Pub Date : 2018-04-20DOI: 10.12789/GEOCANJ.2018.45.128
D. Corrigan, N. Wodicka, C. McFarlane, I. Lafrance, D. V. Rooyen, D. Bandyayera, C. Bilodeau
The Core Zone, a broad region located between the Superior and North Atlantic cratons and predominantly underlain by Archean gneiss and granitoid rocks, remained until recently one of the less well known parts of the Canadian Shield. Previously thought to form part of the Archean Rae Craton, and later referred to as the Southeastern Churchill Province, it has been regarded as an ancient continental block trapped between the Paleoproterozoic Torngat and New Quebec orogens, with its relationships to the adjacent Superior and North Atlantic cratons remaining unresolved. The geochronological data presented herein suggest that the Archean evolution of the Core Zone was distinct from that in both the Superior and North Atlantic (Nain) cratons. Moreover, the Core Zone itself consists of at least three distinct lithotectonic entities with different evolutions, referred to herein as the George River, Mistinibi-Raude and Falcoz River blocks, that are separated by steeply-dipping, crustal-scale shear zones interpreted as paleosutures. Specifically, the George River Block consists of ca. 2.70 Ga supracrustal rocks and associated ca. 2.70–2.57 Ga intrusions. The Mistinibi-Raude Block consists of remnants of a ca. 2.37 Ga volcanic arc intruded by a ca. 2.32 Ga arc plutonic suite (Pallatin) and penecontemporaneous alkali plutons (Pelland and Nekuashu suites). It also hosts a coarse clastic cover sequence (the Hutte Sauvage Group) which contains detrital zircons provided from locally-derived, ca. 2.57–2.50 Ga, 2.37–2.32 Ga, and 2.10–2.08 Ga sources, with the youngest concordant grain dated at 1987 ± 7 Ma. The Falcoz River Block consists of ca. 2.89–2.80 Ga orthogneiss intruded by ca. 2.74–2.70 granite, tonalite, and granodiorite. At the western margin of the Core Zone, the George River Block and Kuujjuaq Domain may have been proximal by ca. 1.84 Ga as both appear to have been sutured by the 1.84–1.82 Ga De Pas Batholith, whereas at its eastern margin, the determination of metamorphic ages of ca. 1.85 to 1.80 Ga in the Falcoz River Block suggests protracted interaction with the adjacent Lac Lomier Complex during their amalgamation and suturing, but with a younger, ‘New Quebec’ overprint as well. The three crustal blocks forming the Core Zone add to a growing list of ‘exotic’ Archean to earliest Paleoproterozoic microcontinents and crustal slices that extend around the Superior Craton from the Grenville Front through Hudson Strait, across Hudson Bay and into Manitoba and Saskatchewan, in what was the Manikewan Ocean realm, which closed between ca. 1.83–1.80 Ga during the formation of supercontinent Nuna. RESUME La Zone noyau, une vaste region situee entre les cratons du Superieur et de l’Atlantique Nord et reposant principalement sur des gneiss archeens et des roches granitiques, est demeuree jusqu’a recemment l’une des parties les moins bien connues du Bouclier canadien. Consideree auparavant comme faisant partie du craton archeen de Rae, puis comme la portion su
{"title":"Lithotectonic Framework of the Core Zone, Southeastern Churchill Province, Canada","authors":"D. Corrigan, N. Wodicka, C. McFarlane, I. Lafrance, D. V. Rooyen, D. Bandyayera, C. Bilodeau","doi":"10.12789/GEOCANJ.2018.45.128","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2018.45.128","url":null,"abstract":"The Core Zone, a broad region located between the Superior and North Atlantic cratons and predominantly underlain by Archean gneiss and granitoid rocks, remained until recently one of the less well known parts of the Canadian Shield. Previously thought to form part of the Archean Rae Craton, and later referred to as the Southeastern Churchill Province, it has been regarded as an ancient continental block trapped between the Paleoproterozoic Torngat and New Quebec orogens, with its relationships to the adjacent Superior and North Atlantic cratons remaining unresolved. The geochronological data presented herein suggest that the Archean evolution of the Core Zone was distinct from that in both the Superior and North Atlantic (Nain) cratons. Moreover, the Core Zone itself consists of at least three distinct lithotectonic entities with different evolutions, referred to herein as the George River, Mistinibi-Raude and Falcoz River blocks, that are separated by steeply-dipping, crustal-scale shear zones interpreted as paleosutures. Specifically, the George River Block consists of ca. 2.70 Ga supracrustal rocks and associated ca. 2.70–2.57 Ga intrusions. The Mistinibi-Raude Block consists of remnants of a ca. 2.37 Ga volcanic arc intruded by a ca. 2.32 Ga arc plutonic suite (Pallatin) and penecontemporaneous alkali plutons (Pelland and Nekuashu suites). It also hosts a coarse clastic cover sequence (the Hutte Sauvage Group) which contains detrital zircons provided from locally-derived, ca. 2.57–2.50 Ga, 2.37–2.32 Ga, and 2.10–2.08 Ga sources, with the youngest concordant grain dated at 1987 ± 7 Ma. The Falcoz River Block consists of ca. 2.89–2.80 Ga orthogneiss intruded by ca. 2.74–2.70 granite, tonalite, and granodiorite. At the western margin of the Core Zone, the George River Block and Kuujjuaq Domain may have been proximal by ca. 1.84 Ga as both appear to have been sutured by the 1.84–1.82 Ga De Pas Batholith, whereas at its eastern margin, the determination of metamorphic ages of ca. 1.85 to 1.80 Ga in the Falcoz River Block suggests protracted interaction with the adjacent Lac Lomier Complex during