首页 > 最新文献

Experimental Astronomy最新文献

英文 中文
An optimization framework for wide-field small aperture telescope arrays used in sky surveys 一种用于巡天的大视场小口径望远镜阵列优化框架
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-05-07 DOI: 10.1007/s10686-025-10004-0
Wennan Xiang, Peng Jia, Zhengyang Li, Jifeng Liu, Zhenyu Ying, Zeyu Bai

For time-domain astronomy, it is crucial to frequently image celestial objects at specific depths within a predetermined cadence. To fulfill these scientific demands, scientists globally have started or planned the development of non-interferometric telescope arrays in recent years. Due to the numerous parameters involved in configuring these arrays, there is a need for an automated optimization framework that selects parameter sets to satisfy scientific needs while minimizing costs. In this paper, we introduce such a framework, which integrates optical design software, an exposure time calculator, and an optimization algorithm, to balance the observation capabilities and the cost of optical telescope arrays. Neural networks are utilized to speed up results retrieval of the system with different configurations. We use the SiTian project as a case study to demonstrate the framework’s effectiveness, showing that this approach can aid scientists in selecting optimal parameter sets. The code for this framework is published in the China Virtual Observatory PaperData Repository, enabling users to optimize parameters for various non-interferometric telescope array projects.

对于时域天文学来说,在预定的节奏内频繁地对特定深度的天体进行成像是至关重要的。为了满足这些科学需求,近年来,全球科学家已经开始或计划开发非干涉望远镜阵列。由于配置这些阵列涉及众多参数,因此需要一个自动优化框架来选择参数集以满足科学需求,同时将成本降至最低。在本文中,我们介绍了一个集成光学设计软件、曝光时间计算器和优化算法的框架,以平衡光学望远镜阵列的观测能力和成本。利用神经网络来提高系统在不同配置下的检索速度。我们以四田项目为例,证明了该框架的有效性,表明该方法可以帮助科学家选择最优参数集。该框架的代码发布在中国虚拟天文台论文数据库中,使用户能够优化各种非干涉望远镜阵列项目的参数。
{"title":"An optimization framework for wide-field small aperture telescope arrays used in sky surveys","authors":"Wennan Xiang,&nbsp;Peng Jia,&nbsp;Zhengyang Li,&nbsp;Jifeng Liu,&nbsp;Zhenyu Ying,&nbsp;Zeyu Bai","doi":"10.1007/s10686-025-10004-0","DOIUrl":"10.1007/s10686-025-10004-0","url":null,"abstract":"<div><p>For time-domain astronomy, it is crucial to frequently image celestial objects at specific depths within a predetermined cadence. To fulfill these scientific demands, scientists globally have started or planned the development of non-interferometric telescope arrays in recent years. Due to the numerous parameters involved in configuring these arrays, there is a need for an automated optimization framework that selects parameter sets to satisfy scientific needs while minimizing costs. In this paper, we introduce such a framework, which integrates optical design software, an exposure time calculator, and an optimization algorithm, to balance the observation capabilities and the cost of optical telescope arrays. Neural networks are utilized to speed up results retrieval of the system with different configurations. We use the SiTian project as a case study to demonstrate the framework’s effectiveness, showing that this approach can aid scientists in selecting optimal parameter sets. The code for this framework is published in the China Virtual Observatory PaperData Repository, enabling users to optimize parameters for various non-interferometric telescope array projects.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143913918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-calibration of GRID via correlative spectral analysis of GRBs 基于grb相关光谱分析的GRID交叉定标
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-05-06 DOI: 10.1007/s10686-025-10002-2
Zirui Yang, Chenyu Wang, Hanwen Lin, Xiaofan Pan, Qize Liu, Xutao Zheng, Huaizhong Gao, Longhao Li, Qidong Wang, Jianping Cheng, Zhi Zeng, Ming Zeng, Hua Feng, Binbin Zhang, Zhonghai Wang, Rong Zhou, Yuanyuan Liu, Lin Lin, Jiayong Zhong, Jianyong Jiang, Wentao Han, Yang Tian, Benda Xu

Gamma-ray bursts (GRBs) are among the most energetic phenomena in the universe, and their observation has significantly advanced with the development of space-based gamma-ray telescopes. The Gamma-Ray Integrated Detectors (GRID) mission has initiated a nanosatellite constellation capable of all-sky GRB monitoring, deploying 12 detector payloads in low Earth orbit and collecting its first batch of scientific data. For GRB analysis, dedicated detector response matrices (DRMs) were individually constructed for each detector using Monte Carlo simulations and ground calibration. To further validate detector performance under real operational conditions, cross-calibration with existing space missions offers a robust validation. Herein, cross-calibration between the GRID detectors and the Fermi’s Gamma-ray Burst Monitor (GBM) was performed through joint spectral analysis. The excellent agreement between the instruments validates the accuracy of GRID’s DRMs and the reliability of its scientific data. For nanosatellite constellations like GRID, cross-calibration through orbital observations involving multiple distributed detector payloads is a crucial tool for ensuring uniformity and verifying overall performance of such systems.

伽玛射线暴(GRBs)是宇宙中能量最高的现象之一,随着天基伽玛射线望远镜的发展,对其的观测取得了显著进展。伽马射线集成探测器(GRID)任务启动了一个能够全天监测GRB的纳米卫星星座,在近地轨道部署了12个探测器有效载荷,并收集了第一批科学数据。在GRB分析中,利用蒙特卡罗模拟和地面标定分别构建了专用探测器响应矩阵(DRMs)。为了进一步验证探测器在实际操作条件下的性能,与现有空间任务的交叉校准提供了可靠的验证。为此,通过联合光谱分析,对GRID探测器和费米伽马射线暴监测器(GBM)进行了交叉校准。仪器之间的良好一致性验证了GRID drm的准确性和科学数据的可靠性。对于像GRID这样的纳米卫星星座,通过涉及多个分布式探测器有效载荷的轨道观测进行交叉校准是确保均匀性和验证此类系统整体性能的关键工具。
{"title":"Cross-calibration of GRID via correlative spectral analysis of GRBs","authors":"Zirui Yang,&nbsp;Chenyu Wang,&nbsp;Hanwen Lin,&nbsp;Xiaofan Pan,&nbsp;Qize Liu,&nbsp;Xutao Zheng,&nbsp;Huaizhong Gao,&nbsp;Longhao Li,&nbsp;Qidong Wang,&nbsp;Jianping Cheng,&nbsp;Zhi Zeng,&nbsp;Ming Zeng,&nbsp;Hua Feng,&nbsp;Binbin Zhang,&nbsp;Zhonghai Wang,&nbsp;Rong Zhou,&nbsp;Yuanyuan Liu,&nbsp;Lin Lin,&nbsp;Jiayong Zhong,&nbsp;Jianyong Jiang,&nbsp;Wentao Han,&nbsp;Yang Tian,&nbsp;Benda Xu","doi":"10.1007/s10686-025-10002-2","DOIUrl":"10.1007/s10686-025-10002-2","url":null,"abstract":"<div><p>Gamma-ray bursts (GRBs) are among the most energetic phenomena in the universe, and their observation has significantly advanced with the development of space-based gamma-ray telescopes. The Gamma-Ray Integrated Detectors (GRID) mission has initiated a nanosatellite constellation capable of all-sky GRB monitoring, deploying 12 detector payloads in low Earth orbit and collecting its first batch of scientific data. For GRB analysis, dedicated detector response matrices (DRMs) were individually constructed for each detector using Monte Carlo simulations and ground calibration. To further validate detector performance under real operational conditions, cross-calibration with existing space missions offers a robust validation. Herein, cross-calibration between the GRID detectors and the Fermi’s Gamma-ray Burst Monitor (GBM) was performed through joint spectral analysis. The excellent agreement between the instruments validates the accuracy of GRID’s DRMs and the reliability of its scientific data. For nanosatellite constellations like GRID, cross-calibration through orbital observations involving multiple distributed detector payloads is a crucial tool for ensuring uniformity and verifying overall performance of such systems.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-10002-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143908731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground-breaking exoplanet science with the ANDES spectrograph at the ELT 利用ELT的安第斯光谱仪进行开创性的系外行星科学研究
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-05-06 DOI: 10.1007/s10686-025-10000-4
Enric Palle, Katia Biazzo, Emeline Bolmont, Paul Mollière, Katja Poppenhaeger, Jayne Birkby, Matteo Brogi, Gael Chauvin, Andrea Chiavassa, Jens Hoeijmakers, Emmanuel Lellouch, Christophe Lovis, Roberto Maiolino, Lisa Nortmann, Hannu Parviainen, Lorenzo Pino, Martin Turbet, Jesse Weder, Simon Albrecht, Simone Antoniucci, Susana C. Barros, Andre Beaudoin, Bjorn Benneke, Isabelle Boisse, Aldo S. Bonomo, Francesco Borsa, Alexis Brandeker, Wolfgang Brandner, Lars A. Buchhave, Anne-Laure Cheffot, Robin Deborde, Florian Debras, Rene Doyon, Paolo Di Marcantonio, Paolo Giacobbe, Jonay I. González Hernández, Ravit Helled, Laura Kreidberg, Pedro Machado, Jesus Maldonado, Alessandro Marconi, B. L. Canto Martins, Adriano Miceli, Christoph Mordasini, Mamadou N’Diaye, Andrzej Niedzielski, Brunella Nisini, Livia Origlia, Celine Peroux, Alexander G. M. Pietrow, Enrico Pinna, Emily Rauscher, Sabine Reffert, Cristina Rodríguez-López, Philippe Rousselot, Nicoletta Sanna, Nuno C. Santos, Adrien Simonnin, Alejandro Suárez Mascareño, Alessio Zanutta, Maria Rosa Zapatero-Osorio, Mathias Zechmeister

In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.

