轨道和姿态的情况下,我们进行了为期3年的GRB观测模拟,结果表明GRM每年可以探测到大约106个能量在50-300 keV范围内的GRB。此外,还观察到最佳触发能量范围与伽马射线的硬度指标值相关。最后,我们讨论了GRM实现的在轨触发算法,并开发了一种用于识别潜在GRB事件的地基多时间尺度搜索算法。我们的工作有助于理解GRM所展示的在轨触发性能特征,同时也为改进用于探测新grb实例的地基策略提供基准,从而扩大利用GRM能力获得的科学产出。
{"title":"SVOM-GRM trigger performance study and verification","authors":"Jiang He,&nbsp;Jian-Chao Sun,&nbsp;Yong-Wei Dong,&nbsp;Bo-Bing Wu,&nbsp;Shi-Jie Zheng,&nbsp;Lu Li,&nbsp;Jiang-Tao Liu,&nbsp;Xin Liu,&nbsp;Hao-Li Shi,&nbsp;Li-Ming Song,&nbsp;Rui-Jie Wang,&nbsp;Juan Zhang,&nbsp;Li Zhang,&nbsp;Shuang-Nan Zhang,&nbsp;Xiao-Yun Zhao,&nbsp;Xing-Guang Liu","doi":"10.1007/s10686-025-09983-x","DOIUrl":"10.1007/s10686-025-09983-x","url":null,"abstract":"<div><p>The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a collaborative satellite developed by China and France, specifically designed for observing and studying Gamma-Ray Bursts (GRBs) as well as other variable sources. Among its four on-board payloads, the Gamma-Ray Monitor (GRM) is responsible for detecting high-energy photons ranging from 15 keV to 5 MeV, equipped with real-time triggering and localization capabilities. In this paper, we primarily focus on investigating the triggering performance of GRM. Firstly, the energy response matrix of each detector is obtained by using the Geant4 simulation toolkit. Based on the results of background simulations and given samples of GRB, the instrument’s sensitivity and the detection efficiency to GRBs from different directions are estimated. The results demonstrate that GRM exhibits superior sensitivity to GRBs with harder energy spectrum, enabling more than <span>(80%)</span> of the GRBs to be triggered within its field of view. By considering satellite orbit and attitude, we conduct a 3-year simulation of GRB observations which reveals that approximately 106 GRBs can be detected annually in the energy range of 50-300 keV by GRM. Moreover, it is observed that optimal triggering energy range correlates with the hardness index values of the GRBs. Finally, we discuss the on-orbit triggering algorithm that has been implemented by GRM along with developing a ground-based multi-timescale search algorithm for identifying potential GRB events. Our work contributes to understanding the on-orbit triggering performance characteristics demonstrated by GRM, while also providing a benchmark for refining ground-based strategies focused on detecting new instances of GRBs, thus amplifying the scientific output obtained from utilizing GRM’s capabilities.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-fidelity transfer learning strategy for surface deformation measurement of large reflector antennas 大型反射面天线表面变形测量的多保真度迁移学习策略
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-06 DOI: 10.1007/s10686-025-09980-0
Zihan Zhang, Qian Ye, Na Wang, Guoxiang Meng

As the observation frequency of large-aperture antennas increases, the requirements for measuring main reflector deformation have become more stringent. Recently, the rapid development of deep learning has led to its application in antenna deformation prediction. However, achieving high accuracy requires a large number of high-fidelity deformation samples, which is often challenging to obtain. To address these problems, this paper establishes a high-accuracy antenna surface deformation measurement model based on a multi-fidelity transfer learning neural network (MF-TLNN). Firstly, a low-fidelity surrogate model is constructed using a large number of simulation deformation samples to ensure its robustness. Secondly, the MF-TLNN structure is designed and trained using a small number of high-fidelity samples obtained from actual measurements of the main reflector deformation via out-of-focus (OOF) holography method. Thirdly, a Zernike correction module is utilized to provide additional constraints and ensure the stability of the results. Experimental results show that the proposed method can closely approximate radio holography measurements in terms of accuracy and is almost real-time in terms of speed.

