Aditya-L1 is the first Indian space mission to explore the Sun and solar atmosphere with seven multi-wavelength payloads, with Visible Emission Line Coronagraph (VELC) being the prime payload. It is an internally occulted coronagraph with four channels to image the Sun at 5000 Å in the field of view 1.05 - 3 (varvec{R}_{odot }), and to pursue spectroscopy at 5303 Å, 7892 Å and 10747 Å channels in the FOV (1.05 - 1.5 (varvec{R}_{odot })). In addition, spectropolarimetry is planned at 10747 Å channel. Therefore, VELC has three sCMOS detectors and one InGaAs detector. In this article, we aim to describe the technical details and specifications of the detectors achieved by way of thermo-vacuum calibration at the CREST campus of the Indian Institute of Astrophysics, Bangalore, India. Furthermore, we report the estimated conversion gain, full-well capacity, and readout noise at different temperatures. Based on the numbers, it is thus concluded that it is essential to operate the sCMOS detectors and InGaAs detector at (varvec{-5^circ }) and (varvec{-17^{circ }}) C, respectively, at the spacecraft level.
Aditya-L1是印度首次利用七个多波长有效载荷探索太阳和太阳大气层的空间飞行任务,其中可见发射线日冕仪(VELC)是主要有效载荷。它是一个内部掩蔽式日冕仪,有四个通道,可在 1.05 - 3 (varvec{R}_{odot }) 的视场中以 5000 Å 的波长对太阳成像,并在视场(1.05 - 1.5 (varvec{R}_{odot }) 中以 5303 Å、7892 Å 和 10747 Å 的波长进行光谱测量。)此外,还计划在 10747 Å 频道上进行分光测极。因此,VELC 有三个 sCMOS 探测器和一个 InGaAs 探测器。在这篇文章中,我们将介绍在印度班加罗尔印度天体物理研究所 CREST 校区通过热真空校准实现的探测器的技术细节和规格。此外,我们还报告了不同温度下的估计转换增益、全阱容量和读出噪声。根据这些数据,我们得出结论,在航天器层面,必须分别在 (varvec{-5^circ }) 和 (varvec{-17^{circ }}) C 的温度下运行 sCMOS 探测器和 InGaAs 探测器。
{"title":"Calibration of VELC detectors on-board Aditya-L1 mission","authors":"Shalabh Mishra, Sasikumar Raja K, Sanal Krishnan VU, Venkata Suresh Narra, Bhavana Hegde S, Utkarsha D, Muthu Priyal V, Pawan Kumar S, Natarajan V, Raghavendra Prasad B, Jagdev Singh, Umesh Kamath P, Kathiravan S, Vishnu T, Suresha, Savarimuthu P, Jalshri H Desai, Rajiv Kumaran, Shiv Sagar, Sumit Kumar, Inderjeet Singh Bamrah, Amit Kumar","doi":"10.1007/s10686-024-09922-2","DOIUrl":"10.1007/s10686-024-09922-2","url":null,"abstract":"<div><p>Aditya-L1 is the first Indian space mission to explore the Sun and solar atmosphere with seven multi-wavelength payloads, with Visible Emission Line Coronagraph (VELC) being the prime payload. It is an internally occulted coronagraph with four channels to image the Sun at 5000 Å in the field of view 1.05 - 3 <span>(varvec{R}_{odot })</span>, and to pursue spectroscopy at 5303 Å, 7892 Å and 10747 Å channels in the FOV (1.05 - 1.5 <span>(varvec{R}_{odot })</span>). In addition, spectropolarimetry is planned at 10747 Å channel. Therefore, VELC has three sCMOS detectors and one InGaAs detector. In this article, we aim to describe the technical details and specifications of the detectors achieved by way of thermo-vacuum calibration at the CREST campus of the Indian Institute of Astrophysics, Bangalore, India. Furthermore, we report the estimated conversion gain, full-well capacity, and readout noise at different temperatures. Based on the numbers, it is thus concluded that it is essential to operate the sCMOS detectors and InGaAs detector at <span>(varvec{-5^circ })</span> and <span>(varvec{-17^{circ }})</span> C, respectively, at the spacecraft level.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140019902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Low Energy X-ray telescope (LE) is one of the main instruments of the Insight-Hard X-ray Modulation Telescope (Insight-HXMT), the first Chinese X-ray astronomical satellite. The scientific objectives of LE focus on scanning and pointed observations of the X-ray sources in the soft X-ray band (0.7–13 keV). LE consists of three detector boxes (LEDs) and an electric control box (LEB). The LEB is composed of data handling unit, monitoring unit, and power distribution unit, with functions including data processing, communication, monitoring, power supply, and distribution. All the functions designed in the LEB were verified during the operation in orbit. To improve the efficiency of astronomical observations and reliability of LE, onboard data processing is designed in the LEB. The results of onboard data processing are immediately transmitted to the ground as important housekeeping data and are verified by comparing them with the processing results of the data transmitted to the ground. In the six years since launch, the LEB has performed well, operated smoothly, and met all expected requirements. The LEB has participated in numerous scientific observations, transmitted a large amount of scientific data, and obtained several observational results.