在过去的十年中,通过透射/发射光谱和相互关联技术进行的高光谱分辨率的系外行星大气研究已经成为一种强大而巩固的方法。目前的限制是在行星凌日过程中可以获得的信噪比,而这最终又受到望远镜尺寸的限制。这一限制将被安第斯(ANDES)所克服,这是一种用于超大望远镜的光学和近红外高分辨率光谱仪,目前正处于B阶段的开发阶段。安第斯将成为系外行星科学的强大变革性工具。它将使对巨行星大气的研究成为可能,不仅可以精确地确定大气成分,还可以研究同位素组成、动力学和天气模式,绘制行星大气图,探测大气形成和演化模型。安第斯望远镜前所未有的角度分辨率,也将使我们能够探索行星在原行星盘中形成的初始条件。然而,安第斯的主要科学案例是对小型岩石系外行星大气的研究,包括生物标志物检测的潜力,而达到这一科学案例的能力正在推动其仪器设计。在这里,我们讨论我们的模拟和观测策略,以实现这一特定的科学目标。由于ANDES将与NASA的JWST和ESA的ARIEL任务同时运行,它将在高光谱分辨率和低光谱分辨率的行星大气特征方面提供巨大的协同作用。此外,安第斯望远镜还将能够首次通过反射光探测几颗巨行星和小行星的大气层。特别是,我们展示了安第斯如何能够在几个十分之一的夜晚内解锁附近非过境宜居带地球大小的行星的黄金样本的反射光大气信号,这是一个目前没有其他批准的天文设施能够达到的科学目标。
{"title":"Ground-breaking exoplanet science with the ANDES spectrograph at the ELT","authors":"Enric Palle,&nbsp;Katia Biazzo,&nbsp;Emeline Bolmont,&nbsp;Paul Mollière,&nbsp;Katja Poppenhaeger,&nbsp;Jayne Birkby,&nbsp;Matteo Brogi,&nbsp;Gael Chauvin,&nbsp;Andrea Chiavassa,&nbsp;Jens Hoeijmakers,&nbsp;Emmanuel Lellouch,&nbsp;Christophe Lovis,&nbsp;Roberto Maiolino,&nbsp;Lisa Nortmann,&nbsp;Hannu Parviainen,&nbsp;Lorenzo Pino,&nbsp;Martin Turbet,&nbsp;Jesse Weder,&nbsp;Simon Albrecht,&nbsp;Simone Antoniucci,&nbsp;Susana C. Barros,&nbsp;Andre Beaudoin,&nbsp;Bjorn Benneke,&nbsp;Isabelle Boisse,&nbsp;Aldo S. Bonomo,&nbsp;Francesco Borsa,&nbsp;Alexis Brandeker,&nbsp;Wolfgang Brandner,&nbsp;Lars A. Buchhave,&nbsp;Anne-Laure Cheffot,&nbsp;Robin Deborde,&nbsp;Florian Debras,&nbsp;Rene Doyon,&nbsp;Paolo Di Marcantonio,&nbsp;Paolo Giacobbe,&nbsp;Jonay I. González Hernández,&nbsp;Ravit Helled,&nbsp;Laura Kreidberg,&nbsp;Pedro Machado,&nbsp;Jesus Maldonado,&nbsp;Alessandro Marconi,&nbsp;B. L. Canto Martins,&nbsp;Adriano Miceli,&nbsp;Christoph Mordasini,&nbsp;Mamadou N’Diaye,&nbsp;Andrzej Niedzielski,&nbsp;Brunella Nisini,&nbsp;Livia Origlia,&nbsp;Celine Peroux,&nbsp;Alexander G. M. Pietrow,&nbsp;Enrico Pinna,&nbsp;Emily Rauscher,&nbsp;Sabine Reffert,&nbsp;Cristina Rodríguez-López,&nbsp;Philippe Rousselot,&nbsp;Nicoletta Sanna,&nbsp;Nuno C. Santos,&nbsp;Adrien Simonnin,&nbsp;Alejandro Suárez Mascareño,&nbsp;Alessio Zanutta,&nbsp;Maria Rosa Zapatero-Osorio,&nbsp;Mathias Zechmeister","doi":"10.1007/s10686-025-10000-4","DOIUrl":"10.1007/s10686-025-10000-4","url":null,"abstract":"<div><p>In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-10000-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143908666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De-jittering Ariel: An optimized algorithm 去抖动Ariel:优化算法
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-05-06 DOI: 10.1007/s10686-025-09999-3
Andrea Bocchieri, Lorenzo V. Mugnai, Enzo Pascale, Andreas Papageorgiou, Angèle Syty, Angelos Tsiaras, Paul Eccleston, Giorgio Savini, Giovanna Tinetti, Renaud Broquet, Patrick Chapman, Gianfranco Sechi

The European Space Agency’s Ariel mission, scheduled for launch in 2029, aims to conduct the first large-scale survey of atmospheric spectra of transiting exoplanets. Ariel achieves the high photometric stability on transit timescales required to detect the spectroscopic signatures of chemical elements with a payload design optimized for transit photometry that either eliminates known systematics or allows for their removal during data processing without significantly degrading or biasing the detection. Jitter in the spacecraft’s line of sight is a source of disturbance when measuring the spectra of exoplanet atmospheres. We describe an improved algorithm for de-jittering Ariel observations simulated in the time domain. We opt for an approach based on the spatial information on the Point Spread Function (PSF) distortion from jitter to detrend the optical signals. The jitter model is based on representative simulations from Airbus Defence and Space, the prime contractor for the Ariel service module. We investigate the precision and biases of the retrieved atmospheric spectra from the jitter-detrended observations. At long wavelengths, the photometric stability of the Ariel spectrometer is already dominated by photon noise. Our algorithm effectively de-jitters both photometric and spectroscopic data, ensuring that the performance remains photon noise-limited across the entire Ariel spectrum, fully compliant with mission requirements. This work contributes to the development of the data reduction pipeline for Ariel, aligning with its scientific goals, and may also benefit other astronomical telescopes and instrumentation.

欧洲航天局的Ariel任务计划于2029年发射,旨在对凌日系外行星的大气光谱进行首次大规模调查。Ariel在过境时间尺度上实现了检测化学元素光谱特征所需的高光度稳定性,其有效载荷设计针对过境光度法进行了优化,既可以消除已知的系统性,也可以在数据处理过程中去除它们,而不会显着降低或偏向检测。在测量系外行星大气光谱时,航天器视线中的抖动是一个干扰源。我们描述了一种在时域模拟Ariel观测值去抖动的改进算法。我们选择了一种基于点扩展函数(PSF)抖动失真的空间信息的方法来消除光信号的趋势。抖动模型是基于空中客车防务与航天公司的代表性模拟,该公司是Ariel服务舱的主承包商。我们研究了从抖动趋势观测中反演的大气光谱的精度和偏差。在长波波段,Ariel光谱仪的光度稳定性已经受到光子噪声的支配。我们的算法有效地消除了光度和光谱数据的抖动,确保在整个Ariel光谱中保持光子噪声限制的性能,完全符合任务要求。这项工作有助于Ariel数据简化管道的发展,符合其科学目标,也可能使其他天文望远镜和仪器受益。
{"title":"De-jittering Ariel: An optimized algorithm","authors":"Andrea Bocchieri,&nbsp;Lorenzo V. Mugnai,&nbsp;Enzo Pascale,&nbsp;Andreas Papageorgiou,&nbsp;Angèle Syty,&nbsp;Angelos Tsiaras,&nbsp;Paul Eccleston,&nbsp;Giorgio Savini,&nbsp;Giovanna Tinetti,&nbsp;Renaud Broquet,&nbsp;Patrick Chapman,&nbsp;Gianfranco Sechi","doi":"10.1007/s10686-025-09999-3","DOIUrl":"10.1007/s10686-025-09999-3","url":null,"abstract":"<div><p>The European Space Agency’s <i>Ariel</i> mission, scheduled for launch in 2029, aims to conduct the first large-scale survey of atmospheric spectra of transiting exoplanets. <i>Ariel</i> achieves the high photometric stability on transit timescales required to detect the spectroscopic signatures of chemical elements with a payload design optimized for transit photometry that either eliminates known systematics or allows for their removal during data processing without significantly degrading or biasing the detection. Jitter in the spacecraft’s line of sight is a source of disturbance when measuring the spectra of exoplanet atmospheres. We describe an improved algorithm for de-jittering <i>Ariel</i> observations simulated in the time domain. We opt for an approach based on the spatial information on the Point Spread Function (PSF) distortion from jitter to detrend the optical signals. The jitter model is based on representative simulations from Airbus Defence and Space, the prime contractor for the <i>Ariel</i> service module. We investigate the precision and biases of the retrieved atmospheric spectra from the jitter-detrended observations. At long wavelengths, the photometric stability of the <i>Ariel</i> spectrometer is already dominated by photon noise. Our algorithm effectively de-jitters both photometric and spectroscopic data, ensuring that the performance remains photon noise-limited across the entire <i>Ariel</i> spectrum, fully compliant with mission requirements. This work contributes to the development of the data reduction pipeline for <i>Ariel</i>, aligning with its scientific goals, and may also benefit other astronomical telescopes and instrumentation.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09999-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143908665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An acoustic levitator design for suspending cosmic dust analogues and aerosol particles in light scattering experiments 光散射实验中用于悬浮宇宙尘埃类似物和气溶胶粒子的声学悬浮器设计
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-04-22 DOI: 10.1007/s10686-025-09994-8
A. Colin, O. Muñoz, F. J. García-Izquierdo, E. Frattin, J. Martikainen, Z. Gray, J. L. Ramos, J. Jiménez, A. Tobaruela, J. M. Gómez-López, I. Bustamante, J. C. Gómez, F. Moreno, A. Marzo

We present a design of an acoustic levitator composed of 35 ultrasonic transducers operating at 40 kHz configured to form a spherical cavity. The acoustic radiation force measured experimentally in the center of the cavity is ({{varvec{F}}}_{rad}approx 9.6 mN), enough for levitating spheres as well as irregular particles of different materials of up to ~ 50 mg. Levitation tests have been performed with particles of different geometries and compositions, including liquid droplets and minerals relevant in studies of atmospheric aerosol and cosmic dust. This device has been deployed in the center of a polar nephelometer set-up to conduct studies of light scattering by irregular solid particles and liquid droplets. Test experiments have been carried out using a 1.5 mm diameter NBK- 7 glass sphere, for which three elements of the scattering matrix have been measured as functions of the scattering angle using a 647 nm diode laser. Mie theory calculations of the scattering matrix elements at this wavelength agree well with the measurements, demonstrating the functionality of the whole device.

我们提出了一种由35个工作在40 kHz的超声换能器组成的声学悬浮器的设计,配置形成一个球形腔。在空腔中心实验测量的声辐射力为({{varvec{F}}}_{rad}approx 9.6 mN),足以使球体以及不同材料的不规则颗粒悬浮高达50毫克。对不同几何形状和成分的颗粒进行了悬浮试验,包括与大气气溶胶和宇宙尘埃研究有关的液滴和矿物。该装置已被部署在极地浊度计的中心,用于研究不规则固体颗粒和液滴的光散射。用直径1.5 mm的NBK- 7玻璃球进行了测试实验,用647 nm二极管激光器测量了散射矩阵的三个元素与散射角的关系。在该波长处散射矩阵元素的Mie理论计算与测量结果吻合良好,证明了整个装置的功能性。
{"title":"An acoustic levitator design for suspending cosmic dust analogues and aerosol particles in light scattering experiments","authors":"A. Colin,&nbsp;O. Muñoz,&nbsp;F. J. García-Izquierdo,&nbsp;E. Frattin,&nbsp;J. Martikainen,&nbsp;Z. Gray,&nbsp;J. L. Ramos,&nbsp;J. Jiménez,&nbsp;A. Tobaruela,&nbsp;J. M. Gómez-López,&nbsp;I. Bustamante,&nbsp;J. C. Gómez,&nbsp;F. Moreno,&nbsp;A. Marzo","doi":"10.1007/s10686-025-09994-8","DOIUrl":"10.1007/s10686-025-09994-8","url":null,"abstract":"<div><p>We present a design of an acoustic levitator composed of 35 ultrasonic transducers operating at 40 <i>kHz</i> configured to form a spherical cavity. The acoustic radiation force measured experimentally in the center of the cavity is <span>({{varvec{F}}}_{rad}approx 9.6 mN)</span>, enough for levitating spheres as well as irregular particles of different materials of up to ~ 50 <i>mg</i>. Levitation tests have been performed with particles of different geometries and compositions, including liquid droplets and minerals relevant in studies of atmospheric aerosol and cosmic dust. This device has been deployed in the center of a polar nephelometer set-up to conduct studies of light scattering by irregular solid particles and liquid droplets. Test experiments have been carried out using a 1.5 <i>mm</i> diameter NBK- 7 glass sphere, for which three elements of the scattering matrix have been measured as functions of the scattering angle using a 647 <i>nm</i> diode laser. Mie theory calculations of the scattering matrix elements at this wavelength agree well with the measurements, demonstrating the functionality of the whole device.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09994-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the proton-induced radiation damage of pixelated CdZnTe detectors for space applications 空间应用像素化CdZnTe探测器质子辐射损伤研究
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-04-22 DOI: 10.1007/s10686-025-09998-4
Hao Chang, Ming Zeng, Di Wang, Hua Feng, Yang Tian, Ge Ma, Xiaofan Pan, Chen Li, Zhongming Wang, Xin Zhuo, Xutao Zheng, Yulan Li

High-performance pixelated CZT detectors that achieve 3D position sensitivity are promising candidates for use in Compton imaging telescopes. We proposed to use pixelated CZT detectors in the MeV Astrophysical Spectroscopic Surveyor (MASS), which is a large area Compton telescope. Nevertheless, the presence of high-energy protons in space can lead to radiation damage in pixelated CZT detectors, causing their performance to degrade gradually. Using non-ionizing energy loss (NIEL), this study develops a method that quantitatively evaluates the radiation damage of detectors in space. To verify the method, this study irradiated two (2times 2times 1text { cm}^3) pixelated CZT detectors with 100 MeV protons at fluences ranging from (3times 10^7text { p}^+/text {cm}^2) to ( 3times 10^9text { p}^+/text {cm}^2) under two bias sets. When the proton fluence reaches (3 times 10^9 text { p}^+/text {cm}^2), the energy resolution of the detectors significantly deteriorates to (3.8%) at 511 keV (FWHM/E), even after post-correction. Finally, this study provides engineering considerations for their application in space.

