首页 > 最新文献

Geoscience Canada最新文献

英文 中文
Geology and Wine 14. Terroir of Historic Wollersheim Winery, Lake Wisconsin American Viticultural Area 地质学与葡萄酒历史悠久的沃勒斯海姆酒庄,威斯康星湖美国葡萄种植区的风土
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/geocanj.2016.43.107
S. Karakis, B. Cameron, W. Kean
The viticultural history of Wisconsin started in the 1840s, with the very first vine plantings by Hungarian Agoston Haraszthy on the Wollersheim Winery property located in the Lake Wisconsin American Viticultural Area (AVA). This study examines the terroir of historic Wollersheim Winery, the only winery within the confines of the Lake Wisconsin AVA, to understand the interplay of environmental factors influencing the character and quality as well as the variability of Wollersheim wines. Soil texture, chemistry, and mineralogy in conjunction with precision viticulture tools such as electromagnetic induction and electrical resistivity tomography surveys, are utilized in the Wollersheim Winery terroir characterization and observation of spatially variable terroir at the vineyard scale. Establishing and comparing areas of variability at the plot level for two specific vineyard plots (Domaine Reserve and Lot 19) at Wollersheim Winery provides insight into the effects of soil properties and land characteristics on grape and wine production using precision viticulture tools.     The viticultural future of Wisconsin looks quite favorable, as the number of wineries keeps rising to meet the demand for Wisconsin wine and local consumption. As climate change continues to affect the grape varieties cultivated across the world’s wine regions, more opportunities arise for Wisconsin to cultivate cool-climate European varieties, in addition to the American and French–American hybrid varieties currently dominating grape production in this glacially influenced wine region.RESUMEL'histoire viticole du Wisconsin a commence dans les annees 1840, avec les premieres plantations de vigne par le Hongrois Agoston Haraszthy sur la propriete du vignoble Wollersheim situe dans la region de l’American Viticultural Area (AVA) du lac Wisconsin. Cette etude porte sur le terroir historique du vignoble Wollersheim, le seul a l'interieur de l’AVA du lac Wisconsin, qui soit soumis a l'interaction des facteurs environnementaux qui influencent le caractere, la qualite et la variabilite des vins Wollersheim. La caracterisation et l’observation des variations spatiales du terroir a l’echelle du vignoble Wollersheim se font par l’etude de la texture du sol, sa chimie et sa mineralogie en conjonction avec des outils de viticulture de precision comme l'induction electromagnetique et la tomographie par resistivite electrique. En definissant des zones de variabilite au niveau de la parcelle et en les comparant pour deux parcelles de vignobles specifiques (domaine Reserve et lot 19) du vignoble Wollersheim on peut mieux comprendre les effets des proprietes du sol et des caracteristiques du paysage sur la production de raisin et de vin.   Le nombre de vignoble augmentant pour repondre a la demande de vin du Wisconsin et a la demande locale, l'avenir viticole du Wisconsin semble assez prometteur. Comme le changement climatique continue d'influer sur la varietes des cepages cultives dans les regi
威斯康星州的葡萄栽培历史始于19世纪40年代,匈牙利人Agoston Haraszthy在位于威斯康辛湖美国葡萄种植区(AVA)的Wollersheim酒庄种植了第一批葡萄树。本研究考察了历史悠久的沃勒斯海姆酒庄的风土条件,沃勒斯海姆酒庄是威斯康星湖AVA范围内唯一的酒庄,以了解影响沃勒斯海姆葡萄酒特征和质量的环境因素的相互作用以及变化。土壤质地、化学和矿物学与精确的葡萄栽培工具(如电磁感应和电阻率层析成像测量)相结合,被用于Wollersheim酒庄的风土特征和葡萄园尺度上空间可变风土的观察。在沃勒斯海姆酒庄建立和比较两个特定葡萄园地块(庄园储备和19号地块)的地块变化区域,利用精确的葡萄栽培工具,深入了解土壤性质和土地特征对葡萄和葡萄酒生产的影响。威斯康辛州的葡萄种植前景看好,因为酿酒厂的数量不断增加,以满足对威斯康辛州葡萄酒和当地消费的需求。随着气候变化继续影响世界各地葡萄酒产区种植的葡萄品种,威斯康星州除了目前在这个受冰川影响的葡萄酒产区主导葡萄生产的美国和法美杂交品种外,还将有更多机会种植凉爽气候的欧洲品种。美国威斯康辛州葡萄种植区(AVA)位于美国威斯康辛州的阿格斯顿。哈拉斯蒂(Agoston Haraszthy)位于美国葡萄种植区(AVA)。我们研究了威斯康辛州沃勒斯海姆的历史风土,我们研究了威斯康辛州沃勒斯海姆的文化,我们研究了威斯康辛州沃勒斯海姆的文化,我们研究了沃勒斯海姆的文化,我们研究了沃勒斯海姆的文化,我们研究了沃勒斯海姆的文化,我们研究了沃勒斯海姆的文化,我们研究了沃勒斯海姆的文化。地形特征和空间变化的观测,地形特征和地形特征的变化,地形特征和地形特征的变化,地形特征和地形特征的变化,地形特征和地形特征的变化,地形特征的变化,地形特征的变化,地形特征的变化,地形特征的变化,地形特征的变化,地形特征的变化,地形特征的变化。在不同的产区,不同的葡萄品种和不同的葡萄品种(产区储备和19号批次),不同的葡萄品种和不同的葡萄品种,不同的葡萄品种和不同的葡萄品种,不同的葡萄品种,不同的葡萄品种,不同的葡萄品种,不同的葡萄品种。威斯康辛州的需求和当地的需求,威斯康辛州的需求和当地的需求,威斯康辛州的需求和当地的需求。气候变化持续影响全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种,全球葡萄品种
{"title":"Geology and Wine 14. Terroir of Historic Wollersheim Winery, Lake Wisconsin American Viticultural Area","authors":"S. Karakis, B. Cameron, W. Kean","doi":"10.12789/geocanj.2016.43.107","DOIUrl":"https://doi.org/10.12789/geocanj.2016.43.107","url":null,"abstract":"The viticultural history of Wisconsin started in the 1840s, with the very first vine plantings by Hungarian Agoston Haraszthy on the Wollersheim Winery property located in the Lake Wisconsin American Viticultural Area (AVA). This study examines the terroir of historic Wollersheim Winery, the only winery within the confines of the Lake Wisconsin AVA, to understand the interplay of environmental factors influencing the character and quality as well as the variability of Wollersheim wines. Soil texture, chemistry, and mineralogy in conjunction with precision viticulture tools such as electromagnetic induction and electrical resistivity tomography surveys, are utilized in the Wollersheim Winery terroir characterization and observation of spatially variable terroir at the vineyard scale. Establishing and comparing areas of variability at the plot level for two specific vineyard plots (Domaine Reserve and Lot 19) at Wollersheim Winery provides insight into the effects of soil properties and land characteristics on grape and wine production using precision viticulture tools.     