首页 > 最新文献

Geoscience Canada最新文献

英文 中文
Lithotectonic Framework of the Core Zone, Southeastern Churchill Province, Canada 加拿大丘吉尔省东南部核心区的岩石构造框架
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2018-04-20 DOI: 10.12789/GEOCANJ.2018.45.128
D. Corrigan, N. Wodicka, C. McFarlane, I. Lafrance, D. V. Rooyen, D. Bandyayera, C. Bilodeau
The Core Zone, a broad region located between the Superior and North Atlantic cratons and predominantly underlain by Archean gneiss and granitoid rocks, remained until recently one of the less well known parts of the Canadian Shield. Previously thought to form part of the Archean Rae Craton, and later referred to as the Southeastern Churchill Province, it has been regarded as an ancient continental block trapped between the Paleoproterozoic Torngat and New Quebec orogens, with its relationships to the adjacent Superior and North Atlantic cratons remaining unresolved. The geochronological data presented herein suggest that the Archean evolution of the Core Zone was distinct from that in both the Superior and North Atlantic (Nain) cratons. Moreover, the Core Zone itself consists of at least three distinct lithotectonic entities with different evolutions, referred to herein as the George River, Mistinibi-Raude and Falcoz River blocks, that are separated by steeply-dipping, crustal-scale shear zones interpreted as paleosutures. Specifically, the George River Block consists of ca. 2.70 Ga supracrustal rocks and associated ca. 2.70–2.57 Ga intrusions. The Mistinibi-Raude Block consists of remnants of a ca. 2.37 Ga volcanic arc intruded by a ca. 2.32 Ga arc plutonic suite (Pallatin) and penecontemporaneous alkali plutons (Pelland and Nekuashu suites). It also hosts a coarse clastic cover sequence (the Hutte Sauvage Group) which contains detrital zircons provided from locally-derived, ca. 2.57–2.50 Ga, 2.37–2.32 Ga, and 2.10–2.08 Ga sources, with the youngest concordant grain dated at 1987 ± 7 Ma. The Falcoz River Block consists of ca. 2.89–2.80 Ga orthogneiss intruded by ca. 2.74–2.70 granite, tonalite, and granodiorite. At the western margin of the Core Zone, the George River Block and Kuujjuaq Domain may have been proximal by ca. 1.84 Ga as both appear to have been sutured by the 1.84–1.82 Ga De Pas Batholith, whereas at its eastern margin, the determination of metamorphic ages of ca. 1.85 to 1.80 Ga in the Falcoz River Block suggests protracted interaction with the adjacent Lac Lomier Complex during their amalgamation and suturing, but with a younger, ‘New Quebec’ overprint as well. The three crustal blocks forming the Core Zone add to a growing list of ‘exotic’ Archean to earliest Paleoproterozoic microcontinents and crustal slices that extend around the Superior Craton from the Grenville Front through Hudson Strait, across Hudson Bay and into Manitoba and Saskatchewan, in what was the Manikewan Ocean realm, which closed between ca. 1.83–1.80 Ga during the formation of supercontinent Nuna. RESUME La Zone noyau, une vaste region situee entre les cratons du Superieur et de l’Atlantique Nord et reposant principalement sur des gneiss archeens et des roches granitiques, est demeuree jusqu’a recemment l’une des parties les moins bien connues du Bouclier canadien. Consideree auparavant comme faisant partie du craton archeen de Rae, puis comme la portion su
核心区是一个位于苏必利尔和北大西洋克拉通之间的广阔区域,主要位于太古宙片麻岩和花岗岩之下,直到最近,它仍然是加拿大地盾中不太为人所知的部分之一。以前被认为是太古宙雷克拉通的一部分,后来被称为东南丘吉尔省,它被认为是一个被困在古元古代龙卷风和新魁北克造山带之间的古老大陆块,其与邻近的苏必利尔和北大西洋克拉通的关系仍未解决。本文提供的地质年代数据表明,核心区的太古宙演化与苏必利尔和北大西洋(Nain)克拉通的演化不同。此外,核心区本身由至少三个具有不同演化的不同岩石构造实体组成,本文称为乔治河、米斯蒂尼比·劳德和法尔科兹河区块,它们被陡峭倾斜的地壳规模剪切带分隔开,被解释为古缝合线。具体而言,乔治河区块由约2.70 Ga的表壳岩石和相关的约2.70–2.57 Ga侵入体组成。Mistinibi-Raude地块由约2.37 Ga火山弧的残余物组成,该火山弧被约2.32 Ga弧深成岩套(Pallatin)和准同生期碱性深成岩(Pelland和Nekuashu岩套)侵入。它还包含一个粗碎屑覆盖层序列(Hutte Sauvage群),其中包含来自当地来源的碎屑锆石,约2.57–2.50 Ga、2.37–2.32 Ga和2.10–2.08 Ga,最年轻的一致颗粒年代为1987±7 Ma。Falcoz河块由约2.89–2.80 Ga的正片麻岩组成,约2.74–2.70花岗岩、英云闪长岩和花岗闪长岩侵入。在核心区的西部边缘,乔治河区块和Kuujjuaq域可能在近端约1.84 Ga,因为两者似乎都被1.84–1.82 Ga De Pas岩基缝合,而在其东部边缘,Falcoz河地块约1.85至1.80 Ga的变质年龄的测定表明,在其拼合和缝合过程中,与邻近的Lac Lomier杂岩存在长期的相互作用,但也存在较年轻的“新魁北克”套印。形成核心区的三个地壳块体增加了越来越多的“奇异”太古代到最早的古元古代微大陆和地壳切片,这些大陆和地壳片从格伦维尔前缘延伸到苏必利尔陨石坑周围,穿过哈德逊海峡,穿过哈德森湾,进入曼尼托巴省和萨斯喀彻温省,在努纳超大陆形成期间,闭合于约1.83–1.80 Ga之间。RESUME La Zone noyau是一个位于Superieur和Atlantic Nord克拉通之间的广阔区域,主要位于片麻岩-古宙和岩石-花岗岩之上,是加拿大Bouclier地区最近的一个地区。考虑到雷克拉通的主要组成部分,它位于丘吉尔省东南部,位于Torngat和魁北克新大陆造山带古保护区之间的一个古老大陆板块上,与邻近的克拉通和大西洋北部的星云之间存在关系。地质年代学表明,noyau区的演化历史与Superior和Atlantic Nord(Nain)克拉通的细胞完全不同。此外,noyau区由三个不同演化的岩石构造体组成,分别是乔治河、Mistinibi Raude河和法尔科兹河,这些岩石构造体与倾向性较强的硬壳区和古缝合线相分离。再加上精确性,乔治家族是环境上层阶级的组成部分。2,70 Ga,以及环境中的侵入体。2,70–2,57 Ga.Mistinibi Raude集团是环境弧火山遗迹的组成部分。2.37 Ga,回收了一套环境深成岩。2,32 Ga(Pallatin)和同时代的深成岩体(Pelland和Nekuashu套房)。这是grossiere(Hutte Sauvage组)锆石碎屑来源地的连续断裂序列。2,57–2,50 Ga、2,37–2,32 Ga和2,10–2,08 Ga,1987年±7 Ma的晶粒一致性。Falcoz河组形成了环境正片麻岩。2.89–2.80 Ga,相当于花岗岩、英云闪长岩和花岗闪长岩的侵入体。2,74–2,70 Ga.一个位于诺约区的边缘,乔治河集团和Kuujjuaq域避免了1.84 Ga的环境。 由于两者似乎都是由大约1.84–1.82 Ga的台阶岩基缝合而成,而在其东部边缘,Falcoz河区块中1.85–1.80 Ga变形年代的确定表明,在合并和缝合过程中,与邻近的Lomier湖复合体的相互作用延长,但也影响了更年轻的“新魁北克”叠加。构成核心区的三个地壳块体增加了越来越多的“奇异”古原生态学古古古大陆和地壳鳞片,它们分布在上克拉通周围,从格伦维尔前线到马尼托巴省,穿过哈德逊海峡、哈德逊湾到马尼托巴省和萨斯喀彻温省,曼尼克万海洋在大约1.83-1.80 Ga之前关闭,在超级大陆努纳的形成过程中。
{"title":"Lithotectonic Framework of the Core Zone, Southeastern Churchill Province, Canada","authors":"D. Corrigan, N. Wodicka, C. McFarlane, I. Lafrance, D. V. Rooyen, D. Bandyayera, C. Bilodeau","doi":"10.12789/GEOCANJ.2018.45.128","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2018.45.128","url":null,"abstract":"The Core Zone, a broad region located between the Superior and North Atlantic cratons and predominantly underlain by Archean gneiss and granitoid rocks, remained until recently one of the less well known parts of the Canadian Shield. Previously thought to form part of the Archean Rae Craton, and later referred to as the Southeastern Churchill Province, it has been regarded as an ancient continental block trapped between the Paleoproterozoic Torngat and New Quebec orogens, with its relationships to the adjacent Superior and North Atlantic cratons remaining unresolved. The geochronological data presented herein suggest that the Archean evolution of the Core Zone was distinct from that in both the Superior and North Atlantic (Nain) cratons. Moreover, the Core Zone itself consists of at least three distinct lithotectonic entities with different evolutions, referred to herein as the George River, Mistinibi-Raude and Falcoz River blocks, that are separated by steeply-dipping, crustal-scale shear zones interpreted as paleosutures. Specifically, the George River Block consists of ca. 2.70 Ga supracrustal rocks and associated ca. 2.70–2.57 Ga intrusions. The Mistinibi-Raude Block consists of remnants of a ca. 2.37 Ga volcanic arc intruded by a ca. 2.32 Ga arc plutonic suite (Pallatin) and penecontemporaneous alkali plutons (Pelland and Nekuashu suites). It also hosts a coarse clastic cover sequence (the Hutte Sauvage Group) which contains detrital zircons provided from locally-derived, ca. 2.57–2.50 Ga, 2.37–2.32 Ga, and 2.10–2.08 Ga sources, with the youngest concordant grain dated at 1987 ± 7 Ma. The Falcoz River Block consists of ca. 2.89–2.80 Ga orthogneiss intruded by ca. 2.74–2.70 granite, tonalite, and granodiorite. At the western margin of the Core Zone, the George River Block and Kuujjuaq Domain may have been proximal by ca. 1.84 Ga as both appear to have been sutured by the 1.84–1.82 Ga De Pas Batholith, whereas at its eastern margin, the determination of metamorphic ages of ca. 1.85 to 1.80 Ga in the Falcoz River Block suggests protracted interaction with the adjacent Lac Lomier Complex during their amalgamation and suturing, but with a younger, ‘New Quebec’ overprint as well. The three crustal blocks forming the Core Zone add to a growing list of ‘exotic’ Archean to earliest Paleoproterozoic microcontinents and crustal slices that extend around the Superior Craton from the Grenville Front through Hudson Strait, across Hudson Bay and into Manitoba and Saskatchewan, in what was the Manikewan Ocean realm, which closed between ca. 1.83–1.80 Ga during the formation of supercontinent Nuna. RESUME La Zone noyau, une vaste region situee entre les cratons du Superieur et de l’Atlantique Nord et reposant principalement sur des gneiss archeens et des roches granitiques, est demeuree jusqu’a recemment l’une des parties les moins bien connues du Bouclier canadien. Consideree auparavant comme faisant partie du craton archeen de Rae, puis comme la portion su","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49634679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Classic Rock Tours – An Introduction 经典摇滚之旅-介绍