实现三维位置灵敏度的高性能像素化CZT探测器是康普顿成像望远镜中有希望使用的候选者。我们建议在MeV天体物理光谱测量者(MASS)中使用像素化CZT探测器,这是一个大面积的康普顿望远镜。然而,空间中高能质子的存在会导致像素化CZT探测器的辐射损伤,导致其性能逐渐下降。利用非电离能量损失(NIEL),提出了一种定量评估空间探测器辐射损伤的方法。为了验证该方法,本研究在两个偏置集下,用100 MeV质子照射两个(2times 2times 1text { cm}^3)像素化CZT探测器,影响范围从(3times 10^7text { p}^+/text {cm}^2)到( 3times 10^9text { p}^+/text {cm}^2)。当质子通量达到(3 times 10^9 text { p}^+/text {cm}^2)时,探测器的能量分辨率在511 keV (FWHM/E)时显著下降到(3.8%),即使在校正后也是如此。最后,本研究为其在空间中的应用提供了工程考虑。
{"title":"Research on the proton-induced radiation damage of pixelated CdZnTe detectors for space applications","authors":"Hao Chang,&nbsp;Ming Zeng,&nbsp;Di Wang,&nbsp;Hua Feng,&nbsp;Yang Tian,&nbsp;Ge Ma,&nbsp;Xiaofan Pan,&nbsp;Chen Li,&nbsp;Zhongming Wang,&nbsp;Xin Zhuo,&nbsp;Xutao Zheng,&nbsp;Yulan Li","doi":"10.1007/s10686-025-09998-4","DOIUrl":"10.1007/s10686-025-09998-4","url":null,"abstract":"<div><p>High-performance pixelated CZT detectors that achieve 3D position sensitivity are promising candidates for use in Compton imaging telescopes. We proposed to use pixelated CZT detectors in the MeV Astrophysical Spectroscopic Surveyor (MASS), which is a large area Compton telescope. Nevertheless, the presence of high-energy protons in space can lead to radiation damage in pixelated CZT detectors, causing their performance to degrade gradually. Using non-ionizing energy loss (NIEL), this study develops a method that quantitatively evaluates the radiation damage of detectors in space. To verify the method, this study irradiated two <span>(2times 2times 1text { cm}^3)</span> pixelated CZT detectors with 100 MeV protons at fluences ranging from <span>(3times 10^7text { p}^+/text {cm}^2)</span> to <span>( 3times 10^9text { p}^+/text {cm}^2)</span> under two bias sets. When the proton fluence reaches <span>(3 times 10^9 text { p}^+/text {cm}^2)</span>, the energy resolution of the detectors significantly deteriorates to <span>(3.8%)</span> at 511 keV (FWHM/E), even after post-correction. Finally, this study provides engineering considerations for their application in space.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PLATO mission PLATO任务
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-04-21 DOI: 10.1007/s10686-025-09985-9
Heike Rauer, Conny Aerts, Juan Cabrera, Magali Deleuil, Anders Erikson, Laurent Gizon, Mariejo Goupil, Ana Heras, Thomas Walloschek, Jose Lorenzo-Alvarez, Filippo Marliani, César Martin-Garcia, J. Miguel Mas-Hesse, Laurence O’Rourke, Hugh Osborn, Isabella Pagano, Giampaolo Piotto, Don Pollacco, Roberto Ragazzoni, Gavin Ramsay, Stéphane Udry, Thierry Appourchaux, Willy Benz, Alexis Brandeker, Manuel Güdel, Eduardo Janot-Pacheco, Petr Kabath, Hans Kjeldsen, Michiel Min, Nuno Santos, Alan Smith, Juan-Carlos Suarez, Stephanie C. Werner, Alessio Aboudan, Manuel Abreu, Lorena Acuña, Moritz Adams, Vardan Adibekyan, Laura Affer, François Agneray, Craig Agnor, Victor Aguirre Børsen-Koch, Saad Ahmed, Suzanne Aigrain, Ashraf Al-Bahlawan, Ma de los Angeles Alcacera Gil, Eleonora Alei, Silvia Alencar, Richard Alexander, Julia Alfonso-Garzón, Yann Alibert, Carlos Allende Prieto, Leonardo Almeida, Roi Alonso Sobrino, Giuseppe Altavilla, Christian Althaus, Luis Alonso Alvarez Trujillo, Anish Amarsi, Matthias Ammler-von Eiff, Eduardo Amôres, Laerte Andrade, Alexandros Antoniadis-Karnavas, Carlos António, Beatriz Aparicio del Moral, Matteo Appolloni, Claudio Arena, David Armstrong, Jose Aroca Aliaga, Martin Asplund, Jeroen Audenaert, Natalia Auricchio, Pedro Avelino, Ann Baeke, Kevin Baillié, Ana Balado, Pau Ballber Balagueró, Andrea Balestra, Warrick Ball, Herve Ballans, Jerome Ballot, Caroline Barban, Gaële Barbary, Mauro Barbieri, Sebastià Barceló Forteza, Adrian Barker, Paul Barklem, Sydney Barnes, David Barrado Navascues, Oscar Barragan, Clément Baruteau, Sarbani Basu, Frederic Baudin, Philipp Baumeister, Daniel Bayliss, Michael Bazot, Paul G. Beck, Kevin Belkacem, Earl Bellinger, Serena Benatti, Othman Benomar, Diane Bérard, Maria Bergemann, Maria Bergomi, Pierre Bernardo, Katia Biazzo, Andrea Bignamini, Lionel Bigot, Nicolas Billot, Martin Binet, David Biondi, Federico Biondi, Aaron C. Birch, Bertram Bitsch, Paz Victoria Bluhm Ceballos, Attila Bódi, Zsófia Bognár, Isabelle Boisse, Emeline Bolmont, Alfio Bonanno, Mariangela Bonavita, Andrea Bonfanti, Xavier Bonfils, Rosaria Bonito, Aldo Stefano Bonomo, Anko Börner, Sudeshna Boro Saikia, Elisa Borreguero Martín, Francesco Borsa, Luca Borsato, Diego Bossini, Francois Bouchy, Gwenaël Boué, Rodrigo Boufleur, Patrick Boumier, Vincent Bourrier, Dominic M. Bowman, Enrico Bozzo, Louisa Bradley, John Bray, Alessandro Bressan, Sylvain Breton, Daniele Brienza, Ana Brito, Matteo Brogi, Beverly Brown, David J. A. Brown, Allan Sacha Brun, Giovanni Bruno, Michael Bruns, Lars A. Buchhave, Lisa Bugnet, Gaël Buldgen, Patrick Burgess, Andrea Busatta, Giorgia Busso, Derek Buzasi, José A. Caballero, Alexandre Cabral, Juan-Francisco Cabrero Gomez, Flavia Calderone, Robert Cameron, Andrew Cameron, Tiago Campante, Néstor Campos Gestal, Bruno Leonardo Canto Martins, Christophe Cara, Ludmila Carone, Josep Manel Carrasco, Luca Casagrande, Sarah L. Casewell, Santi Cassisi, Marco Castellani, Matthieu Castro, Claude Catala, Irene Catalán Fernández, Márcio Catelan, Heather Cegla, Chiara Cerruti, Virginie Cessa, Merieme Chadid, William Chaplin, Stephane Charpinet, Cristina Chiappini, Simone Chiarucci, Andrea Chiavassa, Simonetta Chinellato, Giovanni Chirulli, Jørgen Christensen-Dalsgaard, Ross Church, Antonio Claret, Cathie Clarke, Riccardo Claudi, Lionel Clermont, Hugo Coelho, Joao Coelho, Fabrizio Cogato, Josep Colomé, Mathieu Condamin, Fernando Conde García, Simon Conseil, Thierry Corbard, Alexandre C. M. Correia, Enrico Corsaro, Rosario Cosentino, Jean Costes, Andrea Cottinelli, Giovanni Covone, Orlagh L. Creevey, Aurelien Crida, Szilard Csizmadia, Margarida Cunha, Patrick Curry, Jefferson da Costa, Francys da Silva, Shweta Dalal, Mario Damasso, Cilia Damiani, Francesco Damiani, Maria Liduina das Chagas, Melvyn Davies, Guy Davies, Ben Davies, Gary Davison, Leandro de Almeida, Francesca de Angeli, Susana Cristina Cabral de Barros, Izan de CastroLeão, Daniel Brito de Freitas, Marcia Cristina de Freitas, Domitilla De Martino, José Renan de Medeiros, Luiz Alberto de Paula, Álvaro de Pedraza Gómez, Jelle de Plaa, Joris De Ridder, Morgan Deal, Leen Decin, Hans Deeg, Scilla Degl’Innocenti, Sebastien Deheuvels, Carlos del Burgo, Fabio Del Sordo, Elisa Delgado-Mena, Olivier Demangeon, Tilmann Denk, Aliz Derekas, Jean-Michel Desert, Silvano Desidera, Marc Dexet, Marcella Di Criscienzo, Anna Maria Di Giorgio, Maria Pia Di Mauro, Federico Jose Diaz Rial, José-Javier Díaz-García, Marco Dima, Giacomo Dinuzzi, Odysseas Dionatos, Elisa Distefano, Jose-Dias do Nascimento Jr., Albert Domingo, Valentina D’Orazi, Caroline Dorn, Lauren Doyle, Elena Duarte, Florent Ducellier, Luc Dumaye, Xavier Dumusque, Marc-Antoine Dupret, Patrick Eggenberger, David Ehrenreich, Philipp Eigmüller, Johannes Eising, Marcelo Emilio, Kjell Eriksson, Marco Ermocida, Riano Isidoro Escate Giribaldi, Yoshi Eschen, Lucía Espinosa Yáñez, Inês Estrela, Dafydd Wyn Evans, Damian Fabbian, Michele Fabrizio, João Pedro Faria, Maria Farina, Jacopo Farinato, Dax Feliz, Sofia Feltzing, Thomas Fenouillet, Miguel Fernández, Lorenza Ferrari, Sylvio Ferraz-Mello, Fabio Fialho, Agnes Fienga, Pedro Figueira, Laura Fiori, Ettore Flaccomio, Mauro Focardi, Steve Foley, Jean Fontignie, Dominic Ford, Karin Fornazier, Thierry Forveille, Luca Fossati, Rodrigo de Marca Franca, Lucas Franco da Silva, Antonio Frasca, Malcolm Fridlund, Marco Furlan, Sarah-Maria Gabler, Marco Gaido, Andrew Gallagher, Paloma I. Gallego Sempere, Emanuele Galli, Rafael A. García, Antonio García Hernández, Antonio Garcia Munoz, Hugo García-Vázquez, Rafael Garrido Haba, Patrick Gaulme, Nicolas Gauthier, Charlotte Gehan, Matthew Gent, Iskra Georgieva, Mauro Ghigo, Edoardo Giana, Samuel Gill, Leo Girardi, Silvia Giuliatti Winter, Giovanni Giusi, João Gomes da Silva, Luis Jorge Gómez Zazo, Juan Manuel Gomez-Lopez, Jonay Isai González Hernández, Kevin Gonzalez Murillo, Alejandro Gonzalo Melchor, Nicolas Gorius, Pierre-Vincent Gouel, Duncan Goulty, Valentina Granata, John Lee Grenfell, Denis Grießbach, Emmanuel Grolleau, Salomé Grouffal, Sascha Grziwa, Mario Giuseppe Guarcello, Loïc Gueguen, Eike Wolf Guenther, Terrasa Guilhem, Lucas Guillerot, Tristan Guillot, Pierre Guiot, Pascal Guterman, Antonio Gutiérrez, Fernando Gutiérrez-Canales, Janis Hagelberg, Jonas