their amalgamation and suturing, but with a younger, ‘New Quebec’ overprint as well. The three crustal blocks forming the Core Zone add to a growing list of ‘exotic’ Archean to earliest Paleoproterozoic microcontinents and crustal slices that extend around the Superior Craton from the Grenville Front through Hudson Strait, across Hudson Bay and into Manitoba and Saskatchewan, in what was the Manikewan Ocean realm, which closed between ca. 1.83–1.80 Ga during the formation of supercontinent Nuna. RESUME La Zone noyau, une vaste region situee entre les cratons du Superieur et de l’Atlantique Nord et reposant principalement sur des gneiss archeens et des roches granitiques, est demeuree jusqu’a recemment l’une des parties les moins bien connues du Bouclier canadien. Consideree auparavant comme faisant partie du craton archeen de Rae, puis comme la portion su","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49634679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-20DOI: 10.12789/geocanj.2018.45.133
A. Kerr
Like most who opted for geoscience as a vocation rather than a mere job, I am often asked exactly why I chose this particular career path, and continue to be involved in my retirement. There are also times when I ask myself the very same question, but it usually boils down to this – being a geologist provides opportunities to visit inspiring, unique and often remote locations through field work and other field trips. In Scotland a couple of years ago, on a conference trip that led to the following article, I read Stephen Baxter’s excellent book Revolutions in the Earth. I thoroughly recommend it – as a biography of James Hutton it gives some insight into his personality – and it illustrates the love-hate relationship that geologists have with field work. In a letter written to a friend, Hutton complained “Lord pity the arse that’s clagged to a head that will hunt stones”. I could amplify this with a detailed footnote explaining the meaning of the archaic dialect verb to clag, but I don’t need to because all geologists will understand Hutton’s sentiment. We don’t really have a choice in this – our interest in exploring the natural world is just part of who we are. Such a conclusion may not be fully scientific, but there’s no denying its truth. Even in a technological age where some geoscience careers are built around black boxes and vast computer models, geology remains at its core an observational science, and the theories that we build are ultimately subject to the ground truth of field observations. It was the lure of field work, the outdoors and travel that brought me into geology, and I know that the same is true for many of my colleagues. Modern geoscience may be sophisticated, multidisclipinary and quantitative, but it always links back to careful field observations and their thoughtful interpretation. Even if technology gives us details and constraints, the essential plotline of the story of Earth comes from reading the rocks. Geoscientists are generally keen and adaptable travellers, who like to get off the beaten tourist paths, sometimes at their own peril. One of the great things about being a student of the Earth is that it surrounds us, and there will always be something interesting to find out, wherever we roam. We enjoy a special relationship with the Earth because we understand its dynamic nature and can visualize it in four dimensions. Travelling geologists are always glancing surreptitiously at roadside outcrops as they flash by, or asking exactly why that range of hills is where it is and shaped just so. This can at times be a source of great frustration to our families or our travelling companions, but it is a natural expression of our curiosity about all things that connect to earthly processes. The one thing that I fear most in aging is to lose such curiosity, as happened to my father. Our idea for a new series in Geoscience Canada that can provide helpful travel information and thoughtful geological context for influential o
和大多数选择地球科学作为一种职业而不仅仅是一份工作的人一样,我经常被问到为什么我选择了这条特殊的职业道路,并在退休后继续参与其中。有时我也会问自己同样的问题,但通常可以归结为这一点——作为一名地质学家,我有机会通过实地工作和其他实地考察访问鼓舞人心、独特且往往偏远的地方。几年前,在苏格兰的一次会议之旅中,我读了斯蒂芬·巴克斯特的优秀著作《地球革命》。我非常推荐这本书——作为詹姆斯·赫顿的传记,它让人对他的个性有了一些了解——它说明了地质学家与野外工作之间的爱恨交织的关系。在给朋友的一封信中,赫顿抱怨道:“上帝怜悯那些会猎取石头的人。”。我可以用一个详细的脚注来解释clag这个古老方言动词的含义,但我不需要这样做,因为所有地质学家都会理解Hutton的观点。在这方面我们真的没有选择——我们对探索自然世界的兴趣只是我们自身的一部分。这样的结论可能并不完全科学,但不可否认其真实性。即使在一个技术时代,一些地球科学职业生涯都是围绕着黑匣子和庞大的计算机模型建立的,地质学仍然是一门观测科学的核心,我们建立的理论最终受制于实地观测的基本事实。正是野外工作、户外活动和旅行的诱惑让我进入了地质学,我知道我的许多同事也是如此。现代地球科学可能是复杂的、多学科的和定量的,但它总是与仔细的实地观测及其深思熟虑的解释联系在一起。即使技术给了我们细节和限制,地球故事的基本情节也来自于阅读岩石。地球科学家通常都是敏锐且适应性强的旅行者,他们喜欢离开人迹罕至的旅游路线,有时会自担风险。作为一名研究地球的学生,最棒的事情之一是它围绕着我们,无论我们在哪里漫游,总会有一些有趣的东西可以找到。我们与地球有着特殊的关系,因为我们了解地球的动态性质,并能在四个维度上看到它。旅行的地质学家总是在路边的露头掠过时偷偷地看一眼,或者问为什么这片山丘在这里,形状如此。这有时会让我们的家人或旅伴感到非常沮丧,但这是我们对所有与地球过程有关的事物的好奇的自然表达。随着年龄的增长,我最害怕的一件事就是失去这种好奇心,就像我父亲身上发生的那样。我们的想法是在加拿大地球科学杂志上推出一个新系列,为有影响力或特殊的野外地区提供有用的旅行信息和周到的地质背景,这是为了利用和庆祝我们天生的好奇心。我们设想一系列文章,不仅为读者提供卓越地质领域的历史和科学背景,还为读者提供自主游览的重要实用信息。在许多情况下,这些地方有足够的技术地球科学数据,但这些数据分散在专业出版物中,其中大多数需要其他知识才能完全理解。将这些来源汇集在一起并更广泛地交流,本身就是对我们科学的服务。具有重大科学兴趣的领域通常也出现在实地考察指南中,通常来自会议,但这些文件可能很难找到和获取。即使可以追踪到这些来源,他们也往往会在更广泛的背景下强调网站的专业技术方面,并且可能缺乏对它们在哪里以及如何到达那里的实际考虑。我们对Classic Rock Tours文章的愿景是将这些信息整合在一个地方,使地质背景、现场描述和实用建议与良好的地图、清晰的图形和有趣的照片相结合。我们并不认为这个系列主要是作为原创研究的场所,而是综合和呈现各种来源的材料。诚然,对文献进行坚定而耗时的搜索最终可以提供热衷于旅行的地质学家所需的大部分信息,但我们在这里寻求将所有信息方便地放在一个易于获取的来源中。我们设想本系列中的论文处于中等技术水平,这样它们将为加拿大地球科学的广大读者提供信息并引起他们的兴趣。我们还设想了一个多样化的目标受众,不仅限于从事会议或度假旅行的专业地球科学家。