低能 X 射线望远镜(LE)是中国首颗 X 射线天文卫星 Insight-硬 X 射线调制望远镜(Insight-HXMT)的主要仪器之一。低能 X 射线望远镜的科学目标主要是对软 X 射线波段(0.7-13 千伏)的 X 射线源进行扫描和指向观测。LE 由三个探测器箱(LED)和一个电控箱(LEB)组成。LEB 由数据处理单元、监控单元和配电单元组成,功能包括数据处理、通信、监控、供电和配电。LEB 设计的所有功能都在轨道运行中得到了验证。为了提高天文观测的效率和 LE 的可靠性,在 LEB 中设计了星载数据处理。星载数据处理的结果作为重要的内务数据立即传送到地面,并通过与传送到地面的数据处理结果进行比较来验证。自发射以来的六年中,LEB 表现出色,运行平稳,达到了所有预期要求。LEB 参与了多次科学观测,传输了大量科学数据,并取得了多项观测成果。
{"title":"Design and verification of the electric control box of the low energy x-ray telescope onboard the Insight-HXMT","authors":"Wei Li, Jingbi Lu, Yupeng Xu, Xiaofan Zhao, Yanji Yang, Weiwei Cui, Yong Chen","doi":"10.1007/s10686-024-09929-9","DOIUrl":"10.1007/s10686-024-09929-9","url":null,"abstract":"<div><p>The Low Energy X-ray telescope (LE) is one of the main instruments of the Insight-Hard X-ray Modulation Telescope (Insight-HXMT), the first Chinese X-ray astronomical satellite. The scientific objectives of LE focus on scanning and pointed observations of the X-ray sources in the soft X-ray band (0.7–13 keV). LE consists of three detector boxes (LEDs) and an electric control box (LEB). The LEB is composed of data handling unit, monitoring unit, and power distribution unit, with functions including data processing, communication, monitoring, power supply, and distribution. All the functions designed in the LEB were verified during the operation in orbit. To improve the efficiency of astronomical observations and reliability of LE, onboard data processing is designed in the LEB. The results of onboard data processing are immediately transmitted to the ground as important housekeeping data and are verified by comparing them with the processing results of the data transmitted to the ground. In the six years since launch, the LEB has performed well, operated smoothly, and met all expected requirements. The LEB has participated in numerous scientific observations, transmitted a large amount of scientific data, and obtained several observational results.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139980771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1007/s10686-024-09925-z
Bedini Lisa, Tommei Giacomo
The Yarkovsky drift represents the semi-major axis variation of a celestial body due to the Yarkovsky effect. This thermodynamic effect acts more significantly on bodies with a diameter between (approx 10 ,text {m}) and (approx 30 ,text {km}). Therefore, the orbits of many minor bodies of the solar system are affected: knowing the value of the Yarkovsky drift can be crucial to accurately predict their positions, especially if the asteroids are Near Earth Asteroids (NEAs) and there may be a non-zero impact probability with the Earth. The direct computation of this effect is not easily achieved due to the scarce availability of NEAs physical information. Thus, the more promising method to estimate the Yarkovsky effect is through an orbital fit using seven parameters, the six orbital elements and a seventh parameter accounting for non-gravitational interactions. In this paper, we show the analysis of 1262 NEAs with Signal-to-Noise Ratio (SNR) greater or equal 2, of which 279 have the parameter S (absolute ratio between the Yarkovsky drift and its expected value) less than 1.5 and are therefore more reliable. Among these, 91 are not present in the literature, thus represent new Yarkovsky drift detections. Furthermore, we used our results to estimate the ratio of the retrograde over prograde rotators and to validate the dependence of the Yarkovsky drift from the diameter, da/dt (approx D^{-1}).