Haldemann, Cassandra Hall, Rasmus Handberg, Ian Harrison, Diana L. Harrison, Johann Hasiba, Carole A. Haswell, Petra Hatalova, Artie Hatzes, Raphaelle Haywood, Guillaume Hébrard, Frank Heckes, Ulrike Heiter, Saskia Hekker, René Heller, Christiane Helling, Krzysztof Helminiak, Simon Hemsley, Kevin Heng, Konstantin Herbst , Aline Hermans, JJ Hermes, Nadia Hidalgo Torres, Natalie Hinkel, David Hobbs, Simon Hodgkin, Karl Hofmann, Saeed Hojjatpanah, Günter Houdek, Daniel Huber, Joseph Huesler, Alain Hui-Bon-Hoa, Rik Huygen, Duc-Dat Huynh, Nicolas Iro, Jonathan Irwin, Mike Irwin, André Izidoro, Sophie Jacquinod, Nicholas Emborg Jannsen, Markus Janson, Harald Jeszenszky, Chen Jiang, Antonio José Jimenez Mancebo, Paula Jofre, Anders Johansen, Cole Johnston, Geraint Jones, Thomas Kallinger, Szilárd Kálmán, Thomas Kanitz, Marie Karjalainen, Raine Karjalainen, Christoffer Karoff, Steven Kawaler, Daisuke Kawata, Arnoud Keereman, David Keiderling, Tom Kennedy, Matthew Kenworthy, Franz Kerschbaum, Mark Kidger, Flavien Kiefer, Christian Kintziger, Kristina Kislyakova, László Kiss, Peter Klagyivik, Hubert Klahr, Jonas Klevas, Oleg Kochukhov, Ulrich Köhler, Ulrich Kolb, Alexander Koncz, Judith Korth, Nadiia Kostogryz, Gábor Kovács, József Kovács, Oleg Kozhura, Natalie Krivova, Arūnas Kuĉinskas, Ilyas Kuhlemann, Friedrich Kupka, Wouter Laauwen, Alvaro Labiano, Nadege Lagarde, Philippe Laget, Gunter Laky, Kristine Wai Fun Lam, Michiel Lambrechts, Helmut Lammer, Antonino Francesco Lanza, Alessandro Lanzafame, Mariel Lares Martiz, Jacques Laskar, Henrik Latter, Tony Lavanant, Alastair Lawrenson, Cecilia Lazzoni, Agnes Lebre, Yveline Lebreton, Alain Lecavelier des Etangs, Katherine Lee, Zoe Leinhardt, Adrien Leleu, Monika Lendl, Giuseppe Leto, Yves Levillain, Anne-Sophie Libert, Tim Lichtenberg, Roxanne Ligi, Francois Lignieres, Jorge Lillo-Box, Jeffrey Linsky, John Scige Liu, Dominik Loidolt, Yuying Longval, Ilídio Lopes, Andrea Lorenzani, Hans-Guenter Ludwig, Mikkel Lund, Mia Sloth Lundkvist, Xavier Luri, Carla Maceroni, Sean Madden, Nikku Madhusudhan, Antonio Maggio, Christian Magliano, Demetrio Magrin, Laurent Mahy, Olaf Maibaum, LeeRoy Malac-Allain, Jean-Christophe Malapert, Luca Malavolta, Jesus Maldonado, Elena Mamonova, Louis Manchon, Andres Manjón, Andrew Mann, Giacomo Mantovan, Luca Marafatto, Marcella Marconi, Rosemary Mardling, Paola Marigo, Silvia Marinoni, Rico Marques, Joao Pedro Marques, Paola Maria Marrese, Douglas Marshall, Silvia Martínez Perales, David Mary, Francesco Marzari, Eduard Masana, Andrina Mascher, Stéphane Mathis, Savita Mathur, Iris Martín Vodopivec, Ana Carolina Mattiuci Figueiredo, Pierre F. L. Maxted, Tsevi Mazeh, Stephane Mazevet, Francesco Mazzei, James McCormac, Paul McMillan, Lucas Menou, Thibault Merle, Farzana Meru, Dino Mesa, Sergio Messina, Szabolcs Mészáros, Nadége Meunier, Jean-Charles Meunier, Giuseppina Micela, Harald Michaelis, Eric Michel, Mathias Michielsen, Tatiana Michtchenko, Andrea Miglio, Yamila Miguel, David Milligan, Giovanni Mirouh, Morgan Mitchell, Nuno Moedas, Francesca Molendini, László Molnár, Joey Mombarg, Josefina Montalban, Marco Montalto, Mário J. P. F. G. Monteiro, Francisco Montoro Sánchez, Juan Carlos Morales, Maria Morales-Calderon, Alessandro Morbidelli, Christoph Mordasini, Chrystel Moreau, Thierry Morel, Giuseppe Morello, Julien Morin, Annelies Mortier, Benoît Mosser, Denis Mourard, Olivier Mousis, Claire Moutou, Nami Mowlavi, Andrés Moya, Prisca Muehlmann, Philip Muirhead, Matteo Munari, Ilaria Musella, Alexander James Mustill, Nicolas Nardetto, Domenico Nardiello, Norio Narita, Valerio Nascimbeni, Anna Nash, Coralie Neiner, Richard P. Nelson, Nadine Nettelmann, Gianalfredo Nicolini, Martin Nielsen, Sami-Matias Niemi, Lena Noack, Arlette Noels-Grotsch, Anthony Noll, Azib Norazman, Andrew J. Norton, Benard Nsamba, Aviv Ofir, Gordon Ogilvie, Terese Olander, Christian Olivetto, Göran Olofsson, Joel Ong, Sergio Ortolani, Mahmoudreza Oshagh, Harald Ottacher, Roland Ottensamer, Rhita-Maria Ouazzani, Sijme-Jan Paardekooper, Emanuele Pace, Miriam Pajas, Ana Palacios, Gaelle Palandri, Enric Palle, Carsten Paproth, Vanderlei Parro, Hannu Parviainen, Javier Pascual Granado, Vera Maria Passegger, Carmen Pastor-Morales, Martin Pätzold, May Gade Pedersen, David Pena Hidalgo, Francesco Pepe, Filipe Pereira, Carina M. Persson, Martin Pertenais, Gisbert Peter, Antoine C. Petit, Pascal Petit, Stefania Pezzuto, Gabriele Pichierri, Adriano Pietrinferni, Fernando Pinheiro, Marc Pinsonneault, Emese Plachy, Philippe Plasson, Bertrand Plez, Katja Poppenhaeger, Ennio Poretti, Elisa Portaluri, Jordi Portell, Gustavo Frederico Porto de Mello, Julien Poyatos, Francisco J. Pozuelos, Pier Giorgio Prada Moroni, Dumitru Pricopi, Loredana Prisinzano, Matthias Quade, Andreas Quirrenbach, Julio Arturo Rabanal Reina, Maria Cristina Rabello Soares, Gabriella Raimondo, Monica Rainer, Jose Ramón Rodón, Alejandro Ramón-Ballesta, Gonzalo Ramos Zapata, Stefanie Rätz, Christoph Rauterberg, Bob Redman, Ronald Redmer, Daniel Reese, Sara Regibo, Ansgar Reiners, Timo Reinhold, Christian Renie, Ignasi Ribas, Sergio Ribeiro, Thiago Pereira Ricciardi, Ken Rice, Olivier Richard, Marco Riello, Michel Rieutord, Vincenzo Ripepi, Guy Rixon, Steve Rockstein, José Ramón Rodón Ortiz, María Teresa Rodrigo Rodríguez, Alberto Rodríguez Amor, Luisa Fernanda Rodríguez Díaz, Juan Pablo Rodriguez Garcia, Julio Rodriguez-Gomez, Yannick Roehlly, Fernando Roig, Bárbara Rojas-Ayala, Tobias Rolf, Jakob Lysgaard Rørsted, Hugo Rosado, Giovanni Rosotti, Olivier Roth, Markus Roth, Alex Rousseau, Ian Roxburgh, Fabrice Roy, Pierre Royer, Kirk Ruane, Sergio Rufini Mastropasqua, Claudia Ruiz de Galarreta, Andrea Russi, Steven Saar, Melaine Saillenfest, Maurizio Salaris, Sebastien Salmon, Ippocratis Saltas, Réza Samadi, Aunia Samadi, Dominic Samra, Tiago Sanches da Silva, Miguel Andrés Sánchez Carrasco, Alexandre Santerne, Amaia Santiago Pé, Francesco Santoli, Ängela R. G. Santos, Rosario Sanz Mesa, Luis Manuel Sarro, Gaetano Scandariato, Martin Schäfer, Edward Schlafly, François-Xavier Schmider, Jean Schneider, Jesper Schou, Hannah Schunker, Gabriel Jörg Schwarzkopf, Aldo Serenelli, Dries Seynaeve, Yutong Shan, Alexander Shapiro, Russel Shipman, Daniela Sicilia, Maria Angeles Sierra sanmartin, Axelle Sigot, Kyle Silliman, Roberto Silvotti, Attila E. Simon, Ricardo Simoyama Napoli, Marek Skarka, Barry Smalley, Rodolfo Smiljanic, Samuel Smit, Alexis Smith, Leigh Smith, Ignas Snellen, Ádám Sódor, Frank Sohl, Sami K. Solanki, Francesca Sortino, Sérgio Sousa, John Southworth, Diogo Souto, Alessandro Sozzetti, Dimitris Stamatellos, Keivan Stassun, Manfred Steller, Dennis Stello, Beate Stelzer, Ulrike Stiebeler, Amalie Stokholm, Trude Storelvmo, Klaus Strassmeier, Paul Anthony Strøm, Antoine Strugarek, Sophia Sulis, Michal Švanda, László Szabados, Róbert Szabó, Gyula M. Szabó, Ewa Szuszkiewicz, Geert Jan Talens, Daniele Teti, Tom Theisen, Frédéric Thévenin, Anne Thoul, Didier Tiphene, Ruth Titz-Weider, Andrew Tkachenko, Daniel Tomecki, Jorge Tonfat, Nicola Tosi, Regner Trampedach, Gregor Traven, Amaury Triaud, Reidar Trønnes, Maria Tsantaki, Matthias Tschentscher, Arnaud Turin, Adam Tvaruzka, Bernd Ulmer, Solène Ulmer-Moll, Ceren Ulusoy, Gabriele Umbriaco, Diana Valencia, Marica Valentini, Adriana Valio, Ángel Luis Valverde Guijarro, Vincent Van Eylen, Valerie Van Grootel, Tim A. van Kempen, Timothy Van Reeth, Iris Van Zelst, Bart Vandenbussche, Konstantinos Vasiliou, Valeriy Vasilyev, David Vaz de Mascarenhas, Allona Vazan, Marina Vela Nunez, Eduardo Nunes Velloso, Rita Ventura, Paolo Ventura, Julia Venturini, Isabel Vera Trallero, Dimitri Veras, Eva Verdugo, Kuldeep Verma, Didier Vibert, Tobias Vicanek Martinez, Krisztián Vida, Arthur Vigan, Antonio Villacorta, Eva Villaver, Marcos Villaverde Aparicio, Valentina Viotto, Eduard Vorobyov, Sergey Vorontsov, Frank W. Wagner, Nicholas Walton, Dave Walton, Haiyang Wang, Rens Waters, Christopher Watson, Sven Wedemeyer, Angharad Weeks, Jörg Weingrill, Annita Weiss, Belinda Wendler, Richard West, Karsten Westerdorff, Pierre-Amaury Westphal, Peter Wheatley, Tim White, Amadou Whittaker, Kai Wickhusen, Thomas Wilson, James Windsor, Othon Winter, Mark Lykke Winther, Alistair Winton, Ulrike Witteck, Veronika Witzke, Peter Woitke, David Wolter, Günther Wuchterl, Mark Wyatt, Dan Yang, Jie Yu, Ricardo Zanmar Sanchez, María Rosa Zapatero Osorio, Mathias Zechmeister, Yixiao Zhou, Claas Ziemke, Konstanze Zwintz, Torsten Böhm, Léo Michel Dansac

PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R(_textrm{Earth})) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.

PLATO(行星凌日和恒星振荡)是欧空局的M3任务,旨在探测和表征系外行星,并对大量恒星进行星震监测。PLATO将探测明亮恒星(11等)周围的小行星(低至&lt;2R (_textrm{Earth})),包括类太阳恒星可居住区内的类地行星。在地面径向速度观测的补充下,行星的半径、质量和年龄将得到高精度的表征(5)%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.
{"title":"The PLATO mission","authors":"Heike Rauer,&nbsp;Conny Aerts,&nbsp;Juan Cabrera,&nbsp;Magali Deleuil,&nbsp;Anders Erikson,&nbsp;Laurent Gizon,&nbsp;Mariejo Goupil,&nbsp;Ana Heras,&nbsp;Thomas Walloschek,&nbsp;Jose Lorenzo-Alvarez,&nbsp;Filippo Marliani,&nbsp;César Martin-Garcia,&nbsp;J. Miguel Mas-Hesse,&nbsp;Laurence O’Rourke,&nbsp;Hugh Osborn,&nbsp;Isabella Pagano,&nbsp;Giampaolo Piotto,&nbsp;Don Pollacco,&nbsp;Roberto Ragazzoni,&nbsp;Gavin Ramsay,&nbsp;Stéphane Udry,&nbsp;Thierry Appourchaux,&nbsp;Willy Benz,&nbsp;Alexis Brandeker,&nbsp;Manuel Güdel,&nbsp;Eduardo Janot-Pacheco,&nbsp;Petr Kabath,&nbsp;Hans Kjeldsen,&nbsp;Michiel Min,&nbsp;Nuno Santos,&nbsp;Alan Smith,&nbsp;Juan-Carlos Suarez,&nbsp;Stephanie C. Werner,&nbsp;Alessio Aboudan,&nbsp;Manuel Abreu,&nbsp;Lorena Acuña,&nbsp;Moritz Adams,&nbsp;Vardan Adibekyan,&nbsp;Laura Affer,&nbsp;François Agneray,&nbsp;Craig Agnor,&nbsp;Victor Aguirre Børsen-Koch,&nbsp;Saad Ahmed,&nbsp;Suzanne Aigrain,&nbsp;Ashraf Al-Bahlawan,&nbsp;Ma de los Angeles Alcacera Gil,&nbsp;Eleonora Alei,&nbsp;Silvia Alencar,&nbsp;Richard Alexander,&nbsp;Julia Alfonso-Garzón,&nbsp;Yann Alibert,&nbsp;Carlos Allende Prieto,&nbsp;Leonardo Almeida,&nbsp;Roi Alonso Sobrino,&nbsp;Giuseppe Altavilla,&nbsp;Christian Althaus,&nbsp;Luis Alonso Alvarez Trujillo,&nbsp;Anish Amarsi,&nbsp;Matthias Ammler-von Eiff,&nbsp;Eduardo Amôres,&nbsp;Laerte Andrade,&nbsp;Alexandros Antoniadis-Karnavas,&nbsp;Carlos António,&nbsp;Beatriz Aparicio del Moral,&nbsp;Matteo Appolloni,&nbsp;Claudio Arena,&nbsp;David Armstrong,&nbsp;Jose Aroca Aliaga,&nbsp;Martin Asplund,&nbsp;Jeroen Audenaert,&nbsp;Natalia Auricchio,&nbsp;Pedro Avelino,&nbsp;Ann Baeke,&nbsp;Kevin Baillié,&nbsp;Ana Balado,&nbsp;Pau Ballber Balagueró,&nbsp;Andrea Balestra,&nbsp;Warrick Ball,&nbsp;Herve Ballans,&nbsp;Jerome Ballot,&nbsp;Caroline Barban,&nbsp;Gaële Barbary,&nbsp;Mauro Barbieri,&nbsp;Sebastià Barceló Forteza,&nbsp;Adrian Barker,&nbsp;Paul Barklem,&nbsp;Sydney Barnes,&nbsp;David Barrado Navascues,&nbsp;Oscar Barragan,&nbsp;Clément Baruteau,&nbsp;Sarbani Basu,&nbsp;Frederic Baudin,&nbsp;Philipp Baumeister,&nbsp;Daniel Bayliss,&nbsp;Michael Bazot,&nbsp;Paul G. Beck,&nbsp;Kevin Belkacem,&nbsp;Earl Bellinger,&nbsp;Serena Benatti,&nbsp;Othman Benomar,&nbsp;Diane Bérard,&nbsp;Maria Bergemann,&nbsp;Maria Bergomi,&nbsp;Pierre Bernardo,&nbsp;Katia Biazzo,&nbsp;Andrea Bignamini,&nbsp;Lionel Bigot,&nbsp;Nicolas Billot,&nbsp;Martin Binet,&nbsp;David Biondi,&nbsp;Federico Biondi,&nbsp;Aaron C. Birch,&nbsp;Bertram Bitsch,&nbsp;Paz Victoria Bluhm Ceballos,&nbsp;Attila Bódi,&nbsp;Zsófia Bognár,&nbsp;Isabelle Boisse,&nbsp;Emeline Bolmont,&nbsp;Alfio Bonanno,&nbsp;Mariangela Bonavita,&nbsp;Andrea Bonfanti,&nbsp;Xavier Bonfils,&nbsp;Rosaria Bonito,&nbsp;Aldo Stefano Bonomo,&nbsp;Anko Börner,&nbsp;Sudeshna Boro Saikia,&nbsp;Elisa Borreguero Martín,&nbsp;Francesco Borsa,&nbsp;Luca Borsato,&nbsp;Diego Bossini,&nbsp;Francois Bouchy,&nbsp;Gwenaël Boué,&nbsp;Rodrigo Boufleur,&nbsp;Patrick Boumier,&nbsp;Vincent Bourrier,&nbsp;Dominic M. Bowman,&nbsp;Enrico Bozzo,&nbsp;Louisa Bradley,&nbsp;John Bray,&nbsp;Alessandro Bressan,&nbsp;Sylvain Breton,&nbsp;Daniele Brienza,&nbsp;Ana Brito,&nbsp;Matteo Brogi,&nbsp;Beverly Brown,&nbsp;David J. A. Brown,&nbsp;Allan Sacha Brun,&nbsp;Giovanni Bruno,&nbsp;Michael Bruns,&nbsp;Lars A. Buchhave,&nbsp;Lisa Bugnet,&nbsp;Gaël Buldgen,&nbsp;Patrick Burgess,&nbsp;Andrea Busatta,&nbsp;Giorgia Busso,&nbsp;Derek Buzasi,&nbsp;José A. Caballero,&nbsp;Alexandre Cabral,&nbsp;Juan-Francisco Cabrero Gomez,&nbsp;Flavia Calderone,&nbsp;Robert Cameron,&nbsp;Andrew Cameron,&nbsp;Tiago Campante,&nbsp;Néstor Campos Gestal,&nbsp;Bruno Leonardo Canto Martins,&nbsp;Christophe Cara,&nbsp;Ludmila Carone,&nbsp;Josep Manel Carrasco,&nbsp;Luca Casagrande,&nbsp;Sarah L. Casewell,&nbsp;Santi Cassisi,&nbsp;Marco Castellani,&nbsp;Matthieu Castro,&nbsp;Claude Catala,&nbsp;Irene Catalán Fernández,&nbsp;Márcio Catelan,&nbsp;Heather Cegla,&nbsp;Chiara Cerruti,&nbsp;Virginie Cessa,&nbsp;Merieme Chadid,&nbsp;William Chaplin,&nbsp;Stephane Charpinet,&nbsp;Cristina Chiappini,&nbsp;Simone Chiarucci,&nbsp;Andrea Chiavassa,&nbsp;Simonetta Chinellato,&nbsp;Giovanni Chirulli,&nbsp;Jørgen Christensen-Dalsgaard,&nbsp;Ross Church,&nbsp;Antonio Claret,&nbsp;Cathie Clarke,&nbsp;Riccardo Claudi,&nbsp;Lionel Clermont,&nbsp;Hugo Coelho,&nbsp;Joao Coelho,&nbsp;Fabrizio Cogato,&nbsp;Josep Colomé,&nbsp;Mathieu Condamin,&nbsp;Fernando Conde García,&nbsp;Simon Conseil,&nbsp;Thierry Corbard,&nbsp;Alexandre C. M. Correia,&nbsp;Enrico Corsaro,&nbsp;Rosario Cosentino,&nbsp;Jean Costes,&nbsp;Andrea Cottinelli,&nbsp;Giovanni Covone,&nbsp;Orlagh L. Creevey,&nbsp;Aurelien Crida,&nbsp;Szilard Csizmadia,&nbsp;Margarida Cunha,&nbsp;Patrick Curry,&nbsp;Jefferson da Costa,&nbsp;Francys da Silva,&nbsp;Shweta Dalal,&nbsp;Mario Damasso,&nbsp;Cilia Damiani,&nbsp;Francesco Damiani,&nbsp;Maria Liduina das Chagas,&nbsp;Melvyn Davies,&nbsp;Guy Davies,&nbsp;Ben Davies,&nbsp;Gary Davison,&nbsp;Leandro de Almeida,&nbsp;Francesca de Angeli,&nbsp;Susana Cristina Cabral de Barros,&nbsp;Izan de CastroLeão,&nbsp;Daniel Brito de Freitas,&nbsp;Marcia Cristina de Freitas,&nbsp;Domitilla De Martino,&nbsp;José Renan de Medeiros,&nbsp;Luiz Alberto de Paula,&nbsp;Álvaro de Pedraza Gómez,&nbsp;Jelle de Plaa,&nbsp;Joris De Ridder,&nbsp;Morgan Deal,&nbsp;Leen Decin,&nbsp;Hans Deeg,&nbsp;Scilla Degl’Innocenti,&nbsp;Sebastien Deheuvels,&nbsp;Carlos del Burgo,&nbsp;Fabio Del Sordo,&nbsp;Elisa Delgado-Mena,&nbsp;Olivier Demangeon,&nbsp;Tilmann Denk,&nbsp;Aliz Derekas,&nbsp;Jean-Michel Desert,&nbsp;Silvano Desidera,&nbsp;Marc Dexet,&nbsp;Marcella Di Criscienzo,&nbsp;Anna Maria Di Giorgio,&nbsp;Maria Pia Di Mauro,&nbsp;Federico Jose Diaz Rial,&nbsp;José-Javier Díaz-García,&nbsp;Marco Dima,&nbsp;Giacomo Dinuzzi,&nbsp;Odysseas Dionatos,&nbsp;Elisa Distefano,&nbsp;Jose-Dias do Nascimento Jr.,&nbsp;Albert Domingo,&nbsp;Valentina D’Orazi,&nbsp;Caroline Dorn,&nbsp;Lauren Doyle,&nbsp;Elena Duarte,&nbsp;Florent Ducellier,&nbsp;Luc Dumaye,&nbsp;Xavier Dumusque,&nbsp;Marc-Antoine Dupret,&nbsp;Patrick Eggenberger,&nbsp;David Ehrenreich,&nbsp;Philipp Eigmüller,&nbsp;Johannes Eising,&nbsp;Marcelo Emilio,&nbsp;Kjell Eriksson,&nbsp;Marco Ermocida,&nbsp;Riano Isidoro Escate Giribaldi,&nbsp;Yoshi Eschen,&nbsp;Lucía Espinosa Yáñez,&nbsp;Inês Estrela,&nbsp;Dafydd Wyn Evans,&nbsp;Damian Fabbian,&nbsp;Michele Fabrizio,&nbsp;João Pedro Faria,&nbsp;Maria Farina,&nbsp;Jacopo Farinato,&nbsp;Dax Feliz,&nbsp;Sofia Feltzing,&nbsp;Thomas Fenouillet,&nbsp;Miguel Fernández,&nbsp;Lorenza Ferrari,&nbsp;Sylvio Ferraz-Mello,&nbsp;Fabio Fialho,&nbsp;Agnes Fienga,&nbsp;Pedro Figueira,&nbsp;Laura Fiori,&nbsp;Ettore Flaccomio,&nbsp;Mauro Focardi,&nbsp;Steve Foley,&nbsp;Jean Fontignie,&nbsp;Dominic Ford,&nbsp;Karin Fornazier,&nbsp;Thierry Forveille,&nbsp;Luca Fossati,&nbsp;Rodrigo de Marca Franca,&nbsp;Lucas Franco da Silva,&nbsp;Antonio Frasca,&nbsp;Malcolm Fridlund,&nbsp;Marco Furlan,&nbsp;Sarah-Maria Gabler,&nbsp;Marco Gaido,&nbsp;Andrew Gallagher,&nbsp;Paloma I. Gallego Sempere,&nbsp;Emanuele Galli,&nbsp;Rafael A. García,&nbsp;Antonio García Hernández,&nbsp;Antonio Garcia Munoz,&nbsp;Hugo García-Vázquez,&nbsp;Rafael Garrido Haba,&nbsp;Patrick Gaulme,&nbsp;Nicolas Gauthier,&nbsp;Charlotte Gehan,&nbsp;Matthew Gent,&nbsp;Iskra Georgieva,&nbsp;Mauro Ghigo,&nbsp;Edoardo Giana,&nbsp;Samuel Gill,&nbsp;Leo Girardi,&nbsp;Silvia Giuliatti Winter,&nbsp;Giovanni Giusi,&nbsp;João Gomes da Silva,&nbsp;Luis Jorge Gómez Zazo,&nbsp;Juan Manuel Gomez-Lopez,&nbsp;Jonay Isai González Hernández,&nbsp;Kevin Gonzalez Murillo,&nbsp;Alejandro Gonzalo Melchor,&nbsp;Nicolas Gorius,&nbsp;Pierre-Vincent Gouel,&nbsp;Duncan Goulty,&nbsp;Valentina Granata,&nbsp;John Lee Grenfell,&nbsp;Denis Grießbach,&nbsp;Emmanuel Grolleau,&nbsp;Salomé Grouffal,&nbsp;Sascha Grziwa,&nbsp;Mario Giuseppe Guarcello,&nbsp;Loïc Gueguen,&nbsp;Eike Wolf Guenther,&nbsp;Terrasa Guilhem,&nbsp;Lucas Guillerot,&nbsp;Tristan Guillot,&nbsp;Pierre Guiot,&nbsp;Pascal Guterman,&nbsp;Antonio Gutiérrez,&nbsp;Fernando Gutiérrez-Canales,&nbsp;Janis Hagelberg,&nbsp;Jonas Haldemann,&nbsp;Cassandra Hall,&nbsp;Rasmus Handberg,&nbsp;Ian Harrison,&nbsp;Diana L. Harrison,&nbsp;Johann Hasiba,&nbsp;Carole A. Haswell,&nbsp;Petra Hatalova,&nbsp;Artie Hatzes,&nbsp;Raphaelle Haywood,&nbsp;Guillaume Hébrard,&nbsp;Frank Heckes,&nbsp;Ulrike Heiter,&nbsp;Saskia Hekker,&nbsp;René Heller,&nbsp;Christiane Helling,&nbsp;Krzysztof Helminiak,&nbsp;Simon Hemsley,&nbsp;Kevin Heng,&nbsp;Konstantin Herbst ,&nbsp;Aline Hermans,&nbsp;JJ Hermes,&nbsp;Nadia Hidalgo Torres,&nbsp;Natalie Hinkel,&nbsp;David Hobbs,&nbsp;Simon Hodgkin,&nbsp;Karl Hofmann,&nbsp;Saeed Hojjatpanah,&nbsp;Günter Houdek,&nbsp;Daniel Huber,&nbsp;Joseph Huesler,&nbsp;Alain Hui-Bon-Hoa,&nbsp;Rik Huygen,&nbsp;Duc-Dat Huynh,&nbsp;Nicolas Iro,&nbsp;Jonathan Irwin,&nbsp;Mike Irwin,&nbsp;André Izidoro,&nbsp;Sophie Jacquinod,&nbsp;Nicholas Emborg Jannsen,&nbsp;Markus Janson,&nbsp;Harald Jeszenszky,&nbsp;Chen Jiang,&nbsp;Antonio José Jimenez Mancebo,&nbsp;Paula Jofre,&nbsp;Anders Johansen,&nbsp;Cole Johnston,&nbsp;Geraint Jones,&nbsp;Thomas Kallinger,&nbsp;Szilárd Kálmán,&nbsp;Thomas Kanitz,&nbsp;Marie Karjalainen,&nbsp;Raine Karjalainen,&nbsp;Christoffer Karoff,&nbsp;Steven Kawaler,&nbsp;Daisuke Kawata,&nbsp;Arnoud Keereman,&nbsp;David Keiderling,&nbsp;Tom Kennedy,&nbsp;Matthew Kenworthy,&nbsp;Franz Kerschbaum,&nbsp;Mark Kidger,&nbsp;Flavien Kiefer,&nbsp;Christian Kintziger,&nbsp;Kristina Kislyakova,&nbsp;László Kiss,&nbsp;Peter Klagyivik,&nbsp;Hubert Klahr,&nbsp;Jonas Klevas,&nbsp;Oleg Kochukhov,&nbsp;Ulrich Köhler,&nbsp;Ulrich Kolb,&nbsp;Alexander