{"title":"Classic Rock Tours – An Introduction","authors":"A. Kerr","doi":"10.12789/geocanj.2018.45.133","DOIUrl":"https://doi.org/10.12789/geocanj.2018.45.133","url":null,"abstract":"Like most who opted for geoscience as a vocation rather than a mere job, I am often asked exactly why I chose this particular career path, and continue to be involved in my retirement. There are also times when I ask myself the very same question, but it usually boils down to this – being a geologist provides opportunities to visit inspiring, unique and often remote locations through field work and other field trips. In Scotland a couple of years ago, on a conference trip that led to the following article, I read Stephen Baxter’s excellent book Revolutions in the Earth. I thoroughly recommend it – as a biography of James Hutton it gives some insight into his personality – and it illustrates the love-hate relationship that geologists have with field work. In a letter written to a friend, Hutton complained “Lord pity the arse that’s clagged to a head that will hunt stones”. I could amplify this with a detailed footnote explaining the meaning of the archaic dialect verb to clag, but I don’t need to because all geologists will understand Hutton’s sentiment. We don’t really have a choice in this – our interest in exploring the natural world is just part of who we are. Such a conclusion may not be fully scientific, but there’s no denying its truth. Even in a technological age where some geoscience careers are built around black boxes and vast computer models, geology remains at its core an observational science, and the theories that we build are ultimately subject to the ground truth of field observations. It was the lure of field work, the outdoors and travel that brought me into geology, and I know that the same is true for many of my colleagues. Modern geoscience may be sophisticated, multidisclipinary and quantitative, but it always links back to careful field observations and their thoughtful interpretation. Even if technology gives us details and constraints, the essential plotline of the story of Earth comes from reading the rocks. Geoscientists are generally keen and adaptable travellers, who like to get off the beaten tourist paths, sometimes at their own peril. One of the great things about being a student of the Earth is that it surrounds us, and there will always be something interesting to find out, wherever we roam. We enjoy a special relationship with the Earth because we understand its dynamic nature and can visualize it in four dimensions. Travelling geologists are always glancing surreptitiously at roadside outcrops as they flash by, or asking exactly why that range of hills is where it is and shaped just so. This can at times be a source of great frustration to our families or our travelling companions, but it is a natural expression of our curiosity about all things that connect to earthly processes. The one thing that I fear most in aging is to lose such curiosity, as happened to my father. Our idea for a new series in Geoscience Canada that can provide helpful travel information and thoughtful geological context for influential o","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46723644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-19DOI: 10.12789/geocanj.2017.44.127
Lindsay Steele
Under Law, professional geoscientists have a duty of care that they must adhere to when they carry out their activities. The question is, when a duty of care exists, what is the standard of care that is owed? Geoscience regulators in Canada and around the world are working with geoscientists to develop innovative solutions in establishing the standard of care that must be met. By clearly establishing what our expectations are concerning standard of care, we are setting common ideals and goals as a professional community. Both society, geoscientists and employers of geoscientists look to regulatory associations for guidance on professional practice, therefore regulators need to strive to support and educate their members by developing tools and resources that allow members to meet the standard of care expected of them. The paper describes innovative approaches being offered to assist members of Engineers and Geoscientists British Columbia and is based on an oral presentation given by the author at the International Geology Congress in Cape Town South Africa in August 2016. RESUME En vertu de la loi, les geoscientifiques professionnels ont un devoir de diligence auquel ils doivent se conformer dans l'exercice de leurs activites. La question qui se pose est la suivante : lorsqu'il existe un devoir de diligence, quelle est la norme de diligence a respecter? Les organismes de reglementation geoscientifiques au Canada, et ailleurs dans le monde, travaillent de concert avec les geoscientifiques a l'elaboration de solutions novatrices pour etablir la norme de diligence a respecter. En etablissant clairement nos attentes concernant les normes de diligence, nous etablissons des ideaux et des objectifs communs en tant que regroupement professionnel. La societe, les geoscientifiques et leurs employeurs attendent des associations de reglementation des conseils sur les usages professionnels. Les organismes de reglementation doivent donc s'efforcer de soutenir et former leurs membres en dotant des outils et des ressources qui leur permettent de respecter les normes d'usage en vigueur. L’article qui suit, et qui decrit les approches novatrices proposees aux membres de la Engineers and Geoscientist British Columbia est base sur une presentation orale donnee par l'auteur au Congres international de geologie a Cape Town, en Afrique du Sud, en aout 2016.