The viticultural future of Wisconsin looks quite favorable, as the number of wineries keeps rising to meet the demand for Wisconsin wine and local consumption. As climate change continues to affect the grape varieties cultivated across the world’s wine regions, more opportunities arise for Wisconsin to cultivate cool-climate European varieties, in addition to the American and French–American hybrid varieties currently dominating grape production in this glacially influenced wine region.RESUMEL'histoire viticole du Wisconsin a commence dans les annees 1840, avec les premieres plantations de vigne par le Hongrois Agoston Haraszthy sur la propriete du vignoble Wollersheim situe dans la region de l’American Viticultural Area (AVA) du lac Wisconsin. Cette etude porte sur le terroir historique du vignoble Wollersheim, le seul a l'interieur de l’AVA du lac Wisconsin, qui soit soumis a l'interaction des facteurs environnementaux qui influencent le caractere, la qualite et la variabilite des vins Wollersheim. La caracterisation et l’observation des variations spatiales du terroir a l’echelle du vignoble Wollersheim se font par l’etude de la texture du sol, sa chimie et sa mineralogie en conjonction avec des outils de viticulture de precision comme l'induction electromagnetique et la tomographie par resistivite electrique. En definissant des zones de variabilite au niveau de la parcelle et en les comparant pour deux parcelles de vignobles specifiques (domaine Reserve et lot 19) du vignoble Wollersheim on peut mieux comprendre les effets des proprietes du sol et des caracteristiques du paysage sur la production de raisin et de vin.   Le nombre de vignoble augmentant pour repondre a la demande de vin du Wisconsin et a la demande locale, l'avenir viticole du Wisconsin semble assez prometteur. Comme le changement climatique continue d'influer sur la varietes des cepages cultives dans les regi","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"265-282"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commitment, Collaboration and Communication: The Backbones of Geoscience 承诺、合作和沟通:地球科学的支柱
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/GEOCANJ.2016.43.106
Victoria Yehl
{"title":"Commitment, Collaboration and Communication: The Backbones of Geoscience","authors":"Victoria Yehl","doi":"10.12789/GEOCANJ.2016.43.106","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.106","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"227-230"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Did the Atlantic close and then reopen?: A commentary 大西洋关闭后又重新开放了吗?:评论
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/GEOCANJ.2016.43.109
H. Williams
Tuzo Wilson’s 1966 Nature paper entitled “Did the Atlantic close and then re-open?” is truly the major turning point in the history of ideas on the evolution of the Appalachian Orogen. For a hundred years, the Appalachian Orogen was the type geosyncline, and Appalachian evolution was viewed in fixist models of geosynclinal development. Contrasting faunal realms were always enigmatic and never properly explained by notions of land barriers. Equally enigmatic was the symmetry and two-sided nature of the Newfoundland cross-section that refuted the fixist idea that continents grew like trees by the outward addition of asymmetric peripheral rings. The Wilson Cycle of closing a proto-Atlantic Ocean, then re-opening the Atlantic Ocean provided an elegant and simple solution to these enigmas. Wilson realized that island arcs existed on the North American side of the proto-Atlantic, such as the present Notre Dame Subzone in Newfoundland, and that the major faunal boundary lay to the east of these volcanic rocks. He also realized that the early Paleozoic continents may have touched in the middle Ordovician, “...for thereafter the distinction between the Atlantic and Pacific faunal realms ceases to be marked.” One continent encroaching upon another in the middle and late Ordovician explained the former borderland concept of Charles Schuchert and Marshall Kay. Likewise, Kay’s island arcs were most in evidence during the early Ordovician, the time of major proto-Atlantic closing. Wilson also recognized irregularities in ocean closing, which occurs first at promontories, then at re-entrants, with resulting clastic wedges, and an overall change from early Paleozoic marine conditions to middle and late Paleozoic terrestrial conditions. The Taconic allochthons were also part of his ocean closing scenario. The proto-Atlantic was completely closed by the end of the Paleozoic, and major spreading of the Atlantic began in the Cretaceous. Wilson then went on to trace the former course of the proto-Atlantic along the length of the Appalachian–Caledonian chain from Spitsbergen to Florida. This is no small task. It is encouraging to see that the contemporary Newfoundland analysis supported his views, and that even Tuzo had trouble finding a suture along the New England segment of the system. Northwest Africa was accommodated with ease as a Hercynian orogenic belt, in some respects symmetrical to the southern Appalachians. An important corollary of the Wilson Cycle is that the assembly and eventual breakup of Pangaea must have been an event of major significance in world geology. This is certainly true in North America, where major orogenesis and accretion in the Cordilleran Orogen on the Pacific Margin corresponds to Atlantic opening. Since the 1966 Wilson paper, we have emerged from fixist geosynclinal models that were entrenched in the literature for 100 years. Still, the Appalachian Orogen is full of surprises and there are many secrets yet to be revealed. As so aptly
图佐·威尔逊1966年发表在《自然》杂志上的一篇题为《大西洋关闭后又重新开放了吗?》确实是阿巴拉契亚造山带演化思想史上的重要转折点。一百年来,阿巴拉契亚造山带是典型的地槽,阿巴拉契亚的演化被认为是固定的地槽发展模式。对比鲜明的动物领域一直是神秘的,从来没有被陆地屏障的概念正确地解释过。同样令人费解的是纽芬兰岛横断面的对称性和双面性,它驳斥了固定主义的观点,即大陆像树木一样生长,是通过向外增加不对称的外围环来实现的。关闭原大西洋,然后重新打开大西洋的威尔逊循环为这些谜题提供了一个优雅而简单的解决方案。威尔逊意识到,在原大西洋的北美一侧存在着岛弧,比如现在纽芬兰的圣母院亚区,而主要的动物边界位于这些火山岩的东部。他还意识到,早古生代大陆可能在奥陶世中期接触过,“……因为从此以后,大西洋和太平洋的动物界就没有区别了。”在奥陶纪中后期,一个大陆对另一个大陆的侵占解释了查尔斯·舒彻特和马歇尔·凯的前边界概念。同样,凯的岛弧在奥陶纪早期最为明显,那是原大西洋大闭合时期。威尔逊还发现了海洋闭合的不规则性,这种不规则性首先发生在海岬,然后发生在重新进入的海域,由此产生的碎屑楔,以及从古生代早期海洋环境到古生代中晚期陆地环境的总体变化。Taconic allothon也是他的海洋封闭场景的一部分。原始大西洋在古生代末期完全关闭,大西洋的主要扩张始于白垩纪。威尔逊接着沿着从斯匹次卑尔根到佛罗里达的阿巴拉契亚-加里多尼亚链的长度,沿着原大西洋的路线继续前进。这不是一项简单的任务。令人鼓舞的是,当时对纽芬兰的分析支持了他的观点,甚至图佐也很难沿着新英格兰部分找到缝合线。西北非洲很容易被容纳为海西造山带,在某些方面与南部阿巴拉契亚山脉对称。威尔逊周期的一个重要推论是,泛大陆的合并和最终分裂一定是世界地质上具有重大意义的事件。这在北美当然是正确的,在太平洋边缘的科迪勒拉造山带的主要造山和增生与大西洋的开放相对应。自1966年威尔逊发表论文以来,我们已经摆脱了100年来在文献中根深蒂固的固定地槽模型。然而,阿巴拉契亚造山带充满了惊喜,还有许多秘密有待揭示。正如大卫·贝尔德(David Baird)所贴切地表达的那样,奇怪的是,我们似乎发现得越多,地平线仍然在那里,总是邀请我们走近。我们现在面临的问题比威尔逊周期出现之前的前辈更多。在未来的25年、50年或100年里,地平线会引导我们走向何方?到那时,我们离我们现在所处的位置是否会像我们离威尔逊周期之前的世界一样遥远?