Koncz,&nbsp;Judith Korth,&nbsp;Nadiia Kostogryz,&nbsp;Gábor Kovács,&nbsp;József Kovács,&nbsp;Oleg Kozhura,&nbsp;Natalie Krivova,&nbsp;Arūnas Kuĉinskas,&nbsp;Ilyas Kuhlemann,&nbsp;Friedrich Kupka,&nbsp;Wouter Laauwen,&nbsp;Alvaro Labiano,&nbsp;Nadege Lagarde,&nbsp;Philippe Laget,&nbsp;Gunter Laky,&nbsp;Kristine Wai Fun Lam,&nbsp;Michiel Lambrechts,&nbsp;Helmut Lammer,&nbsp;Antonino Francesco Lanza,&nbsp;Alessandro Lanzafame,&nbsp;Mariel Lares Martiz,&nbsp;Jacques Laskar,&nbsp;Henrik Latter,&nbsp;Tony Lavanant,&nbsp;Alastair Lawrenson,&nbsp;Cecilia Lazzoni,&nbsp;Agnes Lebre,&nbsp;Yveline Lebreton,&nbsp;Alain Lecavelier des Etangs,&nbsp;Katherine Lee,&nbsp;Zoe Leinhardt,&nbsp;Adrien Leleu,&nbsp;Monika Lendl,&nbsp;Giuseppe Leto,&nbsp;Yves Levillain,&nbsp;Anne-Sophie Libert,&nbsp;Tim Lichtenberg,&nbsp;Roxanne Ligi,&nbsp;Francois Lignieres,&nbsp;Jorge Lillo-Box,&nbsp;Jeffrey Linsky,&nbsp;John Scige Liu,&nbsp;Dominik Loidolt,&nbsp;Yuying Longval,&nbsp;Ilídio Lopes,&nbsp;Andrea Lorenzani,&nbsp;Hans-Guenter Ludwig,&nbsp;Mikkel Lund,&nbsp;Mia Sloth Lundkvist,&nbsp;Xavier Luri,&nbsp;Carla Maceroni,&nbsp;Sean Madden,&nbsp;Nikku Madhusudhan,&nbsp;Antonio Maggio,&nbsp;Christian Magliano,&nbsp;Demetrio Magrin,&nbsp;Laurent Mahy,&nbsp;Olaf Maibaum,&nbsp;LeeRoy Malac-Allain,&nbsp;Jean-Christophe Malapert,&nbsp;Luca Malavolta,&nbsp;Jesus Maldonado,&nbsp;Elena Mamonova,&nbsp;Louis Manchon,&nbsp;Andres Manjón,&nbsp;Andrew Mann,&nbsp;Giacomo Mantovan,&nbsp;Luca Marafatto,&nbsp;Marcella Marconi,&nbsp;Rosemary Mardling,&nbsp;Paola Marigo,&nbsp;Silvia Marinoni,&nbsp;Rico Marques,&nbsp;Joao Pedro Marques,&nbsp;Paola Maria Marrese,&nbsp;Douglas Marshall,&nbsp;Silvia Martínez Perales,&nbsp;David Mary,&nbsp;Francesco Marzari,&nbsp;Eduard Masana,&nbsp;Andrina Mascher,&nbsp;Stéphane Mathis,&nbsp;Savita Mathur,&nbsp;Iris Martín Vodopivec,&nbsp;Ana Carolina Mattiuci Figueiredo,&nbsp;Pierre F. L. Maxted,&nbsp;Tsevi Mazeh,&nbsp;Stephane Mazevet,&nbsp;Francesco Mazzei,&nbsp;James McCormac,&nbsp;Paul McMillan,&nbsp;Lucas Menou,&nbsp;Thibault Merle,&nbsp;Farzana Meru,&nbsp;Dino Mesa,&nbsp;Sergio Messina,&nbsp;Szabolcs Mészáros,&nbsp;Nadége Meunier,&nbsp;Jean-Charles Meunier,&nbsp;Giuseppina Micela,&nbsp;Harald Michaelis,&nbsp;Eric Michel,&nbsp;Mathias Michielsen,&nbsp;Tatiana Michtchenko,&nbsp;Andrea Miglio,&nbsp;Yamila Miguel,&nbsp;David Milligan,&nbsp;Giovanni Mirouh,&nbsp;Morgan Mitchell,&nbsp;Nuno Moedas,&nbsp;Francesca Molendini,&nbsp;László Molnár,&nbsp;Joey Mombarg,&nbsp;Josefina Montalban,&nbsp;Marco Montalto,&nbsp;Mário J. P. F. G. Monteiro,&nbsp;Francisco Montoro Sánchez,&nbsp;Juan Carlos Morales,&nbsp;Maria Morales-Calderon,&nbsp;Alessandro Morbidelli,&nbsp;Christoph Mordasini,&nbsp;Chrystel Moreau,&nbsp;Thierry Morel,&nbsp;Giuseppe Morello,&nbsp;Julien Morin,&nbsp;Annelies Mortier,&nbsp;Benoît Mosser,&nbsp;Denis Mourard,&nbsp;Olivier Mousis,&nbsp;Claire Moutou,&nbsp;Nami Mowlavi,&nbsp;Andrés Moya,&nbsp;Prisca Muehlmann,&nbsp;Philip Muirhead,&nbsp;Matteo Munari,&nbsp;Ilaria Musella,&nbsp;Alexander James Mustill,&nbsp;Nicolas Nardetto,&nbsp;Domenico Nardiello,&nbsp;Norio Narita,&nbsp;Valerio Nascimbeni,&nbsp;Anna Nash,&nbsp;Coralie Neiner,&nbsp;Richard P. Nelson,&nbsp;Nadine Nettelmann,&nbsp;Gianalfredo Nicolini,&nbsp;Martin Nielsen,&nbsp;Sami-Matias Niemi,&nbsp;Lena Noack,&nbsp;Arlette Noels-Grotsch,&nbsp;Anthony Noll,&nbsp;Azib Norazman,&nbsp;Andrew J. Norton,&nbsp;Benard Nsamba,&nbsp;Aviv Ofir,&nbsp;Gordon Ogilvie,&nbsp;Terese Olander,&nbsp;Christian Olivetto,&nbsp;Göran Olofsson,&nbsp;Joel Ong,&nbsp;Sergio Ortolani,&nbsp;Mahmoudreza Oshagh,&nbsp;Harald Ottacher,&nbsp;Roland Ottensamer,&nbsp;Rhita-Maria Ouazzani,&nbsp;Sijme-Jan Paardekooper,&nbsp;Emanuele Pace,&nbsp;Miriam Pajas,&nbsp;Ana Palacios,&nbsp;Gaelle Palandri,&nbsp;Enric Palle,&nbsp;Carsten Paproth,&nbsp;Vanderlei Parro,&nbsp;Hannu Parviainen,&nbsp;Javier Pascual Granado,&nbsp;Vera Maria Passegger,&nbsp;Carmen Pastor-Morales,&nbsp;Martin Pätzold,&nbsp;May Gade Pedersen,&nbsp;David Pena Hidalgo,&nbsp;Francesco Pepe,&nbsp;Filipe Pereira,&nbsp;Carina M. Persson,&nbsp;Martin Pertenais,&nbsp;Gisbert Peter,&nbsp;Antoine C. Petit,&nbsp;Pascal Petit,&nbsp;Stefania Pezzuto,&nbsp;Gabriele Pichierri,&nbsp;Adriano Pietrinferni,&nbsp;Fernando Pinheiro,&nbsp;Marc Pinsonneault,&nbsp;Emese Plachy,&nbsp;Philippe Plasson,&nbsp;Bertrand Plez,&nbsp;Katja Poppenhaeger,&nbsp;Ennio Poretti,&nbsp;Elisa Portaluri,&nbsp;Jordi Portell,&nbsp;Gustavo Frederico Porto de Mello,&nbsp;Julien Poyatos,&nbsp;Francisco J. Pozuelos,&nbsp;Pier Giorgio Prada Moroni,&nbsp;Dumitru Pricopi,&nbsp;Loredana Prisinzano,&nbsp;Matthias Quade,&nbsp;Andreas Quirrenbach,&nbsp;Julio Arturo Rabanal Reina,&nbsp;Maria Cristina Rabello Soares,&nbsp;Gabriella Raimondo,&nbsp;Monica Rainer,&nbsp;Jose Ramón Rodón,&nbsp;Alejandro Ramón-Ballesta,&nbsp;Gonzalo Ramos Zapata,&nbsp;Stefanie Rätz,&nbsp;Christoph Rauterberg,&nbsp;Bob Redman,&nbsp;Ronald Redmer,&nbsp;Daniel Reese,&nbsp;Sara Regibo,&nbsp;Ansgar Reiners,&nbsp;Timo Reinhold,&nbsp;Christian Renie,&nbsp;Ignasi Ribas,&nbsp;Sergio Ribeiro,&nbsp;Thiago Pereira Ricciardi,&nbsp;Ken Rice,&nbsp;Olivier Richard,&nbsp;Marco Riello,&nbsp;Michel Rieutord,&nbsp;Vincenzo Ripepi,&nbsp;Guy Rixon,&nbsp;Steve Rockstein,&nbsp;José Ramón Rodón Ortiz,&nbsp;María Teresa Rodrigo Rodríguez,&nbsp;Alberto Rodríguez Amor,&nbsp;Luisa Fernanda Rodríguez Díaz,&nbsp;Juan Pablo Rodriguez Garcia,&nbsp;Julio Rodriguez-Gomez,&nbsp;Yannick Roehlly,&nbsp;Fernando Roig,&nbsp;Bárbara Rojas-Ayala,&nbsp;Tobias Rolf,&nbsp;Jakob Lysgaard Rørsted,&nbsp;Hugo Rosado,&nbsp;Giovanni Rosotti,&nbsp;Olivier Roth,&nbsp;Markus Roth,&nbsp;Alex Rousseau,&nbsp;Ian Roxburgh,&nbsp;Fabrice Roy,&nbsp;Pierre Royer,&nbsp;Kirk Ruane,&nbsp;Sergio Rufini Mastropasqua,&nbsp;Claudia Ruiz de Galarreta,&nbsp;Andrea Russi,&nbsp;Steven Saar,&nbsp;Melaine Saillenfest,&nbsp;Maurizio Salaris,&nbsp;Sebastien Salmon,&nbsp;Ippocratis Saltas,&nbsp;Réza Samadi,&nbsp;Aunia Samadi,&nbsp;Dominic Samra,&nbsp;Tiago Sanches da Silva,&nbsp;Miguel Andrés Sánchez Carrasco,&nbsp;Alexandre Santerne,&nbsp;Amaia Santiago Pé,&nbsp;Francesco Santoli,&nbsp;Ängela R. G. Santos,&nbsp;Rosario Sanz Mesa,&nbsp;Luis Manuel Sarro,&nbsp;Gaetano Scandariato,&nbsp;Martin Schäfer,&nbsp;Edward Schlafly,&nbsp;François-Xavier Schmider,&nbsp;Jean Schneider,&nbsp;Jesper Schou,&nbsp;Hannah Schunker,&nbsp;Gabriel Jörg Schwarzkopf,&nbsp;Aldo Serenelli,&nbsp;Dries Seynaeve,&nbsp;Yutong Shan,&nbsp;Alexander Shapiro,&nbsp;Russel Shipman,&nbsp;Daniela Sicilia,&nbsp;Maria Angeles Sierra sanmartin,&nbsp;Axelle Sigot,&nbsp;Kyle Silliman,&nbsp;Roberto Silvotti,&nbsp;Attila E. Simon,&nbsp;Ricardo Simoyama Napoli,&nbsp;Marek Skarka,&nbsp;Barry Smalley,&nbsp;Rodolfo Smiljanic,&nbsp;Samuel Smit,&nbsp;Alexis Smith,&nbsp;Leigh Smith,&nbsp;Ignas Snellen,&nbsp;Ádám Sódor,&nbsp;Frank Sohl,&nbsp;Sami K. Solanki,&nbsp;Francesca Sortino,&nbsp;Sérgio Sousa,&nbsp;John Southworth,&nbsp;Diogo Souto,&nbsp;Alessandro Sozzetti,&nbsp;Dimitris Stamatellos,&nbsp;Keivan Stassun,&nbsp;Manfred Steller,&nbsp;Dennis Stello,&nbsp;Beate Stelzer,&nbsp;Ulrike Stiebeler,&nbsp;Amalie Stokholm,&nbsp;Trude Storelvmo,&nbsp;Klaus Strassmeier,&nbsp;Paul Anthony Strøm,&nbsp;Antoine Strugarek,&nbsp;Sophia Sulis,&nbsp;Michal Švanda,&nbsp;László Szabados,&nbsp;Róbert Szabó,&nbsp;Gyula M. Szabó,&nbsp;Ewa Szuszkiewicz,&nbsp;Geert Jan Talens,&nbsp;Daniele Teti,&nbsp;Tom Theisen,&nbsp;Frédéric Thévenin,&nbsp;Anne Thoul,&nbsp;Didier Tiphene,&nbsp;Ruth Titz-Weider,&nbsp;Andrew Tkachenko,&nbsp;Daniel Tomecki,&nbsp;Jorge Tonfat,&nbsp;Nicola Tosi,&nbsp;Regner Trampedach,&nbsp;Gregor Traven,&nbsp;Amaury Triaud,&nbsp;Reidar Trønnes,&nbsp;Maria Tsantaki,&nbsp;Matthias Tschentscher,&nbsp;Arnaud Turin,&nbsp;Adam Tvaruzka,&nbsp;Bernd Ulmer,&nbsp;Solène Ulmer-Moll,&nbsp;Ceren Ulusoy,&nbsp;Gabriele Umbriaco,&nbsp;Diana Valencia,&nbsp;Marica Valentini,&nbsp;Adriana Valio,&nbsp;Ángel Luis Valverde Guijarro,&nbsp;Vincent Van Eylen,&nbsp;Valerie Van Grootel,&nbsp;Tim A. van Kempen,&nbsp;Timothy Van Reeth,&nbsp;Iris Van Zelst,&nbsp;Bart Vandenbussche,&nbsp;Konstantinos Vasiliou,&nbsp;Valeriy Vasilyev,&nbsp;David Vaz de Mascarenhas,&nbsp;Allona Vazan,&nbsp;Marina Vela Nunez,&nbsp;Eduardo Nunes Velloso,&nbsp;Rita Ventura,&nbsp;Paolo Ventura,&nbsp;Julia Venturini,&nbsp;Isabel Vera Trallero,&nbsp;Dimitri Veras,&nbsp;Eva Verdugo,&nbsp;Kuldeep Verma,&nbsp;Didier Vibert,&nbsp;Tobias Vicanek Martinez,&nbsp;Krisztián Vida,&nbsp;Arthur Vigan,&nbsp;Antonio Villacorta,&nbsp;Eva Villaver,&nbsp;Marcos Villaverde Aparicio,&nbsp;Valentina Viotto,&nbsp;Eduard Vorobyov,&nbsp;Sergey Vorontsov,&nbsp;Frank W. Wagner,&nbsp;Nicholas Walton,&nbsp;Dave Walton,&nbsp;Haiyang Wang,&nbsp;Rens Waters,&nbsp;Christopher Watson,&nbsp;Sven Wedemeyer,&nbsp;Angharad Weeks,&nbsp;Jörg Weingrill,&nbsp;Annita Weiss,&nbsp;Belinda Wendler,&nbsp;Richard West,&nbsp;Karsten Westerdorff,&nbsp;Pierre-Amaury Westphal,&nbsp;Peter Wheatley,&nbsp;Tim White,&nbsp;Amadou Whittaker,&nbsp;Kai Wickhusen,&nbsp;Thomas Wilson,&nbsp;James Windsor,&nbsp;Othon Winter,&nbsp;Mark Lykke Winther,&nbsp;Alistair Winton,&nbsp;Ulrike Witteck,&nbsp;Veronika Witzke,&nbsp;Peter Woitke,&nbsp;David Wolter,&nbsp;Günther Wuchterl,&nbsp;Mark Wyatt,&nbsp;Dan Yang,&nbsp;Jie Yu,&nbsp;Ricardo Zanmar Sanchez,&nbsp;María Rosa Zapatero Osorio,&nbsp;Mathias Zechmeister,&nbsp;Yixiao Zhou,&nbsp;Claas Ziemke,&nbsp;Konstanze Zwintz,&nbsp;Torsten Böhm,&nbsp;Léo Michel Dansac","doi":"10.1007/s10686-025-09985-9","DOIUrl":"10.1007/s10686-025-09985-9","url":null,"abstract":"<div><p>PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to &lt;2R<span>(_textrm{Earth})</span>) around bright stars (&lt;11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09985-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel automated method for measuring spectral line indices of LAMOST-DR7 A-type stars lamost - dr7a型恒星光谱线指数自动测量新方法
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-04-10 DOI: 10.1007/s10686-025-09996-6
Fangyuan Chen, Liangping Tu, Hao Liu, Jian Zhao