{"title":"New Yarkovsky drift detections using astrometric observations of NEAs","authors":"Bedini Lisa, Tommei Giacomo","doi":"10.1007/s10686-024-09925-z","DOIUrl":"10.1007/s10686-024-09925-z","url":null,"abstract":"<div><p>The Yarkovsky drift represents the semi-major axis variation of a celestial body due to the Yarkovsky effect. This thermodynamic effect acts more significantly on bodies with a diameter between <span>(approx 10 ,text {m})</span> and <span>(approx 30 ,text {km})</span>. Therefore, the orbits of many minor bodies of the solar system are affected: knowing the value of the Yarkovsky drift can be crucial to accurately predict their positions, especially if the asteroids are Near Earth Asteroids (NEAs) and there may be a non-zero impact probability with the Earth. The direct computation of this effect is not easily achieved due to the scarce availability of NEAs physical information. Thus, the more promising method to estimate the Yarkovsky effect is through an orbital fit using seven parameters, the six orbital elements and a seventh parameter accounting for non-gravitational interactions. In this paper, we show the analysis of 1262 NEAs with Signal-to-Noise Ratio (SNR) greater or equal 2, of which 279 have the parameter <i>S</i> (absolute ratio between the Yarkovsky drift and its expected value) less than 1.5 and are therefore more reliable. Among these, 91 are not present in the literature, thus represent new Yarkovsky drift detections. Furthermore, we used our results to estimate the ratio of the retrograde over prograde rotators and to validate the dependence of the Yarkovsky drift from the diameter, da/dt <span>(approx D^{-1})</span>.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09925-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1007/s10686-024-09928-w
C.J.A.P. Martins, R. Cooke, J. Liske, M.T. Murphy, P. Noterdaeme, T.M. Schmidt, J. S. Alcaniz, C. S. Alves, S. Balashev, S. Cristiani, P. Di Marcantonio, R. Génova Santos, R. S. Gonçalves, J. I. González Hernández, R. Maiolino, A. Marconi, C. M. J. Marques, M. A. F. Melo e Sousa, N. J. Nunes, L. Origlia, C. Péroux, S. Vinzl, A. Zanutta
State-of-the-art 19th century spectroscopy led to the discovery of quantum mechanics, and 20th century spectroscopy led to the confirmation of quantum electrodynamics. State-of-the-art 21st century astrophysical spectrographs, especially ANDES at ESO’s ELT, have another opportunity to play a key role in the search for, and characterization of, the new physics which is known to be out there, waiting to be discovered. We rely on detailed simulations and forecast techniques to discuss four important examples of this point: big bang nucleosynthesis, the evolution of the cosmic microwave background temperature, tests of the universality of physical laws, and a real-time model-independent mapping of the expansion history of the universe (also known as the redshift drift). The last two are among the flagship science drivers for the ELT. We also highlight what is required for the ESO community to be able to play a meaningful role in 2030s fundamental cosmology and show that, even if ANDES only provides null results, such ‘minimum guaranteed science’ will be in the form of constraints on key cosmological paradigms: these are independent from, and can be competitive with, those obtained from traditional cosmological probes.
{"title":"Cosmology and fundamental physics with the ELT-ANDES spectrograph","authors":"C.J.A.P. Martins, R. Cooke, J. Liske, M.T. Murphy, P. Noterdaeme, T.M. Schmidt, J. S. Alcaniz, C. S. Alves, S. Balashev, S. Cristiani, P. Di Marcantonio, R. Génova Santos, R. S. Gonçalves, J. I. González Hernández, R. Maiolino, A. Marconi, C. M. J. Marques, M. A. F. Melo e Sousa, N. J. Nunes, L. Origlia, C. Péroux, S. Vinzl, A. Zanutta","doi":"10.1007/s10686-024-09928-w","DOIUrl":"10.1007/s10686-024-09928-w","url":null,"abstract":"<div><p>State-of-the-art 19th century spectroscopy led to the discovery of quantum mechanics, and 