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2018-04-20 DOI: 10.12789/geocanj.2018.45.133
A. Kerr
Like most who opted for geoscience as a vocation rather than a mere job, I am often asked exactly why I chose this particular career path, and continue to be involved in my retirement. There are also times when I ask myself the very same question, but it usually boils down to this – being a geologist provides opportunities to visit inspiring, unique and often remote locations through field work and other field trips. In Scotland a couple of years ago, on a conference trip that led to the following article, I read Stephen Baxter’s excellent book Revolutions in the Earth. I thoroughly recommend it – as a biography of James Hutton it gives some insight into his personality – and it illustrates the love-hate relationship that geologists have with field work. In a letter written to a friend, Hutton complained “Lord pity the arse that’s clagged to a head that will hunt stones”. I could amplify this with a detailed footnote explaining the meaning of the archaic dialect verb to clag, but I don’t need to because all geologists will understand Hutton’s sentiment. We don’t really have a choice in this – our interest in exploring the natural world is just part of who we are. Such a conclusion may not be fully scientific, but there’s no denying its truth. Even in a technological age where some geoscience careers are built around black boxes and vast computer models, geology remains at its core an observational science, and the theories that we build are ultimately subject to the ground truth of field observations. It was the lure of field work, the outdoors and travel that brought me into geology, and I know that the same is true for many of my colleagues. Modern geoscience may be sophisticated, multidisclipinary and quantitative, but it always links back to careful field observations and their thoughtful interpretation. Even if technology gives us details and constraints, the essential plotline of the story of Earth comes from reading the rocks. Geoscientists are generally keen and adaptable travellers, who like to get off the beaten tourist paths, sometimes at their own peril. One of the great things about being a student of the Earth is that it surrounds us, and there will always be something interesting to find out, wherever we roam. We enjoy a special relationship with the Earth because we understand its dynamic nature and can visualize it in four dimensions. Travelling geologists are always glancing surreptitiously at roadside outcrops as they flash by, or asking exactly why that range of hills is where it is and shaped just so. This can at times be a source of great frustration to our families or our travelling companions, but it is a natural expression of our curiosity about all things that connect to earthly processes. The one thing that I fear most in aging is to lose such curiosity, as happened to my father. Our idea for a new series in Geoscience Canada that can provide helpful travel information and thoughtful geological context for influential o
和大多数选择地球科学作为一种职业而不仅仅是一份工作的人一样,我经常被问到为什么我选择了这条特殊的职业道路,并在退休后继续参与其中。有时我也会问自己同样的问题,但通常可以归结为这一点——作为一名地质学家,我有机会通过实地工作和其他实地考察访问鼓舞人心、独特且往往偏远的地方。几年前,在苏格兰的一次会议之旅中,我读了斯蒂芬·巴克斯特的优秀著作《地球革命》。我非常推荐这本书——作为詹姆斯·赫顿的传记,它让人对他的个性有了一些了解——它说明了地质学家与野外工作之间的爱恨交织的关系。在给朋友的一封信中,赫顿抱怨道:“上帝怜悯那些会猎取石头的人。”。我可以用一个详细的脚注来解释clag这个古老方言动词的含义,但我不需要这样做,因为所有地质学家都会理解Hutton的观点。在这方面我们真的没有选择——我们对探索自然世界的兴趣只是我们自身的一部分。这样的结论可能并不完全科学,但不可否认其真实性。即使在一个技术时代,一些地球科学职业生涯都是围绕着黑匣子和庞大的计算机模型建立的,地质学仍然是一门观测科学的核心,我们建立的理论最终受制于实地观测的基本事实。正是野外工作、户外活动和旅行的诱惑让我进入了地质学,我知道我的许多同事也是如此。现代地球科学可能是复杂的、多学科的和定量的,但它总是与仔细的实地观测及其深思熟虑的解释联系在一起。即使技术给了我们细节和限制,地球故事的基本情节也来自于阅读岩石。地球科学家通常都是敏锐且适应性强的旅行者,他们喜欢离开人迹罕至的旅游路线,有时会自担风险。作为一名研究地球的学生,最棒的事情之一是它围绕着我们,无论我们在哪里漫游,总会有一些有趣的东西可以找到。我们与地球有着特殊的关系,因为我们了解地球的动态性质,并能在四个维度上看到它。旅行的地质学家总是在路边的露头掠过时偷偷地看一眼,或者问为什么这片山丘在这里,形状如此。这有时会让我们的家人或旅伴感到非常沮丧,但这是我们对所有与地球过程有关的事物的好奇的自然表达。随着年龄的增长,我最害怕的一件事就是失去这种好奇心,就像我父亲身上发生的那样。我们的想法是在加拿大地球科学杂志上推出一个新系列,为有影响力或特殊的野外地区提供有用的旅行信息和周到的地质背景,这是为了利用和庆祝我们天生的好奇心。我们设想一系列文章,不仅为读者提供卓越地质领域的历史和科学背景,还为读者提供自主游览的重要实用信息。在许多情况下,这些地方有足够的技术地球科学数据,但这些数据分散在专业出版物中,其中大多数需要其他知识才能完全理解。将这些来源汇集在一起并更广泛地交流,本身就是对我们科学的服务。具有重大科学兴趣的领域通常也出现在实地考察指南中,通常来自会议,但这些文件可能很难找到和获取。即使可以追踪到这些来源,他们也往往会在更广泛的背景下强调网站的专业技术方面,并且可能缺乏对它们在哪里以及如何到达那里的实际考虑。我们对Classic Rock Tours文章的愿景是将这些信息整合在一个地方,使地质背景、现场描述和实用建议与良好的地图、清晰的图形和有趣的照片相结合。我们并不认为这个系列主要是作为原创研究的场所,而是综合和呈现各种来源的材料。诚然,对文献进行坚定而耗时的搜索最终可以提供热衷于旅行的地质学家所需的大部分信息,但我们在这里寻求将所有信息方便地放在一个易于获取的来源中。我们设想本系列中的论文处于中等技术水平,这样它们将为加拿大地球科学的广大读者提供信息并引起他们的兴趣。我们还设想了一个多样化的目标受众,不仅限于从事会议或度假旅行的专业地球科学家。
{"title":"Classic Rock Tours – An Introduction","authors":"A. Kerr","doi":"10.12789/geocanj.2018.45.133","DOIUrl":"https://doi.org/10.12789/geocanj.2018.45.133","url":null,"abstract":"Like most who opted for geoscience as a vocation rather than a mere job, I am often asked exactly why I chose this particular career path, and continue to be involved in my retirement. There are also times when I ask myself the very same question, but it usually boils down to this – being a geologist provides opportunities to visit inspiring, unique and often remote locations through field work and other field trips. In Scotland a couple of years ago, on a conference trip that led to the following article, I read Stephen Baxter’s excellent book Revolutions in the Earth. I thoroughly recommend it – as a biography of James Hutton it gives some insight into his personality – and it illustrates the love-hate relationship that geologists have with field work. In a letter written to a friend, Hutton complained “Lord pity the arse that’s clagged to a head that will hunt stones”. I could amplify this with a detailed footnote explaining the meaning of the archaic dialect verb to clag, but I don’t need to because all geologists will understand Hutton’s sentiment. We don’t really have a choice in this – our interest in exploring the natural world is just part of who we are. Such a conclusion may not be fully scientific, but there’s no denying its truth. Even in a technological age where some geoscience careers are built around black boxes and vast computer models, geology remains at its core an observational science, and the theories that we build are ultimately subject to the ground truth of field observations. It was the lure of field work, the outdoors and travel that brought me into geology, and I know that the same is true for many of