随着大口径天线观测频率的增加,对测量主反射面变形的要求也越来越严格。近年来,深度学习的快速发展使其在天线变形预测中得到了应用。然而,实现高精度需要大量高保真变形样本,这往往是具有挑战性的。针对这些问题,本文建立了一种基于多保真度迁移学习神经网络(MF-TLNN)的高精度天线表面变形测量模型。首先,利用大量模拟变形样本构建低保真代理模型,保证模型的鲁棒性;其次,利用离焦(OOF)全息法对主反射面变形进行实测得到的少量高保真样本,设计并训练了MF-TLNN结构;第三,利用Zernike校正模块提供额外约束,保证结果的稳定性。实验结果表明,该方法在精度上接近于射电全息测量,在速度上接近于实时性。
{"title":"A multi-fidelity transfer learning strategy for surface deformation measurement of large reflector antennas","authors":"Zihan Zhang,&nbsp;Qian Ye,&nbsp;Na Wang,&nbsp;Guoxiang Meng","doi":"10.1007/s10686-025-09980-0","DOIUrl":"10.1007/s10686-025-09980-0","url":null,"abstract":"<div><p>As the observation frequency of large-aperture antennas increases, the requirements for measuring main reflector deformation have become more stringent. Recently, the rapid development of deep learning has led to its application in antenna deformation prediction. However, achieving high accuracy requires a large number of high-fidelity deformation samples, which is often challenging to obtain. To address these problems, this paper establishes a high-accuracy antenna surface deformation measurement model based on a multi-fidelity transfer learning neural network (MF-TLNN). Firstly, a low-fidelity surrogate model is constructed using a large number of simulation deformation samples to ensure its robustness. Secondly, the MF-TLNN structure is designed and trained using a small number of high-fidelity samples obtained from actual measurements of the main reflector deformation via out-of-focus (OOF) holography method. Thirdly, a Zernike correction module is utilized to provide additional constraints and ensure the stability of the results. Experimental results show that the proposed method can closely approximate radio holography measurements in terms of accuracy and is almost real-time in terms of speed.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(gamma )/hadron discrimination by analysis of the muon lateral distribution and the ALPAQUITA array (gamma )基于μ子横向分布和ALPAQUITA阵列分析的/强子识别
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-03 DOI: 10.1007/s10686-025-09981-z
M. Anzorena, E. de la Fuente, K. Fujita, R. Garcia, K. Goto, Y. Hayashi, K. Hibino, N. Hotta, G. Imaizumi, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, T. Makishima, Y. Masuda, S. Matsuhashi, M. Matsumoto, R. Mayta, P. Miranda, A. Mizuno, K. Munakata, Y. Nakamura, M. Nishizawa, Y. Noguchi, S. Ogio, M. Ohnishi, S. Okukawa, A. Oshima, M. Raljevic, H. Rivera, T. Saito, T. Sako, T. K. Sako, T. Shibasaki, S. Shibata, A. Shiomi, M. Subieta, F. Sugimoto, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, R. Usui, G. Yamagishi, K. Yamazaki, Y. Yokoe

A new method using the muon lateral distribution and an underground muon detector to achieve high discrimination power against hadrons is presented. The method is designed to be applied in the Andes Large-area PArticle detector for Cosmic-ray physics and Astronomy (ALPACA) experiment in Bolivia. This new observatory in the Southern hemisphere has the goal of detecting >100 TeV (gamma ) rays in search for the origins of Galactic cosmic rays. The method uses the weighted sum of the lateral distribution of the muons detected by underground detectors to separate between air showers initiated by cosmic rays and (gamma ) rays. We evaluate the performance of the method through Monte Carlo simulations with CORSIKA and Geant4 and apply the analysis to the prototype of ALPACA, ALPAQUITA. With the application of this method in ALPAQUITA, we achieve an improvement of about 18 % in the energy range from 60 to 100 TeV over the estimated sensitivity using only the total number of muons.