20th century spectroscopy led to the confirmation of quantum electrodynamics. State-of-the-art 21st century astrophysical spectrographs, especially ANDES at ESO’s ELT, have another opportunity to play a key role in the search for, and characterization of, the new physics which is known to be out there, waiting to be discovered. We rely on detailed simulations and forecast techniques to discuss four important examples of this point: big bang nucleosynthesis, the evolution of the cosmic microwave background temperature, tests of the universality of physical laws, and a real-time model-independent mapping of the expansion history of the universe (also known as the redshift drift). The last two are among the flagship science drivers for the ELT. We also highlight what is required for the ESO community to be able to play a meaningful role in 2030s fundamental cosmology and show that, even if ANDES only provides null results, such ‘minimum guaranteed science’ will be in the form of constraints on key cosmological paradigms: these are independent from, and can be competitive with, those obtained from traditional cosmological probes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09928-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1007/s10686-024-09920-4
Jiahuan Zhu, Xutao Zheng, Hua Feng, Ming Zeng, Chien-You Huang, Jr-Yue Hsiang, Hsiang-Kuang Chang, Hong Li, Hao Chang, Xiaofan Pan, Ge Ma, Qiong Wu, Yulan Li, Xuening Bai, Mingyu Ge, Long Ji, Jian Li, Yangping Shen, Wei Wang, Xilu Wang, Binbin Zhang, Jin Zhang
We propose a future mission concept, the MeV Astrophysical Spectroscopic Surveyor (MASS), which is a large area Compton telescope using 3D position sensitive cadmium zinc telluride (CZT) detectors optimized for emission line detection. The payload consists of two layers of CZT detectors in a misaligned chessboard layout, with a total geometric area of 4096 cm(^2) for on-axis observations. The detectors can be operated at room-temperature with an energy resolution of 0.6% at 0.662 MeV. The in-orbit background is estimated with a mass model. At energies around 1 MeV, a line sensitivity of about (10^{-5}) photons cm(^{-2}) s(^{-1}) can be obtained with a 1 Ms observation. The main science objectives of MASS include nucleosynthesis in astrophysics and high energy astrophysics related to compact objects and transient sources. The payload CZT detectors weigh roughly 40 kg, suggesting that it can be integrated into a micro- or mini-satellite. We have constructed a pathfinder, named as MASS-Cube, to have a direct test of the technique with 4 detector units in space in the near future.
摘要 我们提出了一个未来任务概念--MeV 天体光谱勘测器(MASS),这是一个大面积康普顿望远镜,使用三维位置敏感的碲锌镉(CZT)探测器,优化了发射线探测。有效载荷由两层棋盘式错位布局的碲锌镉探测器组成,轴上观测的总几何面积为 4096 厘米(^2)。探测器可在室温下运行,0.662MeV时的能量分辨率为0.6%。在轨本底是用质量模型估算的。在 1 MeV 左右的能量下,1 Ms 的观测可获得约 (10^{-5}) 光子 cm (^{-2}) s (^{-1}) 的线灵敏度。MASS的主要科学目标包括天体物理学中的核合成以及与紧凑天体和瞬变源有关的高能天体物理学。有效载荷 CZT 探测器重约 40 千克,这表明它可以集成到微型或小型卫星中。我们已经建造了一个名为 MASS-Cube 的探路者,以便在不久的将来在太空中用 4 个探测器单元对该技术进行直接测试。
{"title":"MeV astrophysical spectroscopic surveyor (MASS): a compton telescope mission concept","authors":"Jiahuan Zhu, Xutao Zheng, Hua Feng, Ming Zeng, Chien-You Huang, Jr-Yue Hsiang, Hsiang-Kuang Chang, Hong Li, Hao Chang, Xiaofan Pan, Ge Ma, Qiong Wu, Yulan Li, Xuening Bai, Mingyu Ge, Long Ji, Jian Li, Yangping Shen, Wei Wang, Xilu Wang, Binbin Zhang, Jin Zhang","doi":"10.1007/s10686-024-09920-4","DOIUrl":"10.1007/s10686-024-09920-4","url":null,"abstract":"<div><p>We propose a future mission concept, the MeV Astrophysical Spectroscopic Surveyor (MASS), which is a large area Compton telescope using 3D position sensitive cadmium zinc telluride (CZT) detectors optimized for emission line detection. The payload consists of two layers of CZT detectors in a misaligned chessboard layout, with a total geometric area of 4096 cm<span>(^2)</span> for on-axis observations. The detectors can be operated at room-temperature with an energy resolution of 0.6% at 0.662 MeV. The in-orbit