my colleagues. Modern geoscience may be sophisticated, multidisclipinary and quantitative, but it always links back to careful field observations and their thoughtful interpretation. Even if technology gives us details and constraints, the essential plotline of the story of Earth comes from reading the rocks. Geoscientists are generally keen and adaptable travellers, who like to get off the beaten tourist paths, sometimes at their own peril. One of the great things about being a student of the Earth is that it surrounds us, and there will always be something interesting to find out, wherever we roam. We enjoy a special relationship with the Earth because we understand its dynamic nature and can visualize it in four dimensions. Travelling geologists are always glancing surreptitiously at roadside outcrops as they flash by, or asking exactly why that range of hills is where it is and shaped just so. This can at times be a source of great frustration to our families or our travelling companions, but it is a natural expression of our curiosity about all things that connect to earthly processes. The one thing that I fear most in aging is to lose such curiosity, as happened to my father. Our idea for a new series in Geoscience Canada that can provide helpful travel information and thoughtful geological context for influential o","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46723644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovation in Establishing the Standard of Care in a Self-Regulated Profession 建立自律职业护理标准的创新
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-12-19 DOI: 10.12789/geocanj.2017.44.127
Lindsay Steele
Under Law, professional geoscientists have a duty of care that they must adhere to when they carry out their activities. The question is, when a duty of care exists, what is the standard of care that is owed? Geoscience regulators in Canada and around the world are working with geoscientists to develop innovative solutions in establishing the standard of care that must be met. By clearly establishing what our expectations are concerning standard of care, we are setting common ideals and goals as a professional community. Both society, geoscientists and employers of geoscientists look to regulatory associations for guidance on professional practice, therefore regulators need to strive to support and educate their members by developing tools and resources that allow members to meet the standard of care expected of them. The paper describes innovative approaches being offered to assist members of Engineers and Geoscientists British Columbia and is based on an oral presentation given by the author at the International Geology Congress in Cape Town South Africa in August 2016. RESUME En vertu de la loi, les geoscientifiques professionnels ont un devoir de diligence auquel ils doivent se conformer dans l'exercice de leurs activites. La question qui se pose est la suivante : lorsqu'il existe un devoir de diligence, quelle est la norme de diligence a respecter? Les organismes de reglementation geoscientifiques au Canada, et ailleurs dans le monde, travaillent de concert avec les geoscientifiques a l'elaboration de solutions novatrices pour etablir la norme de diligence a respecter. En etablissant clairement nos attentes concernant les normes de diligence, nous etablissons des ideaux et des objectifs communs en tant que regroupement professionnel. La societe, les geoscientifiques et leurs employeurs attendent des associations de reglementation des conseils sur les usages professionnels. Les organismes de reglementation doivent donc s'efforcer de soutenir et former leurs membres en dotant des outils et des ressources qui leur permettent de respecter les normes d'usage en vigueur. L’article qui suit, et qui decrit les approches novatrices proposees aux membres de la Engineers and Geoscientist British Columbia est base sur une presentation orale donnee par l'auteur au Congres international de geologie a Cape Town, en Afrique du Sud, en aout 2016.
根据法律规定,专业地球科学家在开展活动时必须遵守注意义务。问题是,当注意义务存在时,应遵守的注意标准是什么?加拿大和世界各地的地球科学监管机构正在与地球科学家合作,开发创新的解决方案,以建立必须满足的护理标准。通过明确我们对护理标准的期望,我们作为一个专业团体设定了共同的理想和目标。社会、地球科学家和地球科学家的雇主都希望监管协会在专业实践方面提供指导,因此监管机构需要努力通过开发工具和资源来支持和教育其成员,使成员能够达到对他们的期望标准。该论文描述了帮助不列颠哥伦比亚省工程师和地球科学家成员的创新方法,并基于作者在2016年8月南非开普敦国际地质大会上的口头报告。在地球科学领域,许多地球科学专业人员都不需要投入大量的精力,因为他们不需要在地球科学领域进行大量的实践活动。问题是:勤奋的人会存在,勤奋的人会尊重他人吗?加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构,加拿大地质科学管理机构。在确立的索赔要求中,没有注意到有关工作规范的问题,没有注意到确立的原则和目标,也没有注意到重新组合专业人员的问题。La socite, les geoscientifiques et leurs employees, des associations de regulationdes councils sur les uses professionnels。生物群落的调控机制是指生物群落的调控机制,而生物群落的调控机制是指生物群落的调控机制,而生物群落的调控机制是指生物群落的调控机制。L 'article qusuit, et qui decrrles方法,新方法,建议,工程师和地球科学家成员不列颠哥伦比亚省est基地,在2016年左右在开普敦举行的国际地质大会上发表演讲。
{"title":"Innovation in Establishing the Standard of Care in a Self-Regulated Profession","authors":"Lindsay Steele","doi":"10.12789/geocanj.2017.44.127","DOIUrl":"https://doi.org/10.12789/geocanj.2017.44.127","url":null,"abstract":"Under Law, professional geoscientists have a duty of care that they must adhere to when they carry out their activities. The question is, when a duty of care exists, what is the standard of care that is owed? Geoscience regulators in Canada and around the world are working with geoscientists to develop innovative solutions in establishing the standard of care that must be met. By clearly establishing what our expectations are concerning standard of care, we are setting common ideals and goals as a professional community. Both society, geoscientists and employers of geoscientists look to regulatory associations for guidance on professional practice, therefore regulators need to strive to support and educate their members by developing tools and resources that allow members to meet the standard of care expected of them. The paper describes innovative approaches being offered to assist members of Engineers and Geoscientists British Columbia and is based on an oral presentation given by the author at the International Geology Congress in Cape Town South Africa in August 2016. RESUME En vertu de la loi, les geoscientifiques professionnels ont un devoir de diligence auquel ils doivent se conformer dans l'exercice de leurs activites. La question qui se pose est la suivante : lorsqu'il existe un devoir de diligence, quelle est la norme de diligence a respecter? Les organismes de reglementation geoscientifiques au Canada, et ailleurs dans le monde, travaillent de concert avec les geoscientifiques a l'elaboration de solutions novatrices pour etablir la norme de diligence a respecter. En etablissant clairement nos attentes concernant les normes de diligence, nous etablissons des ideaux et des objectifs communs en tant que regroupement professionnel. La societe, les geoscientifiques et leurs employeurs attendent des associations de reglementation des conseils sur les usages professionnels. Les organismes de reglementation doivent donc s'efforcer de soutenir et former leurs membres en dotant des outils et des ressources qui leur permettent de respecter les normes d'usage en vigueur. L’article qui suit, et qui decrit les approches novatrices proposees aux membres de la Engineers and Geoscientist British Columbia est base sur une presentation orale donnee par l'auteur au Congres international de geologie a Cape Town, en Afrique du Sud, en aout 2016.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43018622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An International Review of Disciplinary Measures in Geoscience—Both Procedures and Actions 地球科学学科措施的国际述评——程序与行动