根据法律规定,专业地球科学家在开展活动时必须遵守注意义务。问题是,当注意义务存在时,应遵守的注意标准是什么?加拿大和世界各地的地球科学监管机构正在与地球科学家合作,开发创新的解决方案,以建立必须满足的护理标准。通过明确我们对护理标准的期望,我们作为一个专业团体设定了共同的理想和目标。社会、地球科学家和地球科学家的雇主都希望监管协会在专业实践方面提供指导,因此监管机构需要努力通过开发工具和资源来支持和教育其成员,使成员能够达到对他们的期望标准。该论文描述了帮助不列颠哥伦比亚省工程师和地球科学家成员的创新方法,并基于作者在2016年8月南非开普敦国际地质大会上的口头报告。在地球科学领域,许多地球科学专业人员都不需要投入大量的精力,因为他们不需要在地球科学领域进行大量的实践活动。问题是:勤奋的人会存在,勤奋的人会尊重他人吗?加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构。在确立的索赔要求中,没有注意到有关工作规范的问题,没有注意到确立的原则和目标,也没有注意到重新组合专业人员的问题。La socite, les geoscientifiques et leurs employees, des associations de regulationdes councils sur les uses professionnels。生物群落的调控机制是指生物群落的调控机制,而生物群落的调控机制是指生物群落的调控机制,而生物群落的调控机制是指生物群落的调控机制。L 'article qusuit, et qui decrrles方法,新方法,建议,工程师和地球科学家成员不列颠哥伦比亚省est基地,在2016年左右在开普敦举行的国际地质大会上发表演讲。
{"title":"Innovation in Establishing the Standard of Care in a Self-Regulated Profession","authors":"Lindsay Steele","doi":"10.12789/geocanj.2017.44.127","DOIUrl":"https://doi.org/10.12789/geocanj.2017.44.127","url":null,"abstract":"Under Law, professional geoscientists have a duty of care that they must adhere to when they carry out their activities. The question is, when a duty of care exists, what is the standard of care that is owed? Geoscience regulators in Canada and around the world are working with geoscientists to develop innovative solutions in establishing the standard of care that must be met. By clearly establishing what our expectations are concerning standard of care, we are setting common ideals and goals as a professional community. Both society, geoscientists and employers of geoscientists look to regulatory associations for guidance on professional practice, therefore regulators need to strive to support and educate their members by developing tools and resources that allow members to meet the standard of care expected of them. The paper describes innovative approaches being offered to assist members of Engineers and Geoscientists British Columbia and is based on an oral presentation given by the author at the International Geology Congress in Cape Town South Africa in August 2016. RESUME En vertu de la loi, les geoscientifiques professionnels ont un devoir de diligence auquel ils doivent se conformer dans l'exercice de leurs activites. La question qui se pose est la suivante : lorsqu'il existe un devoir de diligence, quelle est la norme de diligence a respecter? Les organismes de reglementation geoscientifiques au Canada, et ailleurs dans le monde, travaillent de concert avec les geoscientifiques a l'elaboration de solutions novatrices pour etablir la norme de diligence a respecter. En etablissant clairement nos attentes concernant les normes de diligence, nous etablissons des ideaux et des objectifs communs en tant que regroupement professionnel. La societe, les geoscientifiques et leurs employeurs attendent des associations de reglementation des conseils sur les usages professionnels. Les organismes de reglementation doivent donc s'efforcer de soutenir et former leurs membres en dotant des outils et des ressources qui leur permettent de respecter les normes d'usage en vigueur. L’article qui suit, et qui decrit les approches novatrices proposees aux membres de la Engineers and Geoscientist British Columbia est base sur une presentation orale donnee par l'auteur au Congres international de geologie a Cape Town, en Afrique du Sud, en aout 2016.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43018622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-19DOI: 10.12789/GEOCANJ.2017.44.126
O. Bonham, D. Abbott, A. Waltho
As professional communities around the world, geoscientists have in place disciplinary measures and, over time, instances have occurred which have required disciplinary actions to be taken against individuals. Geoscientists have specialized knowledge and provide expertise on which others rely for important decision- making. Geoscientists are best positioned to judge the scientific/technical and ethical merits of the work of other geoscientists. They are considered professionals and for that reason, society has placed the onus on the profession to govern itself. Consequently, it is important that appropriate disciplinary procedures are in place, that they are ever improving, and that the profession can and does act decisively when necessary. This two-part review paper examines systems and measures to uphold the ethical conduct of geoscientists (Part 1), and studies actions taken against geoscientists in the last three decades (Part 2). It uses available information collected from the member organizations of the International Union of Geological Sciences’ Task Group on Global Geoscience Professionalism as well as public sources. Models used for the governance and self-regulation of geoscience practice vary globally across the same spectrum that is typical in other professions, with the choice of model varying to suit local legal contexts and societal needs and norms. Broadly, similar processes for complaints, investigation, and disciplinary decision-making (and appeals of decisions) are used. The types of charges that can be made for offences or allegations are similar. The ranges of applicable penalties vary depending on the extent of statutory power in place, but beyond this constraint, there are many parallels. Ninety-two documented cases are identified where action has been taken against geoscientists globally since 1989. Of these, 40 relate to either non-payment of dues or fees (usually discontinuation of a membership or license) or to non-compliance with Continuing Professional Development requirements. The remaining 52 are actions for more serious offenses, resulting in penalties that are more substantial. These offences cluster into six categories: 1) falsifying data; 2) fraudulent billing and/or falsifying time sheets; 3) inappropriate behaviour towards others; 4) problematic geoscience work and/or technical deficiencies; 5) misrepresentation of findings, or the giving of unsupported opinions; and 6) mixed other offences. The most frequently used penalty in these cases is the reprimand. Next most frequent is revocation. Revocations include resignations with prejudice, where the geoscientist chose to resign their membership rather than allow the matter to proceed to discipline. Suspensions, requirements for remedial education and/or fines are also frequent penalties. Combinations of different penalties are common. It is evident that rigorous procedures are in place in a number of countries and that they are being used to address the unp
{"title":"An International Review of Disciplinary Measures in Geoscience—Both Procedures and Actions","authors":"O. Bonham, D. Abbott, A. Waltho","doi":"10.12789/GEOCANJ.2017.44.126","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.126","url":null,"abstract":"As professional communities around the world, geoscientists have in place disciplinary measures and, over time, instances have occurred which have required disciplinary actions to be taken against individuals. Geoscientists have specialized knowledge and provide expertise on which others rely for important decision- making. Geoscientists are best positioned to judge the scientific/technical and ethical merits of the work of other geoscientists. They are considered professionals and for that reason, society has placed the onus on the profession to govern itself. Consequently, it is important that appropriate disciplinary procedures are in place, that they are ever improving, and that the profession can and does act decisively when necessary. This two-part review paper examines systems and measures to uphold the ethical conduct of geoscientists (Part 1), and studies actions taken against geoscientists in the last three decades (Part 2). It uses available information collected from the member organizations of the International Union of Geological Sciences’ Task Group on Global Geoscience Professionalism as well as public sources. Models used for the governance and self-regulation of geoscience practice vary globally across the same spectrum that is typical in other professions, with the choice of model varying to suit local legal contexts and societal needs and norms. Broadly, similar processes for complaints, investigation, and disciplinary decision-making (and appeals of decisions) are used. The types of charges that can be made for offences or allegations are similar. The ranges of applicable penalties vary depending on the extent of statutory power in place, but beyond this constraint, there are many parallels. Ninety-two documented cases are identified where action has been taken against geoscientists globally since 1989. Of these, 40 relate to either non-payment of dues or fees (usually discontinuation of a membership or license) or to non-compliance with Continuing Professional Development requirements. The remaining 52 are actions for more serious offenses, resulting in penalties that are more substantial. These offences cluster into six categories: 1) falsifying data; 2) fraudulent billing and/or falsifying time sheets; 3) inappropriate behaviour towards others; 4) problematic geoscience work and/or technical deficiencies; 5) misrepresentation of findings, or the giving of unsupported opinions; and 6) mixed other offences. The most frequently used penalty in these cases is the reprimand. Next most frequent is revocation. Revocations include resignations with prejudice, where the geoscientist chose to resign their membership rather than allow the matter to proceed to discipline. Suspensions, requirements for remedial education and/or fines are also frequent penalties. Combinations of different penalties are common. It is evident that rigorous procedures are in place in a number of countries and that they are being used to address the unp","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43457489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-19DOI: 10.12789/GEOCANJ.2017.44.123
G. Young
*The following piece endeavours to capture the content of the Presidential Address presented at the Kingston GAC–MAC in May, 2017. The accompanying images are selected from the many slides with which the lecture was illustrated.