background is estimated with a mass model. At energies around 1 MeV, a line sensitivity of about <span>(10^{-5})</span> photons cm<span>(^{-2})</span> s<span>(^{-1})</span> can be obtained with a 1 Ms observation. The main science objectives of MASS include nucleosynthesis in astrophysics and high energy astrophysics related to compact objects and transient sources. The payload CZT detectors weigh roughly 40 kg, suggesting that it can be integrated into a micro- or mini-satellite. We have constructed a pathfinder, named as MASS-Cube, to have a direct test of the technique with 4 detector units in space in the near future.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09920-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139947602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1007/s10686-024-09924-0
Yiming Huang, Juan Zhang, Lian Tao, Zhengwei Li, Donghua Zhao, Qian-Qing Yin, Xiangyang Wen, Jingyu Xiao, Chen Zhang, Shuang-Nan Zhang, Shaolin Xiong, Qingcui Bu, Jirong Cang, Dezhi Cao, Wen Chen, Siran Ding, Min Gao, Yang Gao, Shujin Hou, Liping Jia, Ge Jin, Dalin Li, Jinsong Li, Panping Li, Yajun Li, Xiaojing Liu, Ruican Ma, Xingyu Pan, Liqiang Qi, Jinhui Rao, Xianfei Sun, Qingwen Tang, Ruijing Tang, Yusa Wang, Yibo Xu, Sheng Yang, Yanji Yang, Yong Yang, Xuan Zhang, Yueting Zhang, Heng Zhou, Kang Zhao, Qingchang Zhao, Shujie Zhao, Zijian Zhao
The Chasing All Transients Constellation Hunters (CATCH) space mission is an intelligent constellation consisting of 126 micro-satellites in three types (A, B, and C), designed for X-ray observation with the objective of studying the dynamic universe. Currently, we are actively developing the first Pathfinder (CATCH-1) for the CATCH mission, specifically for type-A satellites. CATCH-1 is equipped with Micro Pore Optics (MPO) and a 4-pixel Silicon Drift Detector (SDD) array. To assess its scientific performance, including the effective area of the optical system, on-orbit background, and telescope sensitivity, we employ the Monte Carlo software Geant4 for simulation in this study. The MPO optics exhibit an effective area of 41 cm(^2) at the focal spot for 1 keV X-rays, while the entire telescope system achieves an effective area of 29 cm(^2) at 1 keV when taking into account the SDD detector’s detection efficiency. The primary contribution to the background is found to be from the Cosmic X-ray Background. Assuming a 625 km orbit with an inclination of (29^circ ), the total background for CATCH-1 is estimated to be (8.13times 10^{-2}) counts s(^{-1}) in the energy range of 0.5–4 keV. Based on the background within the central detector and assuming a Crab-like source spectrum, the estimated ideal sensitivity could achieve (1.9times 10^{-12}) erg cm(^{-2}) s(^{-1}) for an exposure of 10(^4) s in the energy band of 0.5–4 keV. Furthermore, after simulating the background caused by low-energy charged particles near the geomagnetic equator, we have determined that there is no need to install a magnetic deflector.
摘要 "追逐所有瞬变星座猎手"(CATCH)空间任务是一个智能星座,由 126 颗微型卫星组成,分为 A、B 和 C 三种类型,设计用于 X 射线观测,目的是研究动态宇宙。目前,我们正在积极开发 CATCH 任务的第一个探路者(CATCH-1),专门用于 A 型卫星。CATCH-1 配备了微孔光学器件(MPO)和 4 像素硅漂移探测器(SDD)阵列。为了评估其科学性能,包括光学系统的有效面积、在轨背景和望远镜灵敏度,我们在本研究中使用蒙特卡洛软件 Geant4 进行了模拟。对于 1 keV X 射线,MPO 光学系统的焦斑有效面积为 41 厘米,而考虑到 SDD 探测器的探测效率,整个望远镜系统在 1 keV 时的有效面积为 29 厘米。对背景的主要贡献来自宇宙 X 射线背景。假定CATCH-1的轨道为625公里,倾角为(29^circ),那么在0.5-4 keV的能量范围内,CATCH-1的总背景估计为(8.13times 10^{-2}) counts s(^{-1}) 。根据中央探测器内的本底,并假定有一个类似于螃蟹的源光谱,在0.5-4 keV的能段内曝光10 (^4) s,估计理想的灵敏度可以达到 (1.9 次 10^{-12}) erg cm (^{-2}) s (^{-1}) 。此外,在模拟了地磁赤道附近低能量带电粒子造成的背景之后,我们确定没有必要安装磁偏转器。