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-12-19 DOI: 10.12789/GEOCANJ.2017.44.126
O. Bonham, D. Abbott, A. Waltho
As professional communities around the world, geoscientists have in place disciplinary measures and, over time, instances have occurred which have required disciplinary actions to be taken against individuals. Geoscientists have specialized knowledge and provide expertise on which others rely for important decision- making. Geoscientists are best positioned to judge the scientific/technical and ethical merits of the work of other geoscientists. They are considered professionals and for that reason, society has placed the onus on the profession to govern itself. Consequently, it is important that appropriate disciplinary procedures are in place, that they are ever improving, and that the profession can and does act decisively when necessary.  This two-part review paper examines systems and measures to uphold the ethical conduct of geoscientists (Part 1), and studies actions taken against geoscientists in the last three decades (Part 2). It uses available information collected from the member organizations of the International Union of Geological Sciences’ Task Group on Global Geoscience Professionalism as well as public sources.  Models used for the governance and self-regulation of geoscience practice vary globally across the same spectrum that is typical in other professions, with the choice of model varying to suit local legal contexts and societal needs and norms. Broadly, similar processes for complaints, investigation, and disciplinary decision-making (and appeals of decisions) are used. The types of charges that can be made for offences or allegations are similar. The ranges of applicable penalties vary depending on the extent of statutory power in place, but beyond this constraint, there are many parallels.  Ninety-two documented cases are identified where action has been taken against geoscientists globally since 1989. Of these, 40 relate to either non-payment of dues or fees (usually discontinuation of a membership or license) or to non-compliance with Continuing Professional Development requirements. The remaining 52 are actions for more serious offenses, resulting in penalties that are more substantial. These offences cluster into six categories: 1) falsifying data; 2) fraudulent billing and/or falsifying time sheets; 3) inappropriate behaviour towards others; 4) problematic geoscience work and/or technical deficiencies; 5) misrepresentation of findings, or the giving of unsupported opinions; and 6) mixed other offences. The most frequently used penalty in these cases is the reprimand. Next most frequent is revocation. Revocations include resignations with prejudice, where the geoscientist chose to resign their membership rather than allow the matter to proceed to discipline. Suspensions, requirements for remedial education and/or fines are also frequent penalties. Combinations of different penalties are common.  It is evident that rigorous procedures are in place in a number of countries and that they are being used to address the unp
作为世界各地的专业团体,地球科学家已经制定了纪律措施,随着时间的推移,已经发生了需要对个人采取纪律行动的情况。地球科学家有专门的知识,并提供专业知识,其他人依赖于重要的决策。地球科学家最有能力判断其他地球科学家工作的科学/技术和道德价值。他们被认为是专业人士,因此,社会赋予了这个行业自我管理的责任。因此,重要的是要有适当的纪律处分程序,这些程序要不断改进,而且在必要的时候,专业人员能够而且确实采取了果断的行动。这篇由两部分组成的综述论文考察了维护地球科学家道德行为的系统和措施(第一部分),并研究了过去三十年来对地球科学家采取的行动(第二部分)。它使用了从国际地质科学联盟全球地球科学专业工作组成员组织以及公共资源收集的可用信息。用于地球科学实践的治理和自我监管的模型在全球范围内各不相同,这在其他专业中是典型的,模型的选择也各不相同,以适应当地的法律环境和社会需求和规范。一般来说,投诉、调查和纪律决策(以及对决定的上诉)都采用类似的程序。可以对罪行或指控提出的指控类型是相似的。适用处罚的范围因法定权力的大小而异,但除了这一限制之外,还有许多相似之处。自1989年以来,全球共有92起针对地球科学家的案件被记录在案。其中,有40起与不支付会费或费用(通常是终止会员资格或执照)或不遵守持续专业发展要求有关。剩下的52项是针对更严重的违法行为的诉讼,其处罚力度也更大。这些罪行可分为六类:1)伪造数据;2)伪造账单和/或伪造工时表;3)对他人的不当行为;4)有问题的地球科学工作和/或技术缺陷;(五)歪曲调查结果,或者发表未经证实的意见;还混杂着其他罪行。在这种情况下,最常用的惩罚是训斥。其次最常见的是撤销。撤销包括带有偏见的辞职,即地球科学家选择辞职,而不是让这件事进入纪律程序。停学、补习教育和/或罚款也是常见的处罚。不同惩罚的组合是常见的。很明显,许多国家都有严格的程序,它们被用来解决地球科学家的不专业行为。(所有类型的)地球科学专业组织之间关于纪律行动的透明度和信息共享是重要的,应予以鼓励。应该建立一个全球地球科学纪律处分库,并尽可能保持最新。一名研究生物的专业人员和一名研究世界的人,一名研究地球科学的人拥有一名研究学科的研究人员。是否有必要对某些个人采取必要的措施,如制裁、纪律、处罚等。每一个地球科学家都拥有一项专业知识,并拥有一项专业知识,因此,在做出重要决策时,可以提供参考数据。在地球科学领域,我们不存在一个真正的专家,我们不存在一个真正的专家,我们不存在一个真正的专家,我们不存在一个真正的专家,我们不存在一个真正的专家。因此,我们可以从地球科学的专业角度出发,从社会的角度出发,从责任的角度出发,从管理的角度出发,从专业的角度出发。因此,将采取一些重要的措施,如纪律问题、不解决问题、不解决问题、不解决问题、不解决问题、不解决问题等。我们将测试一个重要的问题,即职业问题,以及我们认为必要的责任。研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则,研究地质科学行为准则。巴黎东岸是国际地质科学联合会、专业地质科学联合会、国际地质科学联合会、国际地质科学联合会、国际地质科学联合会、国际地质科学联合会、国际地质科学联合会、国际地质科学联合会、国际地质科学联合会和公共资源联合会的会员。 正如预期的那样,世界各地用于地球科学实践治理和自我监管的模式因国家而异,这取决于不同地区的法律背景、其特殊需求和社会习俗。基本上,同样的程序也用于投诉、调查和制裁决定(以及对判决的上诉)。对罪行或指控的不同类型的制裁是相同的。适用的惩罚性措施的性质仍然取决于现有的法定权力,但除了这一限制之外,它们之间有一些相似之处。自1989年以来,我们已经在全球范围内确定了92起针对地球科学家的案件、文件或诉讼。在这92起案件中,40起涉及未支付会费或会费(通常是暂停会员资格或行使权利)或不符合持续专业发展计划的要求。剩下的52起案件涉及更严重的罪行,导致更严厉的制裁。这些罪行分为六类:1)伪造数据;2)欺诈性发票和/或伪造时间报表;(三)对他人的不当行为;4)有问题和/或技术上不正常的地球科学工作情况;(五)对结果的虚假陈述或者未经证实的陈述意见;(六)其他各种违法行为。对这类罪行最普遍的惩罚是谴责。第二常见的是撤销。撤销可能包括自愿辞职,没有上诉,也就是说,地球科学家选择放弃他或她的职业成员资格,而不是让他或她的案件得到审判。其他经常出现的制裁包括停学、罚款和进一步教育的命令。不同制裁的组合也经常出现。显然,许多国家都有严格的程序,因此这些程序被用来处理地球科学家的专业不当行为。在所有不同的地球科学专业机构之间分享纪律措施的透明度和信息是极其重要的,必须予以鼓励。应编制一份世界范围内的地球科学纪律措施清单,并应尽可能经常地不断更新。
{"title":"An International Review of Disciplinary Measures in Geoscience—Both Procedures and Actions","authors":"O. Bonham, D. Abbott, A. Waltho","doi":"10.12789/GEOCANJ.2017.44.126","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.126","url":null,"abstract":"As professional communities around the world, geoscientists have in place disciplinary measures and, over time, instances have occurred which have required disciplinary actions to be taken against individuals. Geoscientists have specialized knowledge and provide expertise on which others rely for important decision- making. Geoscientists are best positioned to judge the scientific/technical and ethical merits of the work of other geoscientists. They are considered professionals and for that reason, society has placed the onus on the profession to govern itself. Consequently, it is important that appropriate disciplinary procedures are in place, that they are ever improving, and that the profession can and does act decisively when necessary.  This two-part review paper examines systems and measures to uphold the ethical conduct of geoscientists (Part 1), and studies actions taken against geoscientists in the last three decades (Part 2). It uses available information collected from the member organizations of the International Union of Geological Sciences’ Task Group on Global Geoscience Professionalism as well as public sources.  Models used for the governance and self-regulation of geoscience practice vary globally across the same spectrum that is typical in other professions, with the choice of model varying to suit local legal contexts and societal needs and norms. Broadly, similar processes for complaints, investigation, and disciplinary decision-making (and appeals of decisions) are used. The types of charges that can be made for offences or allegations are similar. The ranges of applicable penalties vary depending on the extent of statutory power in place, but beyond this constraint, there are many parallels.  