{"title":"Did the Atlantic close and then reopen?: A commentary","authors":"H. Williams","doi":"10.12789/GEOCANJ.2016.43.109","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.109","url":null,"abstract":"Tuzo Wilson’s 1966 Nature paper entitled “Did the Atlantic close and then re-open?” is truly the major turning point in the history of ideas on the evolution of the Appalachian Orogen. For a hundred years, the Appalachian Orogen was the type geosyncline, and Appalachian evolution was viewed in fixist models of geosynclinal development. Contrasting faunal realms were always enigmatic and never properly explained by notions of land barriers. Equally enigmatic was the symmetry and two-sided nature of the Newfoundland cross-section that refuted the fixist idea that continents grew like trees by the outward addition of asymmetric peripheral rings. The Wilson Cycle of closing a proto-Atlantic Ocean, then re-opening the Atlantic Ocean provided an elegant and simple solution to these enigmas. Wilson realized that island arcs existed on the North American side of the proto-Atlantic, such as the present Notre Dame Subzone in Newfoundland, and that the major faunal boundary lay to the east of these volcanic rocks. He also realized that the early Paleozoic continents may have touched in the middle Ordovician, “...for thereafter the distinction between the Atlantic and Pacific faunal realms ceases to be marked.” One continent encroaching upon another in the middle and late Ordovician explained the former borderland concept of Charles Schuchert and Marshall Kay. Likewise, Kay’s island arcs were most in evidence during the early Ordovician, the time of major proto-Atlantic closing. Wilson also recognized irregularities in ocean closing, which occurs first at promontories, then at re-entrants, with resulting clastic wedges, and an overall change from early Paleozoic marine conditions to middle and late Paleozoic terrestrial conditions. The Taconic allochthons were also part of his ocean closing scenario. The proto-Atlantic was completely closed by the end of the Paleozoic, and major spreading of the Atlantic began in the Cretaceous. Wilson then went on to trace the former course of the proto-Atlantic along the length of the Appalachian–Caledonian chain from Spitsbergen to Florida. This is no small task. It is encouraging to see that the contemporary Newfoundland analysis supported his views, and that even Tuzo had trouble finding a suture along the New England segment of the system. Northwest Africa was accommodated with ease as a Hercynian orogenic belt, in some respects symmetrical to the southern Appalachians. An important corollary of the Wilson Cycle is that the assembly and eventual breakup of Pangaea must have been an event of major significance in world geology. This is certainly true in North America, where major orogenesis and accretion in the Cordilleran Orogen on the Pacific Margin corresponds to Atlantic opening. Since the 1966 Wilson paper, we have emerged from fixist geosynclinal models that were entrenched in the literature for 100 years. Still, the Appalachian Orogen is full of surprises and there are many secrets yet to be revealed. As so aptly","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"286"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Role of the Ancestral Yellowstone Plume in the Tectonic Evolution of the Western United States 祖先黄石羽流在美国西部构造演化中的作用
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/GEOCANJ.2016.43.105
J. Murphy
Plate reconstructions indicate that if the Yellowstone plume existed prior to 50 Ma, then it would have been overlain by oceanic lithosphere located to the west of the North American plate (NAP). In the context of models supporting long-lived easterly directed subduction of oceanic lithosphere beneath the NAP, the Yellowstone plume would have been progressively overridden by the NAP continental margin since that time, the effects of which should be apparent in the geological record. The role of this ‘ancestral’ Yellowstone plume and its related buoyant swell in influencing the Late Mesozoic–Cenozoic tectonic evolution of the southwestern United States is reviewed in the light of recent field, analytical and geophysical data, constraints provided by more refined paleogeographic constructions, and by insights derived from recent geodynamic modeling of the interaction of a plume and a subduction zone.   Geodynamic models suggesting that the ascent of plumes is either stalled or destroyed at subduction zones have focused attention on the role of gaps or tears in the subducted slab that permit the flow of plume material from the lower to the upper plate during subduction. These models imply that the ascent of plumes may be significantly deflected as plume material migrates from the lower to the upper plate, so that the connection between the hot spot track calculated from plate reconstructions and the manifestations of plume activity in the upper plate may be far more diffuse compared to the more precise relationships in the oceanic domain. Other geodynamic models support the hypothesis that subduction of oceanic plateau material beneath the NAP correlates with the generation of a flat slab, which has long been held to have been a defining characteristic of the Laramide orogeny in the western United States, the dominant Late Mesozoic–Early Cenozoic orogenic episode affecting the NAP.   Over the last 20 years, a growing body of evidence from a variety of approaches suggests that a plume existed between 70 and 50 Ma within the oceanic realm close to the NAP margin in a similar location and with similar vigour to the modern Yellowstone hot spot. If so, interaction of this plume with the margin would have been preceded by that of its buoyant swell and related oceanic plateau, a scenario which could have generated the flat slab subduction that characterizes the Laramide orogeny.   Unless this plume was destroyed by subduction, it would have gone into an incubation period when it was overridden by the North American margin. During this incubation period, plume material could have migrated into the upper plate via slab windows or tears or around the lateral margins of the slab, in a manner consistent with recent laboratory models. The resulting magmatic activity may be located at considerable distance from the calculated hot spot track.   The current distribution of plumes and their buoyant swells suggests that their interaction with subduction zones should