{"title":"Sharing our Vital Science: Observations of a Public Geologist","authors":"G. Young","doi":"10.12789/GEOCANJ.2017.44.123","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.123","url":null,"abstract":"*The following piece endeavours to capture the content of the Presidential Address presented at the Kingston GAC–MAC in May, 2017. The accompanying images are selected from the many slides with which the lecture was illustrated.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48227101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-06DOI: 10.12789/geocanj.2017.44.122
M. Priddle
Three case studies in Canada are evaluated where a regulatory authority ruled that measures considered by some professionals to be without scientific basis and less protective of human health or the environment were the required courses of action. The three projects were in the field of environmental geoscience. In all three cases, the solution proposed by a Professional Geoscientist (P.Geo.) was opposed by a representative of a regulatory body that held authority for approval. The final outcomes that were approved by the regulator were less protective of human health (increased exposure to potential contaminants) and/or the environment (more resources used; higher contaminant exposure). In two of the three cases, the solutions were also more expensive to the client and the taxpayer. This paper explores the practice of professionalism in geoscience versus regulatory authorities that hold jurisdiction over geoscience in a broad sense. In each of the three cases, the professional opinions and analysis of the P.Geo. working for a private sector client were overridden by a professional (P.Geo. or Professional Engineer) in an approval authority. These three studies highlight the ethical decisions required by professional geoscientists in the face of regulators who hold control over areas of geoscience. Although the training of professionals is similar, regulators appear to be influenced by perceived risk as opposed to actual risk based on scientific evidence. Similarly, some policies do not have a solid scientific basis. As a result, sound scientific reasoning and resulting rational decisions may be hindered in regulatory decision-making. RESUME Trois etudes de cas canadiens sont evaluees, ou une autorite reglementaire a statue comme requises des mesures qui avaient ete declarees par des professionnels comme etant sans fondements scientifiques et moins protectrices pour la sante humaine ou les milieux de vie. Il s’agit de trois projets du domaine des geosciences des milieux de vie. Dans les trois cas, la solution proposee par un geologue professionnel (P.Geo.) a ete contestee par un representant d'un organisme reglementaire decisionnel. Les resultats definitifs approuves par l'organisme reglementaire protegeait moins la sante humaine (augmentation de l'exposition aux contaminants potentiels) et/ou le milieu de vie (plus de ressources utilisees; augmentation de l'exposition aux contaminants). Dans deux des trois cas, les solutions etaient egalement plus couteuses pour le client et le contribuable. Le present article explore la pratique professionnelle en geosciences par rapport a celle des autorites reglementaires qui ont juridiction dans le domaine des geosciences en general. Dans chacun de ces trois cas, les avis professionnels et l'analyse de P.Geo. travaillant pour un client du secteur prive ont ete supplantes par celui d’un professionnel (P.Geo. ou ingenieur professionnel) œuvrant a sein d’une autorite reglementaire. Ces trois etudes mettent en lu
{"title":"Geo-Ethics: What to do When Approval Authority Decisions Contradict Sound Science?","authors":"M. Priddle","doi":"10.12789/geocanj.2017.44.122","DOIUrl":"https://doi.org/10.12789/geocanj.2017.44.122","url":null,"abstract":"Three case studies in Canada are evaluated where a regulatory authority ruled that measures considered by some professionals to be without scientific basis and less protective of human health or the environment were the required courses of action. The three projects were in the field of environmental geoscience. In all three cases, the solution proposed by a Professional Geoscientist (P.Geo.) was opposed by a representative of a regulatory body that held authority for approval. The final outcomes that were approved by the regulator were less protective of human health (increased exposure to potential contaminants) and/or the environment (more resources used; higher contaminant exposure). In two of the three cases, the solutions were also more expensive to the client and the taxpayer. This paper explores the practice of professionalism in geoscience versus regulatory authorities that hold jurisdiction over geoscience in a broad sense. In each of the three cases, the professional opinions and analysis of the P.Geo. working for a private sector client were overridden by a professional (P.Geo. or Professional Engineer) in an approval authority. These three studies highlight the ethical decisions required by professional geoscientists in the face of regulators who hold control over areas of geoscience. Although the training of professionals is similar, regulators appear to be influenced by perceived risk as opposed to actual risk based on scientific evidence. Similarly, some policies do not have a solid scientific basis. As a result, sound scientific reasoning and resulting rational decisions may be hindered in regulatory decision-making. RESUME Trois etudes de cas canadiens sont evaluees, ou une autorite reglementaire a statue comme requises des mesures qui avaient ete declarees par des professionnels comme etant sans fondements scientifiques et moins protectrices pour la sante humaine ou les milieux de vie. Il s’agit de trois projets du domaine des geosciences des milieux de vie. Dans les trois cas, la solution proposee par un geologue professionnel (P.Geo.) a ete contestee par un representant d'un organisme reglementaire decisionnel. Les resultats definitifs approuves par l'organisme reglementaire protegeait moins la sante humaine (augmentation de l'exposition aux contaminants potentiels) et/ou le milieu de vie (plus de ressources utilisees; augmentation de l'exposition aux contaminants). Dans deux des trois cas, les solutions etaient egalement plus couteuses pour le client et le contribuable. Le present article explore la pratique professionnelle en geosciences par rapport a celle des autorites reglementaires qui ont juridiction dans le domaine des geosciences en general. Dans chacun de ces trois cas, les avis professionnels et l'analyse de P.Geo. travaillant pour un client du secteur prive ont ete supplantes par celui d’un professionnel (P.Geo. ou ingenieur professionnel) œuvrant a sein d’une autorite reglementaire. Ces trois etudes mettent en lu","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47288475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-06DOI: 10.12789/GEOCANJ.2017.44.120
A. Peace, G. Foulger, C. Schiffer, K. McCaffrey
Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time.RESUMELa cassure entre le Groenland et le Canada a entraine une expansion oceanique de la mer du Labrador et de la baie de Baffin. Ces bassins oceaniques sont relies par le detroit de Davis, un haut bathymetrique constitue principalement de lithosphere continentale et de la province volcanique tertiaire de l'ouest du Groenland. Il a ete suggere qu'un panache du manteau a facilite cette cassure et genere le magmatisme associe. L’hypothese d’une cassure produite par panache du manteau predit que la premiere distension oceanique, la plus importante, le magmatisme et l'expansion oceanique initial se produisent la ou le panache mantelique touche la croute continentale. Or les observations dans la region de la mer du Labrador–baie de Baffin ne correspondent pas a ces predictions. Et donc l'hypothese du panache ne fonctionne pas dans cette region a moins que des facteurs ad hoc determinants ne soient presents. Un modele qui correspond mieux aux observations presuppose la presence d’une epaisse quille lithospherique continentale d'origine orogenique sous le detroit de Davis qui aurait bloque l’expansion oceanique de la mer du Labrador vers le nord, ce qui aurait provoque une augmentation du magmatisme localement. La lithosphere du detroit de Davis etait plus epaisse et plus resistante a l’expansion oceanique parce que les bandes orogeniques paleoproterozoiques du Nagssugtoqidian et de Torngat renferment des structures defavorablement orientees par rapport au champ de contraintes d’extensions de l'epoque.