Ninety-two documented cases are identified where action has been taken against geoscientists globally since 1989. Of these, 40 relate to either non-payment of dues or fees (usually discontinuation of a membership or license) or to non-compliance with Continuing Professional Development requirements. The remaining 52 are actions for more serious offenses, resulting in penalties that are more substantial. These offences cluster into six categories: 1) falsifying data; 2) fraudulent billing and/or falsifying time sheets; 3) inappropriate behaviour towards others; 4) problematic geoscience work and/or technical deficiencies; 5) misrepresentation of findings, or the giving of unsupported opinions; and 6) mixed other offences. The most frequently used penalty in these cases is the reprimand. Next most frequent is revocation. Revocations include resignations with prejudice, where the geoscientist chose to resign their membership rather than allow the matter to proceed to discipline. Suspensions, requirements for remedial education and/or fines are also frequent penalties. Combinations of different penalties are common.  It is evident that rigorous procedures are in place in a number of countries and that they are being used to address the unp","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43457489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sharing our Vital Science: Observations of a Public Geologist 分享我们的重要科学:一位公共地质学家的观察
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-12-19 DOI: 10.12789/GEOCANJ.2017.44.123
G. Young
*The following piece endeavours to capture the content of the Presidential Address presented at the Kingston GAC–MAC in May, 2017. The accompanying images are selected from the many slides with which the lecture was illustrated.
*以下文章试图捕捉2017年5月在金斯敦GAC–MAC上发表的总统演讲的内容。随附的图片是从许多幻灯片中挑选出来的,这些幻灯片为讲座提供了插图。
{"title":"Sharing our Vital Science: Observations of a Public Geologist","authors":"G. Young","doi":"10.12789/GEOCANJ.2017.44.123","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.123","url":null,"abstract":"*The following piece endeavours to capture the content of the Presidential Address presented at the Kingston GAC–MAC in May, 2017. The accompanying images are selected from the many slides with which the lecture was illustrated.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48227101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GEOSCIENCE CANADA – Changes and Challenges 加拿大地球科学——变化与挑战
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-12-19 DOI: 10.12789/GEOCANJ.2017.44.124
A. Kerr
{"title":"GEOSCIENCE CANADA – Changes and Challenges","authors":"A. Kerr","doi":"10.12789/GEOCANJ.2017.44.124","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.124","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43597298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geo-Ethics: What to do When Approval Authority Decisions Contradict Sound Science? 地理伦理:当审批机构的决定与健全的科学相矛盾时该怎么办?
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-10-06 DOI: 10.12789/geocanj.2017.44.122
M. Priddle
Three case studies in Canada are evaluated where a regulatory authority ruled that measures considered by some professionals to be without scientific basis and less protective of human health or the environment were the required courses of action. The three projects were in the field of environmental geoscience. In all three cases, the solution proposed by a Professional Geoscientist (P.Geo.) was opposed by a representative of a regulatory body that held authority for approval. The final outcomes that were approved by the regulator were less protective of human health (increased exposure to potential contaminants) and/or the environment (more resources used; higher contaminant exposure). In two of the three cases, the solutions were also more expensive to the client and the taxpayer. This paper explores the practice of professionalism in geoscience versus regulatory authorities that hold jurisdiction over geoscience in a broad sense. In each of the three cases, the professional opinions and analysis of the P.Geo. working for a private sector client were overridden by a professional (P.Geo. or Professional Engineer) in an approval authority. These three studies highlight the ethical decisions required by professional geoscientists in the face of regulators who hold control over areas of geoscience. Although the training of professionals is similar, regulators appear to be influenced by perceived risk as opposed to actual risk based on scientific evidence. Similarly, some policies do not have a solid scientific basis. As a result, sound scientific reasoning and resulting rational decisions may be hindered in regulatory decision-making. RESUME Trois etudes de cas canadiens sont evaluees, ou une autorite reglementaire a statue comme requises des mesures qui avaient ete declarees par des professionnels comme etant sans fondements scientifiques et moins protectrices pour la sante humaine ou les milieux de vie. Il s’agit de trois projets du domaine des geosciences des milieux de vie. Dans les trois cas, la solution proposee par un geologue professionnel (P.Geo.) a ete contestee par un representant d'un organisme reglementaire decisionnel. Les resultats definitifs approuves par l'organisme reglementaire protegeait moins la sante humaine (augmentation de l'exposition aux contaminants potentiels) et/ou le milieu de vie (plus de ressources utilisees; augmentation de l'exposition aux contaminants). Dans deux des trois cas, les solutions etaient egalement plus couteuses pour le client et le contribuable. Le present article explore la pratique professionnelle en geosciences par rapport a celle des autorites reglementaires qui ont juridiction dans le domaine des geosciences en general. Dans chacun de ces trois cas, les avis professionnels et l'analyse de P.Geo. travaillant pour un client du secteur prive ont ete supplantes par celui d’un professionnel (P.Geo. ou ingenieur professionnel) œuvrant a sein d’une autorite reglementaire. Ces trois etudes mettent en lu
评估了加拿大的三个案例研究,其中监管机构规定,一些专业人员认为缺乏科学依据和对人类健康或环境保护较少的措施是必要的行动方针。三个项目都在环境地球科学领域。在所有三种情况下,专业地球科学家(P.Geo.)提出的解决方案都遭到了持有批准权的监管机构代表的反对。监管机构批准的最终结果对人类健康(增加对潜在污染物的暴露)和/或环境(使用的资源越多;污染物暴露量越高)的保护越少。在三个案例中的两个案例中,解决方案对客户和纳税人也更为昂贵。本文探讨了地球科学专业与广义上保留地球科学管辖权的监管机构的实践。在所有三种情况下,为私营部门客户工作的P.Geo.的专业意见和分析均由审批机构的专业人员(P.Geo.或专业工程师)负责。这三项研究强调了专业地球科学家在控制地球科学领域的监管机构面前所需的道德决策。尽管专业人员的培训类似,但监管机构似乎受到感知风险的影响,而不是基于科学证据的实际风险。类似地,一些政策没有坚实的科学基础。因此,健全的科学推理和结果理性决策可能会阻碍监管决策。摘要:评估了三个加拿大案例研究,或监管机构根据需要确定了专业人士认为没有科学依据且对人类健康或生活环境保护较少的措施。这是生活环境地球科学领域的三个项目。在所有三种情况下,专业地质学家(P.Geo.)提出的解决方案都受到决策监管机构代表的质疑。监管机构批准的最终结果对人类健康(潜在污染物暴露增加)和/或生活环境(资源使用增加;污染物暴露增加)的保护较少。在三种情况中的两种情况下,解决方案对客户和纳税人来说也更昂贵。本文探讨了地球科学专业实践与对地球科学具有管辖权的监管机构的专业实践。在这三种情况下,为私营部门客户工作的P.Geo.的专业意见和分析被在监管机构工作的专业人士(P.Geo.或专业工程师)的意见和分析所取代。这三项研究揭示了专业地球科学家在某些地球科学领域面临决策监管机构时的道德决策。这些专业人员的培训类似,但监管机构似乎受到感知风险的影响,而不是科学确定的实际风险。同样,一些政策也没有坚实的科学基础。因此,健全的科学推理和由此产生的理性决策可能会被监管决策所抵消。