板块重建表明,如果黄石烟柱存在于50 Ma之前,那么它将被位于北美板块(NAP)以西的海洋岩石圈覆盖。在支持NAP之下的海洋岩石圈长期向东俯冲的模型背景下,黄石烟柱将从那时起逐渐被NAP大陆边缘覆盖,其影响在地质记录中应该是明显的。根据最近的野外、分析和地球物理数据、更精细的古地理构造提供的约束条件,以及最近对羽流和俯冲带相互作用的地球动力学建模的见解,对“祖先”黄石羽流及其相关浮力膨胀在影响美国西南部晚中生代-新生代构造演化中的作用进行了回顾。地球动力学模型表明,在俯冲带,羽流的上升要么被阻止,要么被破坏,这些模型把注意力集中在俯冲板块的缝隙或撕裂上,这些缝隙或撕裂允许羽流物质在俯冲期间从下部板块流向上部板块。这些模式表明,当地幔柱物质从下板块向上板块迁移时,地幔柱的上升可能会发生明显的偏转,因此,由板块重建计算出的热点轨迹与上层板块的地幔柱活动表现之间的联系可能比在大洋域中更为精确的关系要分散得多。其他地球动力学模型支持这样一种假设,即大洋高原物质在NAP下的俯冲与平板的形成有关,平板的形成一直被认为是美国西部Laramide造山运动的一个决定性特征,这是影响NAP的主导的晚中生代-早新生代造山活动。在过去的20年里,来自各种方法的越来越多的证据表明,在70至50 Ma之间,在靠近NAP边缘的海洋领域内,在与现代黄石公园热点相似的位置和活力上存在着羽流。如果是这样的话,那么在这个羽流与边缘的相互作用之前,它的浮力膨胀和相关的海洋高原就会发生相互作用,这种情况可能会产生具有拉腊米造山运动特征的平板俯冲。除非这个羽流被俯冲摧毁,否则它会进入一个孵化期,然后被北美边缘覆盖。在这个孕育期,羽流物质可能通过板块的窗户或裂缝或板块的外侧边缘迁移到板块上部,其方式与最近的实验室模型一致。由此得到的岩浆活动可能位于离计算出的热点轨迹相当远的地方。羽流的当前分布及其浮力膨胀表明,它们与俯冲带的相互作用在地质记录中应该是常见的。如果是这样的话,北美西部晚中生代-新生代的演化可能代表了这些过程的一个相对现代的类似物。RESUMELes调整de斑块montrent如果le灿烂de黄石我们存在的50 Ma, il运动员recouvert par那儿岩石圈oceanique situee一l财产de la斑块nord-americaine(机构)。岩石圈的长时间俯冲作用,海洋作用,平均温度作用,大大陆作用,渐进作用,中和了黄石公园的壮观,以及演化作用和地质作用。黄石区的“祖先”作用、表层区域联合作用、演化构造作用、演化构造作用、演化构造作用、演化构造作用、演化构造作用、演化构造作用、演化构造作用、演化构造作用、演化构造作用、演化地球物理作用、演化构造作用、演化地质作用、演化地质作用、演化地质作用、演化地质作用、演化地质作用、演化地质作用、演化地质作用、演化地质作用、演化地质作用等。这些模型的地球动力学特征为:抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升、板块抬升。这些模型包括:内沉的、上升的、流动的、感知的、装置的、物质的、流动的、斑块的、连接的、中心的、追踪的、点的、计算的、重建的、斑块的、活动的、斑块的、表面的、扩散的、对抗的、海洋域的。 其他geodynamiques支持利用模型,即俯冲PNA下高原桅杆工程的冲压过程对应a generation一块平的,长期以来一直被视为更加鲜明的particularite 4064 l’orogenese Laramide在美国西部的支配,一幕orogenique结束日初Mesozoique Cenozoique午睡的影响。在过去的20年里,来自各种方法的越来越多的证据表明,在PNA边缘附近的海洋区域中,羽流确实存在于70 - 50 Ma之间,其位置和强度与现代黄石热点相似。在这种情况下,羽流与边缘的相互作用将先于其表面膨胀和相关的大洋高原,这种情况可能导致板块俯冲,这是Laramide造山运动的特征。除非这一羽流被俯冲摧毁,否则当它被北美边缘覆盖时,它将进入潜伏期。在这一潜伏期,羽状物质可能通过板的窗户或窗缝或板的边缘迁移到上板,这与最近的实验室模型一致。由此产生的岩浆活动的轨迹可能与计算的热点轨迹有相当大的距离。目前羽流及其表面膨胀的分布表明,它们与俯冲带的相互作用应该是地质记录中的一个常见现象。如果是这样的话,北美西部中生代晚期新生代的演化可能是这些过程的一个相对现代的类比。
{"title":"The Role of the Ancestral Yellowstone Plume in the Tectonic Evolution of the Western United States","authors":"J. Murphy","doi":"10.12789/GEOCANJ.2016.43.105","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.105","url":null,"abstract":"Plate reconstructions indicate that if the Yellowstone plume existed prior to 50 Ma, then it would have been overlain by oceanic lithosphere located to the west of the North American plate (NAP). In the context of models supporting long-lived easterly directed subduction of oceanic lithosphere beneath the NAP, the Yellowstone plume would have been progressively overridden by the NAP continental margin since that time, the effects of which should be apparent in the geological record. The role of this ‘ancestral’ Yellowstone plume and its related buoyant swell in influencing the Late Mesozoic–Cenozoic tectonic evolution of the southwestern United States is reviewed in the light of recent field, analytical and geophysical data, constraints provided by more refined paleogeographic constructions, and by insights derived from recent geodynamic modeling of the interaction of a plume and a subduction zone.   Geodynamic models suggesting that the ascent of plumes is either stalled or destroyed at subduction zones have focused attention on the role of gaps or tears in the subducted slab that permit the flow of plume material from the lower to the upper plate during subduction. These models imply that the ascent of plumes may be significantly deflected as plume material migrates from the lower to the upper plate, so that the connection between the hot spot track calculated from plate reconstructions and the manifestations of plume activity in the upper plate may be far more diffuse compared to the more precise relationships in the oceanic domain. Other geodynamic models support the hypothesis that subduction of oceanic plateau material beneath the NAP correlates with the generation of a flat slab, which has long been held to have been a defining characteristic of the Laramide orogeny in the western United States, the dominant Late Mesozoic–Early Cenozoic orogenic episode affecting the NAP.   Over the last 20 years, a growing body of evidence from a variety of approaches suggests that a plume existed between 70 and 50 Ma within the oceanic realm close to the NAP margin in a similar location and with similar vigour to the modern Yellowstone hot spot. If so, interaction of this plume with the margin would have been preceded by that of its buoyant swell and related oceanic plateau, a scenario which could have generated the flat slab subduction that characterizes the Laramide orogeny.   Unless this plume was destroyed by subduction, it would have gone into an incubation period when it was overridden by the North American margin. During this incubation period, plume material could have migrated into the upper plate via slab windows or tears or around the lateral margins of the slab, in a manner consistent with recent laboratory models. The resulting magmatic activity may be located at considerable distance from the calculated hot spot track.   The current distribution of plumes and their buoyant swells suggests that their interaction with subduction zones should ","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"231-250"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Tuzo Wilson: An Appreciation on the 50th Anniversary of his 1966 Paper 图佐·威尔逊:1966年发表论文50周年纪念
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/GEOCANJ.2016.43.108
J. Dewey
{"title":"Tuzo Wilson: An Appreciation on the 50th Anniversary of his 1966 Paper","authors":"J. Dewey","doi":"10.12789/GEOCANJ.2016.43.108","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.108","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"283-285"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Kingston 2017: GAC–MAC Joint Annual Meeting Field Trips 金士顿2017:GAC-MAC联合年会实地考察