格陵兰岛和加拿大之间的分裂导致了拉布拉多海和巴芬湾的海洋扩张。这些海洋盆地通过戴维斯海峡相连,戴维斯海峡是一个主要由大陆岩石圈组成的深海高地,也是西格陵兰第三纪火山省的焦点。有人认为,地幔柱促进了这次分裂,并产生了相关的岩浆活动。羽流驱动的破裂预示着最早、最广泛的裂谷、岩浆活动和最初的海底扩张开始于假定的羽流撞击的同一地点。拉布拉多海-巴芬湾地区的观测结果与这些预测不符。因此,羽流假说不能在这个地方得到证实,除非主要的特别变体被接受。一个更符合观测结果的模型是,在戴维斯海峡下面有一个厚的大陆岩石圈龙骨,它起源于造山带,阻挡了向北传播的拉布拉多海裂谷,导致局部岩浆活动增强。戴维斯海峡岩石圈较厚,抗裂能力较强,这是由于相邻的古元古代那萨木托起甸造山带和东伽特造山带在当时的伸展应力场中含有不利于定向的构造。resuma保证格陵兰和加拿大中心将在拉布拉多海和巴芬湾扩展海洋中心。海洋盆地与戴维斯盆地、大陆盆地和格陵兰岛西部火山盆地的水深构成原理相同。我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是我的意思。假设d 'une保证了生产panache du manteau预估了最初的膨胀海洋,更重要的是,岩浆和膨胀海洋初始生产了panache mantelique和groute continental。在Labrador-baie de Baffin地区进行的观测中,新记者通过了一些预测。让我们做一个假设,假设我们的功能,假设我们的区域,假设我们的运动,假设我们的因素,假设我们的特殊决定因素,假设我们的存在。该模型对应的miaux观测假设了原始造山带的存在、岩石圈的存在、大陆的存在、Davis板块的存在、Labrador海板块的扩张、岩浆定位的增强。杜拉岩石圈底特律德戴维斯一个+ epaisse +地下女性l 'expansion oceanique因为莱斯·邦德:orogeniques paleoproterozoiques du Nagssugtoqidian et de Torngat renferment des结构defavorablement奥连特par融洽盟冠军德contraintes d 'extensions德伯爵。
{"title":"Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?","authors":"A. Peace, G. Foulger, C. Schiffer, K. McCaffrey","doi":"10.12789/GEOCANJ.2017.44.120","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.120","url":null,"abstract":"Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time.RESUMELa cassure entre le Groenland et le Canada a entraine une expansion oceanique de la mer du Labrador et de la baie de Baffin. Ces bassins oceaniques sont relies par le detroit de Davis, un haut bathymetrique constitue principalement de lithosphere continentale et de la province volcanique tertiaire de l'ouest du Groenland. Il a ete suggere qu'un panache du manteau a facilite cette cassure et genere le magmatisme associe. L’hypothese d’une cassure produite par panache du manteau predit que la premiere distension oceanique, la plus importante, le magmatisme et l'expansion oceanique initial se produisent la ou le panache mantelique touche la croute continentale. Or les observations dans la region de la mer du Labrador–baie de Baffin ne correspondent pas a ces predictions. Et donc l'hypothese du panache ne fonctionne pas dans cette region a moins que des facteurs ad hoc determinants ne soient presents. Un modele qui correspond mieux aux observations presuppose la presence d’une epaisse quille lithospherique continentale d'origine orogenique sous le detroit de Davis qui aurait bloque l’expansion oceanique de la mer du Labrador vers le nord, ce qui aurait provoque une augmentation du magmatisme localement. La lithosphere du detroit de Davis etait plus epaisse et plus resistante a l’expansion oceanique parce que les bandes orogeniques paleoproterozoiques du Nagssugtoqidian et de Torngat renferment des structures defavorablement orientees par rapport au champ de contraintes d’extensions de l'epoque.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43198578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-06DOI: 10.12789/GEOCANJ.2017.44.121
J. Hunt, R. Berry
Geometallurgy is a cross-disciplinary science that addresses the problem of teasing out the features of the rock mass that significantly influence mining and processing. Rocks are complex composite mixtures for which the basic building blocks are grains of minerals. The properties of the minerals, how they are bound together, and many other aspects of rock texture affect the entire mining value chain from exploration, through mining and processing, waste and tailings disposal, to refining and sales. This review presents rock properties (e.g. strength, composition, mineralogy, texture) significant in geometallurgy and examples of test methods available to measure or predict these properties. Geometallurgical data need to be quantitative and spatially constrained so they can be used in 3D modelling and mine planning. They also need to be obtainable relatively cheaply in order to be abundant enough to provide a statistically valid sample distribution for spatial modelling. Strong communication between different departments along the mining value chain is imperative so that data are produced and transferred in a useable form and duplication is avoided. The ultimate aim is to have 3D models that not only show the grade of valuable elements (or minerals), but also include rock properties that may influence mining and processing, so that decisions concerning mining and processing can be made holistically, i.e. the impacts of rock properties on all the cost centres in the mining process are taken into account. There are significant costs to improving ore deposit knowledge and it is very important to consider the cost-benefit curve when planning the level of geometallurgical effort that is appropriate in individual deposits.RESUMELa geometallurgie est une science interdisciplinaire qui s’interesse aux caracteristiques de la masse rocheuse qui influent de maniere significative sur l'exploitation miniere et le traitement du minerai. Les roches sont des melanges composites complexes dont les elements structurant de base sont des grains de mineraux. Les proprietes des mineraux, la facon dont ils sont lies entre eux, et de nombreux autres aspects de la texture des roches determinent l'ensemble de la chaine de valeur miniere, de l'exploration a l'extraction a la transformation, a l'elimination des dechets et des residus, jusqu'au raffinage et a la vente. La presente etude passe en revue les proprietes significatives de la roche (par ex. sa cohesion, sa composition, sa mineralogie, sa texture) en geometallurgie ainsi que des exemples de methodes d'essai disponibles pour mesurer ou predire ces proprietes. Les donnees geometallurgiques doivent etre quantitatives et localisees spatialement afin qu'elles puissent etre utilisees dans la modelisation 3D et la planification de la mine. Elles doivent egalement etre peu couteuses afin d'etre suffisamment nombreuses pour fournir une distribution d'echantillon statistiquement valide pour la modelisation spatiale. Une c