{"title":"Geo-Ethics: What to do When Approval Authority Decisions Contradict Sound Science?","authors":"M. Priddle","doi":"10.12789/geocanj.2017.44.122","DOIUrl":"https://doi.org/10.12789/geocanj.2017.44.122","url":null,"abstract":"Three case studies in Canada are evaluated where a regulatory authority ruled that measures considered by some professionals to be without scientific basis and less protective of human health or the environment were the required courses of action. The three projects were in the field of environmental geoscience. In all three cases, the solution proposed by a Professional Geoscientist (P.Geo.) was opposed by a representative of a regulatory body that held authority for approval. The final outcomes that were approved by the regulator were less protective of human health (increased exposure to potential contaminants) and/or the environment (more resources used; higher contaminant exposure). In two of the three cases, the solutions were also more expensive to the client and the taxpayer. This paper explores the practice of professionalism in geoscience versus regulatory authorities that hold jurisdiction over geoscience in a broad sense. In each of the three cases, the professional opinions and analysis of the P.Geo. working for a private sector client were overridden by a professional (P.Geo. or Professional Engineer) in an approval authority. These three studies highlight the ethical decisions required by professional geoscientists in the face of regulators who hold control over areas of geoscience. Although the training of professionals is similar, regulators appear to be influenced by perceived risk as opposed to actual risk based on scientific evidence. Similarly, some policies do not have a solid scientific basis. As a result, sound scientific reasoning and resulting rational decisions may be hindered in regulatory decision-making. RESUME Trois etudes de cas canadiens sont evaluees, ou une autorite reglementaire a statue comme requises des mesures qui avaient ete declarees par des professionnels comme etant sans fondements scientifiques et moins protectrices pour la sante humaine ou les milieux de vie. Il s’agit de trois projets du domaine des geosciences des milieux de vie. Dans les trois cas, la solution proposee par un geologue professionnel (P.Geo.) a ete contestee par un representant d'un organisme reglementaire decisionnel. Les resultats definitifs approuves par l'organisme reglementaire protegeait moins la sante humaine (augmentation de l'exposition aux contaminants potentiels) et/ou le milieu de vie (plus de ressources utilisees; augmentation de l'exposition aux contaminants). Dans deux des trois cas, les solutions etaient egalement plus couteuses pour le client et le contribuable. Le present article explore la pratique professionnelle en geosciences par rapport a celle des autorites reglementaires qui ont juridiction dans le domaine des geosciences en general. Dans chacun de ces trois cas, les avis professionnels et l'analyse de P.Geo. travaillant pour un client du secteur prive ont ete supplantes par celui d’un professionnel (P.Geo. ou ingenieur professionnel) œuvrant a sein d’une autorite reglementaire. Ces trois etudes mettent en lu","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47288475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes? 拉布拉多海-巴芬湾的演化:板块还是羽流过程?
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-10-06 DOI: 10.12789/GEOCANJ.2017.44.120
A. Peace, G. Foulger, C. Schiffer, K. McCaffrey
Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time.RESUMELa cassure entre le Groenland et le Canada a entraine une expansion oceanique de la mer du Labrador et de la baie de Baffin. Ces bassins oceaniques sont relies par le detroit de Davis, un haut bathymetrique constitue principalement de lithosphere continentale et de la province volcanique tertiaire de l'ouest du Groenland. Il a ete suggere qu'un panache du manteau a facilite cette cassure et genere le magmatisme associe. L’hypothese d’une cassure produite par panache du manteau predit que la premiere distension oceanique, la plus importante, le magmatisme et l'expansion oceanique initial se produisent la ou le panache mantelique touche la croute continentale. Or les observations dans la region de la mer du Labrador–baie de Baffin ne correspondent pas a ces predictions. Et donc l'hypothese du panache ne fonctionne pas dans cette region a moins que des facteurs ad hoc determinants ne soient presents. Un modele qui correspond mieux aux observations presuppose la presence d’une epaisse quille lithospherique continentale d'origine orogenique sous le detroit de Davis qui aurait bloque l’expansion oceanique de la mer du Labrador vers le nord, ce qui aurait provoque une augmentation du magmatisme localement. La lithosphere du detroit de Davis etait plus epaisse et plus resistante a l’expansion oceanique parce que les bandes orogeniques paleoproterozoiques du Nagssugtoqidian et de Torngat renferment des structures defavorablement orientees par rapport au champ de contraintes d’extensions de l'epoque.
格陵兰岛和加拿大之间的分裂导致了拉布拉多海和巴芬湾的海洋扩张。这些海洋盆地通过戴维斯海峡相连,戴维斯海峡是一个主要由大陆岩石圈组成的深海高地,也是西格陵兰第三纪火山省的焦点。有人认为,地幔柱促进了这次分裂,并产生了相关的岩浆活动。羽流驱动的破裂预示着最早、最广泛的裂谷、岩浆活动和最初的海底扩张开始于假定的羽流撞击的同一地点。拉布拉多海-巴芬湾地区的观测结果与这些预测不符。因此,羽流假说不能在这个地方得到证实,除非主要的特别变体被接受。一个更符合观测结果的模型是,在戴维斯海峡下面有一个厚的大陆岩石圈龙骨,它起源于造山带,阻挡了向北传播的拉布拉多海裂谷,导致局部岩浆活动增强。戴维斯海峡岩石圈较厚,抗裂能力较强,这是由于相邻的古元古代那萨木托起甸造山带和东伽特造山带在当时的伸展应力场中含有不利于定向的构造。resuma保证格陵兰和加拿大中心将在拉布拉多海和巴芬湾扩展海洋中心。海洋盆地与戴维斯盆地、大陆盆地和格陵兰岛西部火山盆地的水深构成原理相同。我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是说,我的意思是我的意思。假设d 'une保证了生产panache du manteau预估了最初的膨胀海洋,更重要的是,岩浆和膨胀海洋初始生产了panache mantelique和groute continental。在Labrador-baie de Baffin地区进行的观测中,新记者通过了一些预测。让我们做一个假设,假设我们的功能,假设我们的区域,假设我们的运动,假设我们的因素,假设我们的特殊决定因素,假设我们的存在。该模型对应的miaux观测假设了原始造山带的存在、岩石圈的存在、大陆的存在、Davis板块的存在、Labrador海板块的扩张、岩浆定位的增强。杜拉岩石圈底特律德戴维斯一个+ epaisse +地下女性l 'expansion oceanique因为莱斯·邦德:orogeniques paleoproterozoiques du Nagssugtoqidian et de Torngat renferment des结构defavorablement奥连特par融洽盟冠军德contraintes d 'extensions德伯爵。
{"title":"Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?","authors":"A. Peace, G. Foulger, C. Schiffer, K. McCaffrey","doi":"10.12789/GEOCANJ.2017.44.120","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.120","url":null,"abstract":"Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time.RESUMELa cassure entre le Groenland et le Canada a entraine une expansion oceanique de la mer du Labrador et de la baie de Baffin. Ces bassins oceaniques sont relies par le detroit de Davis, un haut bathymetrique constitue principalement de lithosphere continentale et de la province volcanique tertiaire de l'ouest du Groenland. Il a ete suggere qu'un panache du manteau a facilite cette cassure et genere le magmatisme associe. L’hypothese d’une cassure produite par panache du manteau predit que la premiere distension oceanique, la plus importante, le magmatisme et l'expansion oceanique initial se produisent la ou le panache mantelique touche la croute continentale. Or les observations dans la region de la mer du Labrador–baie de Baffin ne correspondent pas a ces predictions. Et donc l'hypothese du panache ne fonctionne pas dans cette region a moins que des facteurs ad hoc determinants ne soient presents. Un modele qui correspond mieux aux observations presuppose la presence d’une epaisse quille lithospherique continentale d'origine orogenique sous le detroit de Davis qui aurait bloque l’expansion oceanique de la mer du Labrador vers le nord, ce qui aurait provoque une augmentation du magmatisme localement. La lithosphere du detroit de Davis etait plus epaisse et plus resistante a l’expansion oceanique parce que les bandes orogeniques paleoproterozoiques du Nagssugtoqidian et de Torngat renferment des structures defavorablement orientees par rapport au champ de contraintes d’extensions de l'epoque.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43198578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Geological Contributions to Geometallurgy: A Review 地质对地质冶金的贡献:综述
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-10-06 DOI: 10.12789/GEOCANJ.2017.44.121
J. Hunt, R. Berry