{"title":"Simulation studies for the first pathfinder of the CATCH space mission","authors":"Yiming Huang, Juan Zhang, Lian Tao, Zhengwei Li, Donghua Zhao, Qian-Qing Yin, Xiangyang Wen, Jingyu Xiao, Chen Zhang, Shuang-Nan Zhang, Shaolin Xiong, Qingcui Bu, Jirong Cang, Dezhi Cao, Wen Chen, Siran Ding, Min Gao, Yang Gao, Shujin Hou, Liping Jia, Ge Jin, Dalin Li, Jinsong Li, Panping Li, Yajun Li, Xiaojing Liu, Ruican Ma, Xingyu Pan, Liqiang Qi, Jinhui Rao, Xianfei Sun, Qingwen Tang, Ruijing Tang, Yusa Wang, Yibo Xu, Sheng Yang, Yanji Yang, Yong Yang, Xuan Zhang, Yueting Zhang, Heng Zhou, Kang Zhao, Qingchang Zhao, Shujie Zhao, Zijian Zhao","doi":"10.1007/s10686-024-09924-0","DOIUrl":"10.1007/s10686-024-09924-0","url":null,"abstract":"<div><p>The Chasing All Transients Constellation Hunters (CATCH) space mission is an intelligent constellation consisting of 126 micro-satellites in three types (A, B, and C), designed for X-ray observation with the objective of studying the dynamic universe. Currently, we are actively developing the first Pathfinder (CATCH-1) for the CATCH mission, specifically for type-A satellites. CATCH-1 is equipped with Micro Pore Optics (MPO) and a 4-pixel Silicon Drift Detector (SDD) array. To assess its scientific performance, including the effective area of the optical system, on-orbit background, and telescope sensitivity, we employ the Monte Carlo software Geant4 for simulation in this study. The MPO optics exhibit an effective area of 41 cm<span>(^2)</span> at the focal spot for 1 keV X-rays, while the entire telescope system achieves an effective area of 29 cm<span>(^2)</span> at 1 keV when taking into account the SDD detector’s detection efficiency. The primary contribution to the background is found to be from the Cosmic X-ray Background. Assuming a 625 km orbit with an inclination of <span>(29^circ )</span>, the total background for CATCH-1 is estimated to be <span>(8.13times 10^{-2})</span> counts s<span>(^{-1})</span> in the energy range of 0.5–4 keV. Based on the background within the central detector and assuming a Crab-like source spectrum, the estimated ideal sensitivity could achieve <span>(1.9times 10^{-12})</span> erg cm<span>(^{-2})</span> s<span>(^{-1})</span> for an exposure of 10<span>(^4)</span> s in the energy band of 0.5–4 keV. Furthermore, after simulating the background caused by low-energy charged particles near the geomagnetic equator, we have determined that there is no need to install a magnetic deflector.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139947600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1007/s10686-024-09919-x
Louis D. Friedman, Darren Garber, Slava G. Turyshev, Henry Helvajian, Thomas Heinshiemer, John McVey, Artur R. Davoyan
The solar gravitational lens (SGL) provides a factor of (10^{11}) amplification for viewing distant point sources beyond our solar system. As such, it may be used for resolved imaging of extended sources, such as exoplanets, not possible otherwise. To use the SGL, a spacecraft carrying a modest telescope and a coronagraph must reach the SGLs focal region, that begins at (sim )550 astronomical units (AU) from the Sun and is oriented outward along the line connecting the distant object and the Sun. No spacecraft has ever reached even a half of that distance; and to do so within a reasonable mission lifetime (e.g., less than 25 years) and affordable cost requires a new type of mission design, using solar sails and microsats ((<100) kg). The payoff is high – using the SGL is the only practical way we can ever get a high-resolution, multi-pixel image of an Earth-like exoplanet, one that we identify as potentially habitable. This paper describes a novel mission design starting with a rideshare launch from the Earth, spiraling in toward the Sun, and then flying around it to achieve solar system exit speeds of over 20 AU/year. A new sailcraft design is used to make possible high area to mass ratio for the sailcraft. The mission design enables other fast solar system missions, starting with a proposed very low cost technology demonstration mission (TDM) to prove the functionality and operation of the microsat-solar sail design and then, building on the TDM, missions to explore distant regions of the solar system, and those to study Kuiper Belt objects (KBOs) and the recently discovered interstellar objects (ISOs) are also possible.