提出了一种利用介子横向分布和地下介子探测器实现对强子高分辨能力的新方法。该方法被设计用于玻利维亚安第斯大面积宇宙射线物理与天文粒子探测器(ALPACA)实验。这个位于南半球的新天文台的目标是探测&gt; 100tev (gamma )射线,以寻找银河宇宙射线的起源。该方法利用地下探测器探测到的μ子横向分布的加权和来区分宇宙射线和(gamma )射线引发的空气阵雨。利用CORSIKA和Geant4对该方法进行了蒙特卡罗仿真,并将分析结果应用于ALPACA、ALPAQUITA原型机。通过在ALPAQUITA中的应用,我们实现了约18的改进% in the energy range from 60 to 100 TeV over the estimated sensitivity using only the total number of muons.
{"title":"(gamma )/hadron discrimination by analysis of the muon lateral distribution and the ALPAQUITA array","authors":"M. Anzorena,&nbsp;E. de la Fuente,&nbsp;K. Fujita,&nbsp;R. Garcia,&nbsp;K. Goto,&nbsp;Y. Hayashi,&nbsp;K. Hibino,&nbsp;N. Hotta,&nbsp;G. Imaizumi,&nbsp;A. Jimenez-Meza,&nbsp;Y. Katayose,&nbsp;C. Kato,&nbsp;S. Kato,&nbsp;T. Kawashima,&nbsp;K. Kawata,&nbsp;T. Koi,&nbsp;H. Kojima,&nbsp;T. Makishima,&nbsp;Y. Masuda,&nbsp;S. Matsuhashi,&nbsp;M. Matsumoto,&nbsp;R. Mayta,&nbsp;P. Miranda,&nbsp;A. Mizuno,&nbsp;K. Munakata,&nbsp;Y. Nakamura,&nbsp;M. Nishizawa,&nbsp;Y. Noguchi,&nbsp;S. Ogio,&nbsp;M. Ohnishi,&nbsp;S. Okukawa,&nbsp;A. Oshima,&nbsp;M. Raljevic,&nbsp;H. Rivera,&nbsp;T. Saito,&nbsp;T. Sako,&nbsp;T. K. Sako,&nbsp;T. Shibasaki,&nbsp;S. Shibata,&nbsp;A. Shiomi,&nbsp;M. Subieta,&nbsp;F. Sugimoto,&nbsp;N. Tajima,&nbsp;W. Takano,&nbsp;M. Takita,&nbsp;Y. Tameda,&nbsp;K. Tanaka,&nbsp;R. Ticona,&nbsp;I. Toledano-Juarez,&nbsp;H. Tsuchiya,&nbsp;Y. Tsunesada,&nbsp;S. Udo,&nbsp;R. Usui,&nbsp;G. Yamagishi,&nbsp;K. Yamazaki,&nbsp;Y. Yokoe","doi":"10.1007/s10686-025-09981-z","DOIUrl":"10.1007/s10686-025-09981-z","url":null,"abstract":"<div><p>A new method using the muon lateral distribution and an underground muon detector to achieve high discrimination power against hadrons is presented. The method is designed to be applied in the Andes Large-area PArticle detector for Cosmic-ray physics and Astronomy (ALPACA) experiment in Bolivia. This new observatory in the Southern hemisphere has the goal of detecting &gt;100 TeV <span>(gamma )</span> rays in search for the origins of Galactic cosmic rays. The method uses the weighted sum of the lateral distribution of the muons detected by underground detectors to separate between air showers initiated by cosmic rays and <span>(gamma )</span> rays. We evaluate the performance of the method through Monte Carlo simulations with CORSIKA and Geant4 and apply the analysis to the prototype of ALPACA, ALPAQUITA. With the application of this method in ALPAQUITA, we achieve an improvement of about 18 % in the energy range from 60 to 100 TeV over the estimated sensitivity using only the total number of muons.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09981-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1