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/GEOCANJ.2016.43.110
D. Kellett, L. Godin
BACK TO WHERE IT BEGAN The Department of Geological Sciences and Geological Engineering of Queen’s University, in Kingston, Ontario, will host the 2017 Annual meeting of the GAC–MAC. The meeting will coincide with the 175 anniversary of the founding of the Geological Survey of Canada, which was established by the legislature of the Province of Canada in 1842, in Kingston, and with Canada’s 150 anniversary celebrations. The local geology surrounding Kingston, commonly called the Limestone City, does not disappoint and multiple field trips associated with the meeting will take advantage of its unique location. Kingston is located at the eastern end of Lake Ontario, where the St. Lawrence River begins, draining the waters of the Great Lakes into the Gulf of St. Lawrence. The transition from lake to river occurs east of Kingston Harbour, where the nearly flat-lying Early Paleozoic limestone, rimming the eastern Lake Ontario basin, border against a NW-SE trending, low ridge of Grenvillian Precambrian basement rocks, locally known as the Frontenac Arch, which connects the southeastern Ontario part of the Canadian Shield with the Adirondack Massif of northern New York State. The crystalline basement rocks form a resistant ridge over which the St. Lawrence River flows northeastward from Lake Ontario, creating the ‘Thousand Islands,’ a well-known tourist and cottage region along the international border that now also includes a National Park. The 2017 Kingston GAC–MAC meeting will provide seven field trip opportunities that span from Proterozoic geology to the present, and cover a wide range of Earth Sciences sub-disciplines, from geomorphology to hydrology, from Quaternary geology to metallogeny, and from tectonics to sedimentology. Trips range in length from one to five days, as homegrown as a day trip touring the local geology highlights of Kingston’s environs, and as far-afield as a five day transect traversing the accreted terranes of the Newfoundland Appalachians. The one-day ‘Bedrock to Beaches’ field trip will take participants from Kingston to Prince Edward County and back. Along the way, participants will track one billion years of evolution of the Kingston region. They will contemplate metasedimentary rocks that were heated, squeezed, and intruded by granite ca. 1170 million years ago, sandstone deposited by rivers and wind ca. 490 million years ago, limestone and shale deposited in tropical seawater ca. 455 million years ago, faults that displaced the limestone perhaps 176 million years ago, drumlins shaped by a continental ice-sheet about 20,000 years ago, a shoreline created by a giant proglacial lake ca. 13,200 years ago, and a thin soil full of frost-heaved limestone nodules that nowadays nourishes many of the best vineyards in ‘the County.’ Another one-day trip will explore local shallow neritic marine carbonate rocks on a tropical Ordovician Earth. Shallow water marine carbonate rocks are beautifully exposed in the Kingston area and many
位于安大略省金斯敦的女王大学地质科学与地质工程系将主办GAC-MAC 2017年年会。会议将与加拿大地质调查局成立175周年和加拿大建国150周年的庆祝活动同时举行。加拿大地质调查局是1842年在金斯敦由加拿大省立法机关成立的。金斯敦(Kingston)通常被称为“石灰石之城”(Limestone City),当地的地质情况不会让人失望,与会议相关的多次实地考察将充分利用其独特的地理位置。金斯敦位于安大略湖的东端,圣劳伦斯河从这里开始,将五大湖的水排入圣劳伦斯湾。从湖泊到河流的转变发生在金斯敦港以东,在那里,几乎平坦的早古生代石灰岩环绕着安大略湖盆地东部,与北西-东南走向的格伦维里亚前寒武纪基底岩石的低脊接壤,当地称为Frontenac拱门,它连接了加拿大地盾的安大略东南部和纽约州北部的阿迪朗达克山脉。结晶的基岩形成了一个坚固的山脊,圣劳伦斯河从安大略湖流向东北,形成了“千岛群岛”,这是一个著名的旅游和平房地区,沿着国际边界,现在还包括一个国家公园。2017年金斯顿GAC-MAC会议将提供7个实地考察机会,涵盖从元古代地质学到现在,从地貌学到水文学,从第四纪地质学到成矿学,从构造学到沉积学等广泛的地球科学分支学科。行程的长度从1天到5天不等,既可以在金斯顿周边地区进行一日游,也可以在纽芬兰-阿巴拉契亚山脉进行为期5天的横断面穿越。为期一天的“从基岩到海滩”实地考察将带领参与者从金斯敦到爱德华王子县,然后返回。沿途,参与者将追踪金斯顿地区10亿年的进化。他们将研究大约11.7亿年前被花岗岩加热、挤压和侵入的元沉积岩,大约4.9亿年前由河流和风沉积的砂岩,大约4.55亿年前沉积在热带海水中的石灰岩和页岩,大约1.76亿年前取代石灰岩的断层,大约2万年前由大陆冰盖形成的鼓状岩石,大约1.32万年前由一个巨大的前冰湖形成的海岸线,还有一层薄薄的土壤,上面长满了因霜冻而隆起的石灰岩结节,如今滋养着该县许多最好的葡萄园。另一项为期一天的旅行将探索热带奥陶纪地球上当地浅海浅海碳酸盐岩。金斯顿地区的浅水海相碳酸盐岩非常漂亮,“石灰岩城市”中的许多建筑都是由这些岩石构成的。容易接近的露头自大约4.5亿年前沉积以来几乎没有改变,其组成很容易看到,使沉积学,古生态学和成岩作用的各个方面对每个人都很容易理解。碳酸盐岩在这方面举世闻名,人们对它的研究已有150多年的历史。实地考察将参观展示一系列古环境的部分,并有充足的时间进行说明和讨论。古海洋学的范围将从干旱的潮滩,通过古温跃层,到解释的冷水外斜坡风暴和斜坡沉积。化石从稀少到丰富,反映了古海水盐度和古海底温度的变化。这趟旅行已经使用了几十年,作为第43卷2016 287
{"title":"Kingston 2017: GAC–MAC Joint Annual Meeting Field Trips","authors":"D. Kellett, L. Godin","doi":"10.12789/GEOCANJ.2016.43.110","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.110","url":null,"abstract":"BACK TO WHERE IT BEGAN The Department of Geological Sciences and Geological Engineering of Queen’s University, in Kingston, Ontario, will host the 2017 Annual meeting of the GAC–MAC. The meeting will coincide with the 175 anniversary of the founding of the Geological Survey of Canada, which was established by the legislature of the Province of Canada in 1842, in Kingston, and with Canada’s 150 anniversary celebrations. The local geology surrounding Kingston, commonly called the Limestone City, does not disappoint and multiple field trips associated with the meeting will take advantage of its unique location. Kingston is located at the eastern end of Lake Ontario, where the St. Lawrence River begins, draining the waters of the Great Lakes into the Gulf of St. Lawrence. The transition from lake to river occurs east of Kingston Harbour, where the nearly flat-lying Early Paleozoic limestone, rimming the eastern Lake Ontario basin, border against a NW-SE trending, low ridge of Grenvillian Precambrian basement rocks, locally known as the Frontenac Arch, which connects the southeastern Ontario part of the Canadian Shield with the Adirondack Massif of northern New York State. The crystalline basement rocks form a resistant ridge over which the St. Lawrence River flows northeastward from Lake Ontario, creating the ‘Thousand Islands,’ a well-known tourist and cottage region along the international border that now also includes a National Park. The 2017 Kingston GAC–MAC meeting will provide seven field trip opportunities that span from Proterozoic geology to the present, and cover a wide range of Earth Sciences sub-disciplines, from geomorphology to hydrology, from Quaternary geology to metallogeny, and from tectonics to sedimentology. Trips range in length from one