{"title":"Geological Contributions to Geometallurgy: A Review","authors":"J. Hunt, R. Berry","doi":"10.12789/GEOCANJ.2017.44.121","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.121","url":null,"abstract":"Geometallurgy is a cross-disciplinary science that addresses the problem of teasing out the features of the rock mass that significantly influence mining and processing. Rocks are complex composite mixtures for which the basic building blocks are grains of minerals. The properties of the minerals, how they are bound together, and many other aspects of rock texture affect the entire mining value chain from exploration, through mining and processing, waste and tailings disposal, to refining and sales. This review presents rock properties (e.g. strength, composition, mineralogy, texture) significant in geometallurgy and examples of test methods available to measure or predict these properties. Geometallurgical data need to be quantitative and spatially constrained so they can be used in 3D modelling and mine planning. They also need to be obtainable relatively cheaply in order to be abundant enough to provide a statistically valid sample distribution for spatial modelling. Strong communication between different departments along the mining value chain is imperative so that data are produced and transferred in a useable form and duplication is avoided. The ultimate aim is to have 3D models that not only show the grade of valuable elements (or minerals), but also include rock properties that may influence mining and processing, so that decisions concerning mining and processing can be made holistically, i.e. the impacts of rock properties on all the cost centres in the mining process are taken into account. There are significant costs to improving ore deposit knowledge and it is very important to consider the cost-benefit curve when planning the level of geometallurgical effort that is appropriate in individual deposits.RESUMELa geometallurgie est une science interdisciplinaire qui s’interesse aux caracteristiques de la masse rocheuse qui influent de maniere significative sur l'exploitation miniere et le traitement du minerai. Les roches sont des melanges composites complexes dont les elements structurant de base sont des grains de mineraux. Les proprietes des mineraux, la facon dont ils sont lies entre eux, et de nombreux autres aspects de la texture des roches determinent l'ensemble de la chaine de valeur miniere, de l'exploration a l'extraction a la transformation, a l'elimination des dechets et des residus, jusqu'au raffinage et a la vente. La presente etude passe en revue les proprietes significatives de la roche (par ex. sa cohesion, sa composition, sa mineralogie, sa texture) en geometallurgie ainsi que des exemples de methodes d'essai disponibles pour mesurer ou predire ces proprietes. Les donnees geometallurgiques doivent etre quantitatives et localisees spatialement afin qu'elles puissent etre utilisees dans la modelisation 3D et la planification de la mine. Elles doivent egalement etre peu couteuses afin d'etre suffisamment nombreuses pour fournir une distribution d'echantillon statistiquement valide pour la modelisation spatiale. Une c","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49002257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-21DOI: 10.12789/GEOCANJ.2017.44.118
O. Bonham, B. Broster, David Cane, Keith Johnson, K. Maclachlan
Competency-based assessment approaches to professional registration reflect the move by professions, both in Canada and around the world, away from traditional credentials-based assessments centred on a combination of academic achievements and supervised practice time. Entry to practice competencies are the abilities required to enable effective and safe entry-level practice in a profession. In 2012, Geoscientists Canada received funding from the Government of Canada’s Foreign Credentials Recognition Program. A central component of the funding involved the development of a competency profile to assist in assessment for licensing in the geoscience profession. Work concluded with the approval of the Competency Profile for Professional Geoscientists at Entry to Practice by Geoscientists Canada in November 2014. The Competency Profile comprises concise statements in plain language, setting out the skills and abilities that are required to be able to work as a geoscientist, in an effective and safe manner, independent of direct supervision. It covers competencies common to all geoscientists; competencies for the primary subdisciplines of geoscience (geology, environmental geoscience and geophysics); and a generic set of high level competences that can apply in any specific work context in geoscience. The paper is in two parts. Part 1 puts the concept of competencies in context and describes the approach taken to develop the profile, including: input from Subject Matter Experts (practising geoscientists representing a diverse sampling of the profession); extensive national consultation and refinement; and a validation procedure, including a survey of practising Canadian geoscientists. Part 2 introduces the profile, explains its structure, and provides examples of some of the competencies. The full competency profile can be obtained from the Geoscientists Canada website www.geoscientistscanada.ca. Future work will identify specific indicators of proficiency related to each competency and