{"title":"A mission to nature’s telescope for high-resolution imaging of an exoplanet","authors":"Louis D. Friedman, Darren Garber, Slava G. Turyshev, Henry Helvajian, Thomas Heinshiemer, John McVey, Artur R. Davoyan","doi":"10.1007/s10686-024-09919-x","DOIUrl":"10.1007/s10686-024-09919-x","url":null,"abstract":"<div><p>The solar gravitational lens (SGL) provides a factor of <span>(10^{11})</span> amplification for viewing distant point sources beyond our solar system. As such, it may be used for resolved imaging of extended sources, such as exoplanets, not possible otherwise. To use the SGL, a spacecraft carrying a modest telescope and a coronagraph must reach the SGLs focal region, that begins at <span>(sim )</span>550 astronomical units (AU) from the Sun and is oriented outward along the line connecting the distant object and the Sun. No spacecraft has ever reached even a half of that distance; and to do so within a reasonable mission lifetime (e.g., less than 25 years) and affordable cost requires a new type of mission design, using solar sails and microsats (<span>(<100)</span> kg). The payoff is high – using the SGL is the only practical way we can ever get a high-resolution, multi-pixel image of an Earth-like exoplanet, one that we identify as potentially habitable. This paper describes a novel mission design starting with a rideshare launch from the Earth, spiraling in toward the Sun, and then flying around it to achieve solar system exit speeds of over 20 AU/year. A new sailcraft design is used to make possible high area to mass ratio for the sailcraft. The mission design enables other fast solar system missions, starting with a proposed very low cost technology demonstration mission (TDM) to prove the functionality and operation of the microsat-solar sail design and then, building on the TDM, missions to explore distant regions of the solar system, and those to study Kuiper Belt objects (KBOs) and the recently discovered interstellar objects (ISOs) are also possible.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09919-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1007/s10686-023-09915-7
Riccardo Crupi, Giuseppe Dilillo, Elisabetta Bissaldi, Kester Ward, Fabrizio Fiore, Andrea Vacchi
HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a spaceborne, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a neural network to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique called Poisson-FOCuS to identify observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The neural network performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi-GBM catalog, both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed, providing an estimate of localisation and a tentative classification.
{"title":"Searching for long faint astronomical high energy transients: a data driven approach","authors":"Riccardo Crupi, Giuseppe Dilillo, Elisabetta Bissaldi, Kester Ward, Fabrizio Fiore, Andrea Vacchi","doi":"10.1007/s10686-023-09915-7","DOIUrl":"10.1007/s10686-023-09915-7","url":null,"abstract":"<div><p>HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a spaceborne, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a neural network to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique called Poisson-FOCuS to identify observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The neural network performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi-GBM catalog, both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed, providing an estimate of localisation and a tentative classification.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"421 - 476"},"PeriodicalIF":3.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09915-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper presents a methodology for the digitization and processing of our own spectral data archive and the results of comparing the obtained data with those of modern observations. An Epson Perfection V850 Pro scanner with optional SilverFast8 software was used to scan photographic films. More than 2,000 archive spectra of Seyfert galaxies obtained in 1970–1990 with the AZT-8 telescope have been scanned to date (resolution 2400 dpi). The work describes the reduction of distortion for the scanned spectra using the program code, created in Python. Our code has been registered on the web service “GitHub” and a link to the code is given in the work. The results of digitization and subsequent spectra processing are presented in the example of the Seyfert galaxy Mrk 3. For the absolute calibration of the early spectra (Jan. 25, 1976) the radiation fluxes in the emission lines of [SII] were used. The lines were measured on the modern spectrogram obtained in 2023 on telescope AZT-8 (Mar. 14, 2023)
{"title":"Digital archival spectral data for Seyfert galaxies and their use in conjunction with modern FAI spectral data","authors":"Saule Shomshekova, Lyudmila Kondratyeva, Chingis Omarov, Ildana Izmailova, Adel Umirbayeva, Svetlana Moshkina","doi":"10.1007/s10686-023-09916-6","DOIUrl":"10.1007/s10686-023-09916-6","url":null,"abstract":"<div><p>The paper presents a methodology for the digitization and processing of our own spectral data archive and the results of comparing the obtained data with those of modern observations. An Epson Perfection V850 Pro scanner with optional <span>SilverFast8</span> software was used to scan photographic films. More than 2,000 archive spectra of Seyfert galaxies obtained in 1970–1990 with the AZT-8 telescope have been scanned to date (resolution 2400 dpi). The work describes the reduction of distortion for the scanned spectra using the program code, created in Python. Our code has been registered on the web service “GitHub” and a link to the code is given in the work. The results of digitization and subsequent spectra processing are presented in the example of the Seyfert galaxy Mrk 3. For the absolute calibration of the early spectra (Jan. 25, 1976) the radiation fluxes in the emission lines of [SII] were used. The lines were measured on the modern spectrogram obtained in 2023 on telescope AZT-8 (Mar. 14, 2023)</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"557 - 568"},"PeriodicalIF":3.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09916-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-18DOI: 10.1007/s10686-023-09918-4
Johannes Hulsman, Xin Wu, Philipp Azzarello, Benedikt Bergmann, Michael Campbell, George Clark, Franck Cadoux, Tomoya Ilzawa, Peter Kollmann, Xavi Llopart, Quentin Nénon, Mercedes Paniccia, Elias Roussos, Petr Smolyanskiy, Daniil Sukhonos, Pierre Alexandre Thonet
Pix.PAN is a compact cylindrical magnetic spectrometer, intended to provide excellent high energy particle measurements under high rate and hostile operating conditions in space. Its principal design is composed of two Halbach-array magnetic sectors and six Timepix4-based tracking layers; the latest hybrid silicon pixel detector readout ASIC designed. Due to Pix.PAN’s compact and relatively simple design, it has the potential to be used for space missions exploring with measurements of unprecedented precision, high energy particles in radiation belts and the heliophere (solar energetic particles, anomalous and galactic cosmic rays). In this white paper, we discuss the design and expected performance of Pix.PAN for COMPASS (Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks), a mission concept submitted to NASA’s Call “B.16 Heliophysics Mission Concept Studies (HMCS)” in 2021 that targets the extreme high energy particle environment of Jupiter’s inner radiation belts. We also discuss PixPAN’s operational conditions and interface requirements. The conceptual design shows that is possible to achieve an energy resolution of<12% for electrons in the range of 10 MeV-1 GeV and<35% for protons between (sim )200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44(frac{text {MHz}}{text {cm}^2}) which is below the design limit of 360(frac{text {MHz}}{text {cm}^2}) of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance.