to five days, as homegrown as a day trip touring the local geology highlights of Kingston’s environs, and as far-afield as a five day transect traversing the accreted terranes of the Newfoundland Appalachians. The one-day ‘Bedrock to Beaches’ field trip will take participants from Kingston to Prince Edward County and back. Along the way, participants will track one billion years of evolution of the Kingston region. They will contemplate metasedimentary rocks that were heated, squeezed, and intruded by granite ca. 1170 million years ago, sandstone deposited by rivers and wind ca. 490 million years ago, limestone and shale deposited in tropical seawater ca. 455 million years ago, faults that displaced the limestone perhaps 176 million years ago, drumlins shaped by a continental ice-sheet about 20,000 years ago, a shoreline created by a giant proglacial lake ca. 13,200 years ago, and a thin soil full of frost-heaved limestone nodules that nowadays nourishes many of the best vineyards in ‘the County.’ Another one-day trip will explore local shallow neritic marine carbonate rocks on a tropical Ordovician Earth. Shallow water marine carbonate rocks are beautifully exposed in the Kingston area and many","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"287-289"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Metallogeny of Lode Gold Deposits: A Syngenetic Perspective 含矿脉金矿床成矿作用:同生视角
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-12-15 DOI: 10.12789/GEOCANJ.2016.43.112
T. Christie
{"title":"The Metallogeny of Lode Gold Deposits: A Syngenetic Perspective","authors":"T. Christie","doi":"10.12789/GEOCANJ.2016.43.112","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.112","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"291-293"},"PeriodicalIF":0.0,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Geoscience Medallist 1. Understanding the Holocene Closed-Basin Phases (Lowstands) of the Laurentian Great Lakes and Their Significance 地球科学奖章获得者劳伦斯五大湖全新世闭盆期(低地)的认识及其意义
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-09-30 DOI: 10.12789/GEOCANJ.2016.43.102
C. Lewis
The Laurentian Great Lakes are a chain of five large water bodies and connecting rivers that constitute the headwaters of the St. Lawrence River. Collectively they form one of the largest reservoirs of surface freshwater on the planet with an aggregate volume of >22,000 km3. Early interpretations of the postglacial lake history implicitly assumed that the Great Lakes always overflowed their outlets. A study of Lake Winnipeg which concluded that lack of water in a dry climate had dried that lake for millennia led to re-evaluation of the Great Lakes water-level history. Using the empirical information of glacioisostatic rebound derived from 14C-dated and uptilted Great Lake paleo-shorelines, a method of computation was developed to test the paradigm of continuous lake overflow. The method evaluated site and outlet uplift independently, and lowlevel indicators such as submerged tree stumps rooted beneath the present Great Lakes were found to be lower than the lowestpossible corresponding basin outlet. Results confirmed the low-level, closed-basin hydrological status of the early Great Lakes. This status is consistent with paleoclimatic inferences of aridity during the early Holocene before establishment of the present patterns of atmospheric circulation which now bring adequate precipitation to maintain the overflowing lakes. In a sense, the early to middle Holocene phase of dry climate and low water levels is a natural experiment to illustrate the sensitivity of the Great Lakes to climate change in this era of global warming, should their climate shift to one much drier than present, or future major diversions of their waters be permitted.RESUMELes Grands Lacs Laurentiens sont une chaine de cinq grandes etendues d’eau connectees par des rivieres, constituant la source du Fleuve St-Laurent. Collectivement, ils forment un des plus grands reservoirs d’eau douce de surface de la planete avec un volume total de plus de >22,000 km3. Les premieresinterpretations de l’histoire postglaciaire des lacs supposaient implicitement que les Grands Lacs debordaient a leurs exutoires. Une etude du Lac Winnipeg, qui concluait qu’un deficit en eau durant un episode de climat aride avait desseche le lac pendant des millenaires dans le passe, a mene a la reevaluation de l’histoire du niveau de l’eau des Grands Lacs. En utilisant des donnees empiriques du relevement glacio-isostatique, derivees de littoral anciens sureleves dates au 14C, une methode de calcul a ete developpee pour tester le paradigme d’unedecharge lacustre continue. La methode a evalue le soulevement des sites et des exutoires independamment, et il a ete constate que les indicateurs de bas niveau tels que des troncs d’arbres submerges, enracines en dessous des Grands Lacs actuels, etaient en fait sous le niveau de l’exutoire correspondant le plus bas. Les resultats confirment le bas niveau et le statut de basin hydrologique ferme des Grand Lacs dans le passe. Ce statut est coherent avec des evidences pal
劳伦斯五大湖是由五个大型水体和连接的河流组成的,它们构成了圣劳伦斯河的源头。它们共同构成了地球上最大的地表淡水水库之一,总容量为22,000立方千米。对冰期后湖泊历史的早期解释隐含地假设五大湖总是溢出它们的出口。一项对温尼伯湖的研究得出结论,干燥气候下的缺水导致该湖干涸了数千年,这导致了对五大湖水位历史的重新评估。利用14c年代和上倾的大湖古岸线冰川均衡反弹的经验信息,建立了一种验证湖泊连续溢出范式的计算方法。该方法独立评估了站点和出水口的隆升,发现当前五大湖下方的淹没树桩等低水位指标低于相应的最低可能的盆地出水口。结果证实了五大湖早期的低水位、闭流域水文状态。这一状况与全新世早期干旱的古气候推断相一致,而现在的大气环流模式建立之前,降水充足,维持了溢流湖泊的存在。从某种意义上说,全新世早期到中期的干燥气候和低水位阶段是一个自然的实验,可以说明在这个全球变暖的时代,五大湖对气候变化的敏感性,如果它们的气候转向比现在更干燥,或者未来允许对其水域进行重大改道。Laurentiens grandes Laurentiens(圣罗兰大湖)是圣罗兰(saint - laurent)的源头之一。集合,地层和大型水库,加上地球表面的水,平均体积总积为22,000立方千米。《冰川后的历史》的首演诠释了《冰川后的历史》的隐含意义,《冰川后的历史》的隐含意义是《冰川后的历史》的隐含意义。在温尼伯湖,我们的结论是,我们的气候变化是由气候变化引起的,我们的研究是由气候变化引起的,我们的研究是由气候变化引起的,我们的研究是由气候变化引起的,我们的研究是由气候变化引起的,我们的研究是由气候变化引起的。利用与冰川均衡相关的经验,推导出14C以来的沿海古地层学特征,推导出了一种计算方法,并将其发展为非冰川湖泊的典型模型。该方法是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法,它的价值是一种独立的方法。这些研究结果证实了我们对大湖区流域水文学研究的新认识。Ce statut est相干用des证据paleoclimatiques d 'aridite盟亮相de l 'Holocene旅行车de l 'etablissement des模式循环atmospherique actuels, apportent des数量de降水一说盟maintien des浅滩lacustres。全新世的气候变化,全新世的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化,全新时代的气候变化。