Geometallurgy is a cross-disciplinary science that addresses the problem of teasing out the features of the rock mass that significantly influence mining and processing. Rocks are complex composite mixtures for which the basic building blocks are grains of minerals. The properties of the minerals, how they are bound together, and many other aspects of rock texture affect the entire mining value chain from exploration, through mining and processing, waste and tailings disposal, to refining and sales. This review presents rock properties (e.g. strength, composition, mineralogy, texture) significant in geometallurgy and examples of test methods available to measure or predict these properties.   Geometallurgical data need to be quantitative and spatially constrained so they can be used in 3D modelling and mine planning. They also need to be obtainable relatively cheaply in order to be abundant enough to provide a statistically valid sample distribution for spatial modelling. Strong communication between different departments along the mining value chain is imperative so that data are produced and transferred in a useable form and duplication is avoided. The ultimate aim is to have 3D models that not only show the grade of valuable elements (or minerals), but also include rock properties that may influence mining and processing, so that decisions concerning mining and processing can be made holistically, i.e. the impacts of rock properties on all the cost centres in the mining process are taken into account. There are significant costs to improving ore deposit knowledge and it is very important to consider the cost-benefit curve when planning the level of geometallurgical effort that is appropriate in individual deposits.RESUMELa geometallurgie est une science interdisciplinaire qui s’interesse aux caracteristiques de la masse rocheuse qui influent de maniere significative sur l'exploitation miniere et le traitement du minerai. Les roches sont des melanges composites complexes dont les elements structurant de base sont des grains de mineraux. Les proprietes des mineraux, la facon dont ils sont lies entre eux, et de nombreux autres aspects de la texture des roches determinent l'ensemble de la chaine de valeur miniere, de l'exploration a l'extraction a la transformation, a l'elimination des dechets et des residus, jusqu'au raffinage et a la vente. La presente etude passe en revue les proprietes significatives de la roche (par ex. sa cohesion, sa composition, sa mineralogie, sa texture) en geometallurgie ainsi que des exemples de methodes d'essai disponibles pour mesurer ou predire ces proprietes.   Les donnees geometallurgiques doivent etre quantitatives et localisees spatialement afin qu'elles puissent etre utilisees dans la modelisation 3D et la planification de la mine. Elles doivent egalement etre peu couteuses afin d'etre suffisamment nombreuses pour fournir une distribution d'echantillon statistiquement valide pour la modelisation spatiale. Une c
地质冶金是一门跨学科科学,解决了挑逗岩石质量对采矿和加工有重大影响的特征的问题。岩石是复杂的复合混合物,基本建筑砌块是矿物颗粒。矿物的性质、它们如何结合在一起以及岩石纹理的许多其他方面影响整个采矿价值链,从勘探、采矿和加工、废物和尾矿处理到精炼和销售。本综述介绍了岩石性质(如强度、成分、矿物学、纹理)在地质冶金中的重要性,以及可用于测量或预测这些性质的试验方法示例。地质冶金数据需要定量和空间约束,以便用于3D建模和矿山规划。它们还需要相对便宜,以便足够丰富,为空间建模提供统计上有效的样本分布。在采矿价值链上,不同部门之间必须进行强有力的沟通,以便以可用的形式生成和传输数据,避免重复。最终的目标是拥有3D模型,不仅显示有价值元素(或矿物)的等级,还包括可能影响采矿和加工的岩石属性,以便全面做出有关采矿和加工决策,即考虑岩石属性对采矿过程中所有成本中心的影响。提高矿床知识的成本很高,在规划适合单个矿床的地质冶金工作水平时,考虑成本效益曲线非常重要。Resumela地质冶金是一门跨学科科学,研究对采矿和矿石加工有重大影响的岩体特征。岩石是复杂的复合混合物,其基本结构元素是矿物颗粒。矿物的性质、它们之间的关系以及岩石纹理的许多其他方面决定了整个矿产价值链,从勘探到开采、加工、废物和残留物的处置,再到精炼和销售。本研究回顾了地质冶金中岩石的重要性质(如内聚性、成分、矿物学、纹理),以及可用于测量或预测这些性质的测试方法示例。地质冶金数据必须是定量的和空间本地化的,以便用于3D建模和矿山规划。它们还必须便宜,以便数量足够多,为空间建模提供统计有效的样本分布。矿产价值链不同部分之间的有效通信对于以可用形式生成和传输数据以及避免重复至关重要。最终目标是拥有3D模型,不仅显示贵(或矿物)元素的质量,还显示决定采矿和矿石加工的岩石性质,以便以整体方式做出采矿和矿石加工决策,即考虑岩石性质对采矿过程成本链所有环节的影响。由于提高矿床知识的成本很高,因此在规划相关矿床的适当地质冶金投资水平时,必须考虑成本效益曲线。
{"title":"Geological Contributions to Geometallurgy: A Review","authors":"J. Hunt, R. Berry","doi":"10.12789/GEOCANJ.2017.44.121","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.121","url":null,"abstract":"Geometallurgy is a cross-disciplinary science that addresses the problem of teasing out the features of the rock mass that significantly influence mining and processing. Rocks are complex composite mixtures for which the basic building blocks are grains of minerals. The properties of the minerals, how they are bound together, and many other aspects of rock texture affect the entire mining value chain from exploration, through mining and processing, waste and tailings disposal, to refining and sales. This review presents rock properties (e.g. strength, composition, mineralogy, texture) significant in geometallurgy and examples of test methods available to measure or predict these properties.   Geometallurgical data need to be quantitative and spatially constrained so they can be used in 3D modelling and mine planning. They also need to be obtainable relatively cheaply in order to be abundant enough to provide a statistically valid sample distribution for spatial modelling. Strong communication between different departments along the mining value chain is imperative so that data are produced and transferred in a useable form and duplication is avoided. The ultimate aim is to have 3D models that not only show the grade of valuable elements (or minerals), but also include rock properties that may influence mining and processing, so that decisions concerning mining and processing can be made holistically, i.e. the impacts of rock properties on all the cost centres in the mining process are taken into account. There are significant costs to improving ore deposit knowledge and it is very important to consider the cost-benefit curve when planning the level of geometallurgical effort that is appropriate in individual deposits.RESUMELa geometallurgie est une science interdisciplinaire qui s’interesse aux caracteristiques de la masse rocheuse qui influent de maniere significative sur l'exploitation miniere et le traitement du minerai. Les roches sont des melanges composites complexes dont les elements structurant de base sont des grains de mineraux. Les proprietes des mineraux, la facon dont ils sont lies entre eux, et de nombreux autres aspects de la texture des roches determinent l'ensemble de la chaine de valeur miniere, de l'exploration a l'extraction a la transformation, a l'elimination des dechets et des residus, jusqu'au raffinage et a la vente. La presente etude passe en revue les proprietes significatives de la roche (par ex. sa cohesion, sa composition, sa mineralogie, sa texture) en geometallurgie ainsi que des exemples de methodes d'essai disponibles pour mesurer ou predire ces proprietes.   Les donnees geometallurgiques doivent etre quantitatives et localisees spatialement afin qu'elles puissent etre utilisees dans la modelisation 3D et la planification de la mine. Elles doivent egalement etre peu couteuses afin d'etre suffisamment nombreuses pour fournir une distribution d'echantillon statistiquement valide pour la modelisation spatiale. Une c","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49002257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
The Development of Canada's Competency Profile for Professional Geoscientists at Entry-to-Practice 加拿大专业地球科学家进入实践的能力概况的发展
4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2017-07-21 DOI: 10.12789/GEOCANJ.2017.44.118
O. Bonham, B. Broster, David Cane, Keith Johnson, K. Maclachlan