Pix。PAN是一种紧凑的圆柱形磁谱仪,旨在在高速率和恶劣的空间操作条件下提供出色的高能粒子测量。其主要设计由两个哈尔巴赫阵列磁扇区和六个基于timepix4的跟踪层组成;最新设计的混合硅像素检测器读出专用集成电路。由于Pix。PAN的紧凑和相对简单的设计,它有潜力用于空间任务,探索前所未有的精度,辐射带和日球层的高能粒子(太阳高能粒子,异常和银河宇宙射线)。在本白皮书中,我们讨论了Pix的设计和预期性能。PAN for COMPASS(磁层粒子加速、源和汇的综合观测),这是一个提交给NASA B.16的任务概念太阳物理任务概念研究(HMCS)”,目标是木星内部辐射带的极端高能粒子环境。讨论了PixPAN的运行条件和接口要求。概念设计表明,可以实现12的能量分辨率% for electrons in the range of 10 MeV-1 GeV and<35% for protons between (sim )200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44(frac{text {MHz}}{text {cm}^2}) which is below the design limit of 360(frac{text {MHz}}{text {cm}^2}) of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance.
{"title":"Relativistic particle measurement in jupiter’s magnetosphere with Pix.PAN","authors":"Johannes Hulsman, Xin Wu, Philipp Azzarello, Benedikt Bergmann, Michael Campbell, George Clark, Franck Cadoux, Tomoya Ilzawa, Peter Kollmann, Xavi Llopart, Quentin Nénon, Mercedes Paniccia, Elias Roussos, Petr Smolyanskiy, Daniil Sukhonos, Pierre Alexandre Thonet","doi":"10.1007/s10686-023-09918-4","DOIUrl":"10.1007/s10686-023-09918-4","url":null,"abstract":"<div><p>Pix.PAN is a compact cylindrical magnetic spectrometer, intended to provide excellent high energy particle measurements under high rate and hostile operating conditions in space. Its principal design is composed of two Halbach-array magnetic sectors and six Timepix4-based tracking layers; the latest hybrid silicon pixel detector readout ASIC designed. Due to Pix.PAN’s compact and relatively simple design, it has the potential to be used for space missions exploring with measurements of unprecedented precision, high energy particles in radiation belts and the heliophere (solar energetic particles, anomalous and galactic cosmic rays). In this white paper, we discuss the design and expected performance of Pix.PAN for COMPASS (<b>C</b>omprehensive <b>O</b>bservations of <b>M</b>agnetospheric <b>P</b>article <b>A</b>cceleration, <b>S</b>ources, and <b>S</b>inks), a mission concept submitted to NASA’s Call “B.16 Heliophysics Mission Concept Studies (HMCS)” in 2021 that targets the extreme high energy particle environment of Jupiter’s inner radiation belts. We also discuss PixPAN’s operational conditions and interface requirements. The conceptual design shows that is possible to achieve an energy resolution of<12% for electrons in the range of 10 MeV-1 GeV and<35% for protons between <span>(sim )</span>200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44<span>(frac{text {MHz}}{text {cm}^2})</span> which is below the design limit of 360<span>(frac{text {MHz}}{text {cm}^2})</span> of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"371 - 402"},"PeriodicalIF":3.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09918-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}