{"title":"Geoscience Medallist 1. Understanding the Holocene Closed-Basin Phases (Lowstands) of the Laurentian Great Lakes and Their Significance","authors":"C. Lewis","doi":"10.12789/GEOCANJ.2016.43.102","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.102","url":null,"abstract":"The Laurentian Great Lakes are a chain of five large water bodies and connecting rivers that constitute the headwaters of the St. Lawrence River. Collectively they form one of the largest reservoirs of surface freshwater on the planet with an aggregate volume of >22,000 km3. Early interpretations of the postglacial lake history implicitly assumed that the Great Lakes always overflowed their outlets. A study of Lake Winnipeg which concluded that lack of water in a dry climate had dried that lake for millennia led to re-evaluation of the Great Lakes water-level history. Using the empirical information of glacioisostatic rebound derived from 14C-dated and uptilted Great Lake paleo-shorelines, a method of computation was developed to test the paradigm of continuous lake overflow. The method evaluated site and outlet uplift independently, and lowlevel indicators such as submerged tree stumps rooted beneath the present Great Lakes were found to be lower than the lowestpossible corresponding basin outlet. Results confirmed the low-level, closed-basin hydrological status of the early Great Lakes. This status is consistent with paleoclimatic inferences of aridity during the early Holocene before establishment of the present patterns of atmospheric circulation which now bring adequate precipitation to maintain the overflowing lakes. In a sense, the early to middle Holocene phase of dry climate and low water levels is a natural experiment to illustrate the sensitivity of the Great Lakes to climate change in this era of global warming, should their climate shift to one much drier than present, or future major diversions of their waters be permitted.RESUMELes Grands Lacs Laurentiens sont une chaine de cinq grandes etendues d’eau connectees par des rivieres, constituant la source du Fleuve St-Laurent. Collectivement, ils forment un des plus grands reservoirs d’eau douce de surface de la planete avec un volume total de plus de >22,000 km3. Les premieresinterpretations de l’histoire postglaciaire des lacs supposaient implicitement que les Grands Lacs debordaient a leurs exutoires. Une etude du Lac Winnipeg, qui concluait qu’un deficit en eau durant un episode de climat aride avait desseche le lac pendant des millenaires dans le passe, a mene a la reevaluation de l’histoire du niveau de l’eau des Grands Lacs. En utilisant des donnees empiriques du relevement glacio-isostatique, derivees de littoral anciens sureleves dates au 14C, une methode de calcul a ete developpee pour tester le paradigme d’unedecharge lacustre continue. La methode a evalue le soulevement des sites et des exutoires independamment, et il a ete constate que les indicateurs de bas niveau tels que des troncs d’arbres submerges, enracines en dessous des Grands Lacs actuels, etaient en fait sous le niveau de l’exutoire correspondant le plus bas. Les resultats confirment le bas niveau et le statut de basin hydrologique ferme des Grand Lacs dans le passe. Ce statut est coherent avec des evidences pal","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"179-197"},"PeriodicalIF":0.0,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Rare Earth and Critical Elements in Ore Deposits 稀土和矿床中的关键元素
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-09-30 DOI: 10.12789/geocanj.2016.43.103
A. Kerr
{"title":"Rare Earth and Critical Elements in Ore Deposits","authors":"A. Kerr","doi":"10.12789/geocanj.2016.43.103","DOIUrl":"https://doi.org/10.12789/geocanj.2016.43.103","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"223-226"},"PeriodicalIF":0.0,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Magmatism and Extension in the Foreland and Near-Trench Region of Collisional and Convergent Tectonic Systems 碰撞与收敛构造体系前陆与近海沟地区的岩浆活动与伸展
4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2016-09-30 DOI: 10.12789/GEOCANJ.2016.43.100
A. Schoonmaker, W. Kidd, Tristan J. Ashcroft
Foreland magmatism occurs in the lower plate during arc–continent or continent–continent collision, although it is uncommon. Ancient examples are recognized by a stratigraphic section into which mafic lavas and/or shallow sills are emplaced at a level at the top of a passive margin cover sequence, or within the overlying deeper water deposits that include mudrocks and flysch-type turbidites. Extensional structures associated with the emplacement of the volcanic rocks may develop slightly prior to or contemporaneous with the arrival of the approaching thrust front. We have selected twelve examples of magmatism in collisional forelands, modern and ancient, and have compared the tectonic associations of the magmatism with the magmatic geochemistry. Foreland magmatic settings fall into two strikingly distinct geochemical groups: a more enriched alkaline group (Rhine-type) and a more heterogeneous tholeiitic group (Maine-type) that may show traces of prior subduction processes. In the examples where the contemporaneous extensional structures are known, faults and basins develop parallel to the thrust front for the tholeiitic group and have oblique orientations, in several cases at a high angle to the thrust front, for the alkaline group. The geochemical results are quite sufficiently distinct to permit discrimination of these two foreland magmatic rock suites from each other in ancient examples where the foreland setting is clear from geological evidence. However, magmatic products of the same range of compositions can be generated in other tectonic environments (rifts, back-arc basins), so the geochemical characteristics alone are insufficient to identify a foreland basin setting. The alkaline Rhine-type group formed primarily in response to localized upwelling convective activity from the sub-asthenospheric mantle beneath the lower plate during collision while the tholeiitic Maine-type group formed primarily in response to melting of