suggest appropriate methodologies to assess such competencies. It will also involve mapping the profile to the existing Canadian reference standard, Geoscience Knowledge and Experience Requirements for Professional Registration in Canada.RESUMELes approches d'evaluation basees sur les competences en vue de l'inscription professionnelle refletent l'abandon par les professions, tant au Canada que partout dans le monde, des evaluations classiques basees sur les titres de competences et axees sur une combinaison de realisations academiques et de temps de pratique supervisee. Les competences au niveau debutant sont les capacites requises pour une pratique efficace et en toute securite audit niveau dans une profession. En 2012, Geoscientifiques Canada a recu un financement du Programme de reconnaissance des titres de competences etrangers du gouvernement du Canada. Une composante centrale du financement incluait l’elaboration d'un profil des competences pour faciliter l'eval
基于能力的专业注册评估方法反映了加拿大和世界各地的专业人员从传统的以学历为基础的评估转向了以学术成就和监督实践时间相结合的评估。入门实践能力是指在一个职业中进行有效和安全的入门实践所需的能力。2012年,加拿大地质科学家获得了加拿大政府外国证书承认方案的资助。资金的一个核心组成部分涉及制定能力简介,以协助评估地球科学专业的许可证。2014年11月,加拿大地质科学家批准了《专业地质科学家执业能力简介》,从而完成了这项工作。能力简介包括简明的语言陈述,列出了作为一名地球科学家,以有效和安全的方式工作所需的技能和能力,独立于直接监督。它涵盖了所有地球科学家的共同能力;地球科学主要分支学科(地质学、环境地球科学和地球物理学)的能力;以及一套通用的高水平能力,可应用于地球科学的任何特定工作环境。本文分为两部分。第1部分将能力的概念放在上下文中,并描述了制定概况所采取的方法,包括:主题专家(代表该专业不同样本的执业地球科学家)的意见;广泛的全国协商和完善;以及验证程序,包括对加拿大执业地球科学家的调查。第2部分介绍了概要,解释了它的结构,并提供了一些能力的例子。完整的能力简介可从加拿大地球科学家网站www.geoscientistscanada.ca获得。未来的工作将确定与每种能力相关的具体能力指标,并提出评估这些能力的适当方法。它还将涉及将概况映射到现有的加拿大参考标准《加拿大专业注册的地球科学知识和经验要求》。RESUMELes approaches d’evaluation bases les capabilities en vue de l’铭文专业反映了对专业的放弃,tant au Canada que partout dans the world,评估类别基于能力水平,并结合了学术界和监管实践的时间。首次亮相的大学能力是对实践效率和职业安全审计能力的要求。2012年,加拿大地质科学协会为加拿大政府的能力评估计划提供了资金。联合国财务中心的组成包括制定能力简介,以促进对地球科学专业许可证的评估。2014年11月,这项工作获得了加拿大地质科学协会对首次亮相的地质科学专业人员能力的认可。能力简介包括明确的语言声明,定义了提高效率、安全性和独立性所需的能力和能力,以及地球科学。我们的能力与所有的地球科学相结合;地球科学初级学科(地质学、地球科学环境和地球物理学)的能力;以及高级大学应用程序在地球科学特定工作背景下的综合能力。文件由双方组成。各方在能力概念的背景下会面,并谴责了被采用的方法,以提高个人素质,包括:专家在该领域的贡献(地球科学专业人员代表了专业技术的多样性);广泛的协商和完善国家梯队;以及验证程序,包括加拿大地质科学专业人员的询问。第二部分介绍了某些能力的概况、结构和四个例子。加拿大地质科学网站www.Geoscientifiques scanada.ca上提供了完整的能力简介。未来的工作识别了特定能力的指标,这是一种能力和评估方法的建议。根据加拿大现有的参考标准,以及加拿大的迫切需要和地球科学经验,我认为这需要加拿大专业人员的题词。
{"title":"The Development of Canada's Competency Profile for Professional Geoscientists at Entry-to-Practice","authors":"O. Bonham, B. Broster, David Cane, Keith Johnson, K. Maclachlan","doi":"10.12789/GEOCANJ.2017.44.118","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.118","url":null,"abstract":"Competency-based assessment approaches to professional registration reflect the move by professions, both in Canada and around the world, away from traditional credentials-based assessments centred on a combination of academic achievements and supervised practice time. Entry to practice competencies are the abilities required to enable effective and safe entry-level practice in a profession. In 2012, Geoscientists Canada received funding from the Government of Canada’s Foreign Credentials Recognition Program. A central component of the funding involved the development of a competency profile to assist in assessment for licensing in the geoscience profession. Work concluded with the approval of the Competency Profile for Professional Geoscientists at Entry to Practice by Geoscientists Canada in November 2014. The Competency Profile comprises concise statements in plain language, setting out the skills and abilities that are required to be able to work as a geoscientist, in an effective and safe manner, independent of direct supervision. It covers competencies common to all geoscientists; competencies for the primary subdisciplines of geoscience (geology, environmental geoscience and geophysics); and a generic set of high level competences that can apply in any specific work context in geoscience. The paper is in two parts. Part 1 puts the concept of competencies in context and describes the approach taken to develop the profile, including: input from Subject Matter Experts (practising geoscientists representing a diverse sampling of the profession); extensive national consultation and refinement; and a validation procedure, including a survey of practising Canadian geoscientists. Part 2 introduces the profile, explains its structure, and provides examples of some of the competencies. The full competency profile can be obtained from the Geoscientists Canada website www.geoscientistscanada.ca. Future work will identify specific indicators of proficiency related to each competency and suggest appropriate methodologies to assess such competencies. It will also involve mapping the profile to the existing Canadian reference standard, Geoscience Knowledge and Experience Requirements for Professional Registration in Canada.RESUMELes approches d'evaluation basees sur les competences en vue de l'inscription professionnelle refletent l'abandon par les professions, tant au Canada que partout dans le monde, des evaluations classiques basees sur les titres de competences et axees sur une combinaison de realisations academiques et de temps de pratique supervisee. Les competences au niveau debutant sont les capacites requises pour une pratique efficace et en toute securite audit niveau dans une profession. En 2012, Geoscientifiques Canada a recu un financement du Programme de reconnaissance des titres de competences etrangers du gouvernement du Canada. Une composante centrale du financement incluait l’elaboration d'un profil des competences pour faciliter l'eval","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46175722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}