Stellar spectral line indices are key tools for studying stellar physical properties and evolutionary processes, playing a significant role in inferring important stellar attributes such as Teff, [Fe/H], and logg. This paper proposes an automated method for measuring stellar spectral line indices, specifically targeting LAMOST-DR7 A-type stellar spectra. The method involves several key steps: spectral preprocessing, continuum normalization, baseline correction, baseline fitting, spectral line fitting, and line index calculation, all aimed at achieving accurate spectral line index measurements. Traditional methods often encounter significant errors when dealing with complex spectral backgrounds. In contrast, the proposed method incorporates a series of optimizations and has been validated for robustness through Monte Carlo simulations. Our observational results indicate that this method is highly feasible from the comparisons to the line indices officially released by LAMOST and those in the Lick spectral library. Further testing with simulated data further demonstrates the reliability of this approach. This method provides a promising tool for future astronomical observations and stellar evolution studies and holds broad application potential. It not only helps improve the accuracy of research into stellar physical properties but also offers a practical technical approach for analyzing the composition and evolutionary patterns of stellar populations in galaxies.

恒星光谱线指数是研究恒星物理性质和演化过程的关键工具,在推断Teff、[Fe/H]、log等重要恒星属性方面发挥着重要作用。本文针对LAMOST-DR7 a型恒星光谱,提出了一种自动测量恒星光谱线指数的方法。该方法包括光谱预处理、连续统归一化、基线校正、基线拟合、谱线拟合和谱线指数计算几个关键步骤,旨在实现准确的谱线指数测量。传统的方法在处理复杂的光谱背景时往往会遇到较大的误差。相比之下,所提出的方法包含了一系列优化,并通过蒙特卡罗仿真验证了其鲁棒性。通过与LAMOST正式发布的谱线指数和Lick谱库的谱线指数对比,我们的观测结果表明,该方法是高度可行的。对模拟数据的进一步测试进一步证明了该方法的可靠性。该方法为未来的天文观测和恒星演化研究提供了一种很有前景的工具,具有广阔的应用潜力。它不仅有助于提高恒星物理性质研究的准确性,而且为分析星系中恒星群的组成和演化模式提供了一种实用的技术方法。
{"title":"A novel automated method for measuring spectral line indices of LAMOST-DR7 A-type stars","authors":"Fangyuan Chen,&nbsp;Liangping Tu,&nbsp;Hao Liu,&nbsp;Jian Zhao","doi":"10.1007/s10686-025-09996-6","DOIUrl":"10.1007/s10686-025-09996-6","url":null,"abstract":"<div><p>Stellar spectral line indices are key tools for studying stellar physical properties and evolutionary processes, playing a significant role in inferring important stellar attributes such as Teff, [Fe/H], and logg. This paper proposes an automated method for measuring stellar spectral line indices, specifically targeting LAMOST-DR7 A-type stellar spectra. The method involves several key steps: spectral preprocessing, continuum normalization, baseline correction, baseline fitting, spectral line fitting, and line index calculation, all aimed at achieving accurate spectral line index measurements. Traditional methods often encounter significant errors when dealing with complex spectral backgrounds. In contrast, the proposed method incorporates a series of optimizations and has been validated for robustness through Monte Carlo simulations. Our observational results indicate that this method is highly feasible from the comparisons to the line indices officially released by LAMOST and those in the Lick spectral library. Further testing with simulated data further demonstrates the reliability of this approach. This method provides a promising tool for future astronomical observations and stellar evolution studies and holds broad application potential. It not only helps improve the accuracy of research into stellar physical properties but also offers a practical technical approach for analyzing the composition and evolutionary patterns of stellar populations in galaxies.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two complementary approaches of the periodicity detection in astronomical time series 天文时间序列周期性检测的两种互补方法
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-04-08 DOI: 10.1007/s10686-025-09995-7
Alexandru Pop, Maria Crăciun