subcontinental asthenospheric mantle during extension of the lower plate by slab pull, and resulting lithospheric detachment. It is possible that there has been a long-term secular decrease in the occurrence of the Maine-type foreland magmatism since the early Proterozoic. RESUME Bien que peu frequent, il arrive qu’un magmatisme d’avantpays se produise dans la plaque inferieure durant une collision arc-continent ou continent-continent. Des exemples anciens ont ete decrits dans une coupe stratigraphique renfermant des laves mafiques et/ou des filons-couches au haut d’une sequence de couverture de marge passive, ou au sein de depots de plus grandes profondeurs comme des boues ou des turbidites de type flysch. Des structures d’etirement associees a la mise en place des roches volcaniques peuvent se developper un peu avant ou en meme temps que l’arrivee du front de chevauchement. Nous avons choisi douze exemples de magmatisme au sein d’avant-pays de collision, modernes et anciens, et nous avons compare les associations tect
在弧-陆或陆-陆碰撞过程中,下板块发生前陆岩浆活动,但并不常见。古代的例子可以通过地层剖面来识别,其中基性熔岩和/或浅层岩位于被动边缘覆盖层序的顶部,或位于包括泥岩和飞状浊积岩在内的上覆较深的水沉积物中。与火山岩侵位有关的伸展构造可能在接近的逆冲锋到来之前或同时发育。我们选取了12个现代和古代碰撞前陆的岩浆活动实例,并将岩浆活动的构造关联与岩浆地球化学进行了比较。前陆岩浆环境分为两个明显不同的地球化学组:一个更富碱性的组(莱茵型)和一个更不均匀的拉斑岩组(缅因型),可能显示出先前俯冲过程的痕迹。在已知同生伸展构造的例子中,拉斑岩组的断层和盆地平行于逆冲前缘发育,碱性组的断层和盆地呈斜向,在某些情况下与逆冲前缘成大角度。地球化学结果非常明显,可以在地质证据清楚的前陆背景的古例中区分这两个前陆岩浆岩组。然而,在其他构造环境(裂谷、弧后盆地)中也可以产生相同成分范围的岩浆产物,因此仅凭地球化学特征不足以确定前陆盆地环境。碱性莱茵型群主要是由于碰撞过程中下板块下亚软流圈地幔的局部上升流对流活动而形成的,而拉斑缅因型群主要是由于下板块拉张过程中次大陆软流圈地幔的熔融导致岩石圈分离而形成的。早元古代以来,缅因型前陆岩浆活动可能长期减少。随着时间的不断深入,我们会发现岩浆活动频繁,岩浆活动频繁,岩浆活动频繁,岩浆活动频繁,岩浆活动频繁,岩浆活动频繁,岩浆活动频繁。例如,古生代沉积有双地层特征、双地层特征、双沉积特征、双沉积特征、双沉积特征、双沉积特征、双沉积特征、双沉积特征、双沉积特征、双浊积特征。“结构与结构”是一种“结构与结构”的结合,“结构与结构”是一种“结构与结构”,“结构与结构”是一种“结构与结构”,“结构与结构”是一种“结构与结构”。在现代和古代的碰撞中,在构造和地球化学的碰撞中,在构造和地球化学的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中,在构造和岩浆的碰撞中。先锋型岩浆构造可分为两组不同的地质构造:ⅰ组碱性+富集型(rhin型)、ⅰ组溶蚀+非均质型(maine型)和ⅰ组溶蚀+非均质型(maine型)。在这些例子中,我们可以看到构造的平行发展,我们可以看到构造的平行发展,我们可以看到构造的平行发展,我们可以看到构造的平行发展,我们可以看到构造的平行发展,我们可以看到构造的平行发展,我们可以看到构造的平行发展,我们可以看到构造的平行发展。结果geochimiques是说不同的倒permettre德高尚的两个套件de罗氏magmatiques在旧的这些例子或者配置d 'avant-pays est evidente de la sa学界不相上下。在此基础上,构造构造、构造构造(岩浆岩、盆地)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)、构造构造(岩浆岩、盆地-弧)等。Le groupe alcalin de type-Rhin年代是principalement形式的反应有一个activite d 'eruption de对流问题du披风sous-asthenospherique苏la斑块inferieure杜兰特拉碰撞,那么,Le groupe tholeiitique de type-Maine年代是印版principalement en la融合反应du披风sous-continental asthenospherique杜兰特l 'extension de la斑块inferieure etirement de la斑块,et Le detachement lithospherique decoule,。元古宙的代表,最可能的是,它将在缅因州的岩浆活动中长期持续下去。
{"title":"Magmatism and Extension in the Foreland and Near-Trench Region of Collisional and Convergent Tectonic Systems","authors":"A. Schoonmaker, W. Kidd, Tristan J. Ashcroft","doi":"10.12789/GEOCANJ.2016.43.100","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2016.43.100","url":null,"abstract":"Foreland magmatism occurs in the lower plate during arc–continent or continent–continent collision, although it is uncommon. Ancient examples are recognized by a stratigraphic section into which mafic lavas and/or shallow sills are emplaced at a level at the top of a passive margin cover sequence, or within the overlying deeper water deposits that include mudrocks and flysch-type turbidites. Extensional structures associated with the emplacement of the volcanic rocks may develop slightly prior to or contemporaneous with the arrival of the approaching thrust front. We have selected twelve examples of magmatism in collisional forelands, modern and ancient, and have compared the tectonic associations of the magmatism with the magmatic geochemistry. Foreland magmatic settings fall into two strikingly distinct geochemical groups: a more enriched alkaline group (Rhine-type) and a more heterogeneous tholeiitic group (Maine-type) that may show traces of prior subduction processes. In the examples where the contemporaneous extensional structures are known, faults and basins develop parallel to the thrust front for the tholeiitic group and have oblique orientations, in several cases at a high angle to the thrust front, for the alkaline group. The geochemical results are quite sufficiently distinct to permit discrimination of these two foreland magmatic rock suites from each other in ancient examples where the foreland setting is clear from geological evidence. However, magmatic products of the same range of compositions can be generated in other tectonic environments (rifts, back-arc basins), so the geochemical characteristics alone are insufficient to identify a foreland basin setting. The alkaline Rhine-type group formed primarily in response to localized upwelling convective activity from the sub-asthenospheric mantle beneath the lower plate during collision while the tholeiitic Maine-type group formed primarily in response to melting of subcontinental asthenospheric mantle during extension of the lower plate by slab pull, and resulting lithospheric detachment. It is possible that there has been a long-term secular decrease in the occurrence of the Maine-type foreland magmatism since the early Proterozoic. RESUME Bien que peu frequent, il arrive qu’un magmatisme d’avantpays se produise dans la plaque inferieure durant une collision arc-continent ou continent-continent. Des exemples anciens ont ete decrits dans une coupe stratigraphique renfermant des laves mafiques et/ou des filons-couches au haut d’une sequence de couverture de marge passive, ou au sein de depots de plus grandes profondeurs comme des boues ou des turbidites de type flysch. Des structures d’etirement associees a la mise en place des roches volcaniques peuvent se developper un peu avant ou en meme temps que l’arrivee du front de chevauchement. Nous avons choisi douze exemples de magmatisme au sein d’avant-pays de collision, modernes et anciens, et nous avons compare les associations tect","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"159-178"},"PeriodicalIF":0.0,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66817281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geoscience Canada
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1