Competency-based assessment approaches to professional registration reflect the move by professions, both in Canada and around the world, away from traditional credentials-based assessments centred on a combination of academic achievements and supervised practice time. Entry to practice competencies are the abilities required to enable effective and safe entry-level practice in a profession. In 2012, Geoscientists Canada received funding from the Government of Canada’s Foreign Credentials Recognition Program. A central component of the funding involved the development of a competency profile to assist in assessment for licensing in the geoscience profession. Work concluded with the approval of the Competency Profile for Professional Geoscientists at Entry to Practice by Geoscientists Canada in November 2014. The Competency Profile comprises concise statements in plain language, setting out the skills and abilities that are required to be able to work as a geoscientist, in an effective and safe manner, independent of direct supervision. It covers competencies common to all geoscientists; competencies for the primary subdisciplines of geoscience (geology, environmental geoscience and geophysics); and a generic set of high level competences that can apply in any specific work context in geoscience. The paper is in two parts. Part 1 puts the concept of competencies in context and describes the approach taken to develop the profile, including: input from Subject Matter Experts (practising geoscientists representing a diverse sampling of the profession); extensive national consultation and refinement; and a validation procedure, including a survey of practising Canadian geoscientists. Part 2 introduces the profile, explains its structure, and provides examples of some of the competencies. The full competency profile can be obtained from the Geoscientists Canada website www.geoscientistscanada.ca.  Future work will identify specific indicators of proficiency related to each competency and suggest appropriate methodologies to assess such competencies. It will also involve mapping the profile to the existing Canadian reference standard, Geoscience Knowledge and Experience Requirements for Professional Registration in Canada.RESUMELes approches d'evaluation basees sur les competences en vue de l'inscription professionnelle refletent l'abandon par les professions, tant au Canada que partout dans le monde, des evaluations classiques basees sur les titres de competences et axees sur une combinaison de realisations academiques et de temps de pratique supervisee. Les competences au niveau debutant sont les capacites requises pour une pratique efficace et en toute securite audit niveau dans une profession. En 2012, Geoscientifiques Canada a recu un financement du Programme de reconnaissance des titres de competences etrangers du gouvernement du Canada. Une composante centrale du financement incluait l’elaboration d'un profil des competences pour faciliter l'eval
基于能力的专业注册评估方法反映了加拿大和世界各地的专业人员从传统的以学历为基础的评估转向了以学术成就和监督实践时间相结合的评估。入门实践能力是指在一个职业中进行有效和安全的入门实践所需的能力。2012年,加拿大地质科学家获得了加拿大政府外国证书承认方案的资助。资金的一个核心组成部分涉及制定能力简介,以协助评估地球科学专业的许可证。2014年11月,加拿大地质科学家批准了《专业地质科学家执业能力简介》,从而完成了这项工作。能力简介包括简明的语言陈述,列出了作为一名地球科学家,以有效和安全的方式工作所需的技能和能力,独立于直接监督。它涵盖了所有地球科学家的共同能力;地球科学主要分支学科(地质学、环境地球科学和地球物理学)的能力;以及一套通用的高水平能力,可应用于地球科学的任何特定工作环境。本文分为两部分。第1部分将能力的概念放在上下文中,并描述了制定概况所采取的方法,包括:主题专家(代表该专业不同样本的执业地球科学家)的意见;广泛的全国协商和完善;以及验证程序,包括对加拿大执业地球科学家的调查。第2部分介绍了概要,解释了它的结构,并提供了一些能力的例子。完整的能力简介可从加拿大地球科学家网站www.geoscientistscanada.ca获得。未来的工作将确定与每种能力相关的具体能力指标,并提出评估这些能力的适当方法。它还将涉及将概况映射到现有的加拿大参考标准《加拿大专业注册的地球科学知识和经验要求》。RESUMELes approaches d’evaluation bases les capabilities en vue de l’铭文专业反映了对专业的放弃,tant au Canada que partout dans the world,评估类别基于能力水平,并结合了学术界和监管实践的时间。首次亮相的大学能力是对实践效率和职业安全审计能力的要求。2012年,加拿大地质科学协会为加拿大政府的能力评估计划提供了资金。联合国财务中心的组成包括制定能力简介,以促进对地球科学专业许可证的评估。2014年11月,这项工作获得了加拿大地质科学协会对首次亮相的地质科学专业人员能力的认可。能力简介包括明确的语言声明,定义了提高效率、安全性和独立性所需的能力和能力,以及地球科学。我们的能力与所有的地球科学相结合;地球科学初级学科(地质学、地球科学环境和地球物理学)的能力;以及高级大学应用程序在地球科学特定工作背景下的综合能力。文件由双方组成。各方在能力概念的背景下会面,并谴责了被采用的方法,以提高个人素质,包括:专家在该领域的贡献(地球科学专业人员代表了专业技术的多样性);广泛的协商和完善国家梯队;以及验证程序,包括加拿大地质科学专业人员的询问。第二部分介绍了某些能力的概况、结构和四个例子。加拿大地质科学网站www.Geoscientifiques scanada.ca上提供了完整的能力简介。未来的工作识别了特定能力的指标,这是一种能力和评估方法的建议。根据加拿大现有的参考标准,以及加拿大的迫切需要和地球科学经验,我认为这需要加拿大专业人员的题词。
{"title":"The Development of Canada's Competency Profile for Professional Geoscientists at Entry-to-Practice","authors":"O. Bonham, B. Broster, David Cane, Keith Johnson, K. Maclachlan","doi":"10.12789/GEOCANJ.2017.44.118","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2017.44.118","url":null,"abstract":"Competency-based assessment approaches to professional registration reflect the move by professions, both in Canada and around the world, away from traditional credentials-based assessments centred on a combination of academic achievements and supervised practice time. Entry to practice competencies are the abilities required to enable effective and safe entry-level practice in a profession. In 2012, Geoscientists Canada received funding from the Government of Canada’s Foreign Credentials Recognition Program. A central component of the funding involved the development of a competency profile to assist in assessment for licensing in the geoscience profession. Work concluded with the approval of the Competency Profile for Professional Geoscientists at Entry to Practice by Geoscientists Canada in November 2014. The Competency Profile comprises concise statements in plain language, setting out the skills and abilities that are required to be able to work as a geoscientist, in an effective and safe manner, independent of direct supervision. It covers competencies common to all geoscientists; competencies for the primary subdisciplines of geoscience (geology, environmental geoscience and geophysics); and a generic set of high level competences that can apply in any specific work context in geoscience. The paper is in two parts. Part 1 puts the concept of competencies in context and describes the approach taken to develop the profile, including: input from Subject Matter Experts (practising geoscientists representing a diverse sampling of the profession); extensive national consultation and refinement; and a validation procedure, including a survey of practising Canadian geoscientists. Part 2 introduces the profile, explains its structure, and provides examples of some of the competencies. The full competency profile can be obtained from the Geoscientists Canada website www.geoscientistscanada.ca.  Future work will identify specific indicators of proficiency related to each competency and suggest appropriate methodologies to assess such competencies. It will also involve mapping the profile to the existing Canadian reference standard, Geoscience Knowledge and Experience Requirements for Professional Registration in Canada.RESUMELes approches d'evaluation basees sur les competences en vue de l'inscription professionnelle refletent l'abandon par les professions, tant au Canada que partout dans le monde, des evaluations classiques basees sur les titres de competences et axees sur une combinaison de realisations academiques et de temps de pratique supervisee. Les competences au niveau debutant sont les capacites requises pour une pratique efficace et en toute securite audit niveau dans une profession. En 2012, Geoscientifiques Canada a recu un financement du Programme de reconnaissance des titres de competences etrangers du gouvernement du Canada. Une composante centrale du financement incluait l’elaboration d'un profil des competences pour faciliter l'eval","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46175722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Geoscience Canada
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1