Estimation of the statistical significance of the peaks appearing in the spectra of various astronomical time series is essential for the detection of signals especially when they are contaminated by high levels of observational noise. In the present paper we consider a broader perspective which relies on two main aspects: (i) all the peaks have or may have significance and, therefore, (ii) we propose two complementary approaches to simultaneously supply estimates of the statistical significance of all the peaks of interest through Monte Carlo simulations. They are natural generalisations of the already used methods featured either by specificity in frequency or by specificity in amplitude/power of the peaks occurred in the spectrum. Three recently obtained radial velocity data on stars with orbiting exoplanets were used to illustrate these approaches: two G-type stars observed by the HARPS spectrograph (TOI-733, TOI-763) and an M-type star observed by the CARMENES spectrograph (Wolf 327). Some both interesting and useful features of the two considered statistical significances are also emphasised.

对各种天文时间序列光谱中出现的峰值的统计意义进行估算,对于信号的探测至关重要,尤其是在信号受到高水平观测噪声污染的情况下。在本文中,我们从更广阔的视角进行了思考,这主要依赖于两个方面:(i) 所有峰值都具有或可能具有重要意义,因此,(ii) 我们提出了两种互补的方法,通过蒙特卡罗模拟,同时对所有相关峰值的统计意义进行估算。这两种方法是对已经使用过的方法的自然概括,其特点是对频谱中出现的峰的频率或振幅/功率具有特异性。为了说明这些方法,我们使用了最近获得的三颗有系外行星运行的恒星的径向速度数据:HARPS 摄谱仪观测到的两颗 G 型恒星(TOI-733 和 TOI-763)和 CARMENES 摄谱仪观测到的一颗 M 型恒星(Wolf 327)。还强调了这两种统计意义的一些有趣和有用的特点。
{"title":"Two complementary approaches of the periodicity detection in astronomical time series","authors":"Alexandru Pop,&nbsp;Maria Crăciun","doi":"10.1007/s10686-025-09995-7","DOIUrl":"10.1007/s10686-025-09995-7","url":null,"abstract":"<div><p>Estimation of the statistical significance of the peaks appearing in the spectra of various astronomical time series is essential for the detection of signals especially when they are contaminated by high levels of observational noise. In the present paper we consider a broader perspective which relies on two main aspects: (i) all the peaks have or may have significance and, therefore, (ii) we propose two complementary approaches to simultaneously supply estimates of the statistical significance of all the peaks of interest through Monte Carlo simulations. They are natural generalisations of the already used methods featured either by <i>specificity in frequency</i> or by <i>specificity in amplitude/power</i> of the peaks occurred in the spectrum. Three recently obtained radial velocity data on stars with orbiting exoplanets were used to illustrate these approaches: two G-type stars observed by the HARPS spectrograph (TOI-733, TOI-763) and an M-type star observed by the CARMENES spectrograph (Wolf 327). Some both interesting and useful features of the two considered statistical significances are also emphasised.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning applications to energy reconstruction of gamma-ray showers for the Tibet AS(gamma ) experiment 机器学习在西藏AS伽玛暴能量重建中的应用(gamma )实验
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-03-31 DOI: 10.1007/s10686-025-09993-9
Y. Meng, J. Huang, D. Chen, K Y. Hu, Y. Zhang, L M. Zhai, Y H. Zou, Y L. Yu, Y Y. Li

In order to improve the energy reconstruction accuracy of gamma-ray events observed by ground-based array experiments, this work propose a new energy estimator based on machine learning (ML) algorithm to determine the energies of gamma ray induced air showers in the energy range between 1 TeV and 10 PeV. We carry out a full Monte Carlo (MC) simulation using the Tibet air shower array and underground muon detector array, located at an altitude of 4,300 m above sea level. The MC simulated gamma-ray data are used to extract characteristic parameters depicting the air shower information, which are then fed into the ML model for training on both high-energy data sets ((E >sim 10) TeV) and low-energy data sets ((E < 10) TeV). In our simulation data tests, we found that the ML method showed significant advantages over traditional energy estimators (S50, (N_e), and (sum rho )), with improved energy resolution for both low and high energy datasets. Compared to the traditional estimator, the energy resolution improves by approximately 30% for the inner array events and 55% for the outer array events at (E < 10) TeV. At around 100 TeV, the energy resolution for large zenith angle events in the outer array improves by approximately 20%. This work also found that while the energy resolution of events falling the inside array can only be slightly improved, however, events outside array and at large zenith shower clear improvements. Moreover, it is particularly noteworthy that the ML method has little difference in the energy resolution of the inner and outer array events. The enhanced energy resolution achieved through the machine learning method for outer array events reduces the limitations imposed by the observation area, resulting in an approximately 30% improvement in statistical events. This method is suitable for ground-based array experiments in gamma-ray astronomy, and provides some technical support for further study of the primary gamma-ray energy reconstruction.

为了提高地面阵列实验观测到的伽马射线事件的能量重建精度,本文提出了一种新的基于机器学习(ML)算法的能量估计器,用于确定1 TeV ~ 10 PeV能量范围内伽马射线诱导的空气簇射的能量。我们利用西藏空气淋点阵列和地下介子探测器阵列,在海拔4300米的高度进行了完整的蒙特卡罗(MC)模拟。MC模拟的伽马射线数据用于提取表征风淋信息的特征参数,然后将其输入ML模型,在高能数据集((E >sim 10) TeV)和低能数据集((E < 10) TeV)上进行训练。在我们的模拟数据测试中,我们发现ML方法比传统的能量估计器(S50, (N_e)和(sum rho ))具有显著的优势,并且在低能和高能数据集上都具有更高的能量分辨率。与传统估计器相比,能量分辨率提高了约30%% for the inner array events and 55% for the outer array events at (E < 10) TeV. At around 100 TeV, the energy resolution for large zenith angle events in the outer array improves by approximately 20%. This work also found that while the energy resolution of events falling the inside array can only be slightly improved, however, events outside array and at large zenith shower clear improvements. Moreover, it is particularly noteworthy that the ML method has little difference in the energy resolution of the inner and outer array events. The enhanced energy resolution achieved through the machine learning method for outer array events reduces the limitations imposed by the observation area, resulting in an approximately 30% improvement in statistical events. This method is suitable for ground-based array experiments in gamma-ray astronomy, and provides some technical support for further study of the primary gamma-ray energy reconstruction.
{"title":"Machine learning applications to energy reconstruction of gamma-ray showers for the Tibet AS(gamma ) experiment","authors":"Y. Meng,&nbsp;J. Huang,&nbsp;D. Chen,&nbsp;K Y. Hu,&nbsp;Y. Zhang,&nbsp;L M. Zhai,&nbsp;Y H. Zou,&nbsp;Y L. Yu,&nbsp;Y Y. Li","doi":"10.1007/s10686-025-09993-9","DOIUrl":"10.1007/s10686-025-09993-9","url":null,"abstract":"<div><p>In order to improve the energy reconstruction accuracy of gamma-ray events observed by ground-based array experiments, this work propose a new energy estimator based on machine learning (ML) algorithm to determine the energies of gamma ray induced air showers in the energy range between 1 TeV and 10 PeV. We carry out a full Monte Carlo (MC) simulation using the Tibet air shower array and underground muon detector array, located at an altitude of 4,300 m above sea level. The MC simulated gamma-ray data are used to extract characteristic parameters depicting the air shower information, which are then fed into the ML model for training on both high-energy data sets (<span>(E &gt;sim 10)</span> TeV) and low-energy data sets (<span>(E &lt; 10)</span> TeV). In our simulation data tests, we found that the ML method showed significant advantages over traditional energy estimators (S50, <span>(N_e)</span>, and <span>(sum rho )</span>), with improved energy resolution for both low and high energy datasets. Compared to the traditional estimator, the energy resolution improves by approximately 30% for the inner array events and 55% for the outer array events at <span>(E &lt; 10)</span> TeV. At around 100 TeV, the energy resolution for large zenith angle events in the outer array improves by approximately 20%. This work also found that while the energy resolution of events falling the inside array can only be slightly improved, however, events outside array and at large zenith shower clear improvements. Moreover, it is particularly noteworthy that the ML method has little difference in the energy resolution of the inner and outer array events. The enhanced energy resolution achieved through the machine learning method for outer array events reduces the limitations imposed by the observation area, resulting in an approximately 30% improvement in statistical events. This method is suitable for ground-based array experiments in gamma-ray astronomy, and provides some technical support for further study of the primary gamma-ray energy reconstruction.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09993-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1