Andrea Parenti, Walter Zegada-Lizarazu, Karla Dussan, Ana M. López-Contreras, Truus de Vrije, Igor Staritsky, Berien Elbersen, Bert Annevelink, Fulvio Di Fulvio, Katja Oehmichen, Niels Dögnitz, Andrea Monti
Increasing lignocellulosic feedstock for advanced biofuels can tackle the decarbonization of the transport sector. Dedicated biomass produced alongside food systems with low indirect land use change (iLUC) impact can broaden the feedstock availability, thus streamlining the supply chains. The objective of this study was the design and evaluation of advanced ethanol value chains for the Emilia-Romagna region based on low iLUC feedstock. Two dedicated lignocellulosic crops (biomass sorghum and sunn hemp) were evaluated in double cropping systems alongside food crop residues (corn stover and wheat straw) as sources to simulate the value chains. A parcel-level regional analysis was carried out, then the LocaGIStics2.0 model was used for the spatial design and review of the biomass delivery chain options regarding cost and greenhouse gas (GHG) emissions of the different feedstock mixes. Literature data on bioethanol production from similar feedstocks were used to estimate yields, process costs, and GHG emissions of a biorefinery process based on these biomasses. Within the chain options, GHG emissions were overly sensitive to cultivation input, mostly N-fertilization. This considered, GHG emissions resulted similar across different feedstock with straw/stover (averaging 13 g CO2eq MJ−1 fuel), sunn hemp (14 g CO2eq MJ−1 fuel), and biomass sorghum (16 g CO2eq MJ−1 fuel). On the other hand, the bioethanol produced from biomass sorghum (608 € Mg−1 of bioethanol) was cheaper compared with straw (632 € Mg−1), sunn hemp (672 € Mg−1), and stover (710 € Mg−1). The bioethanol cost ranged from 0.0017 to 0.020 € MJ−1 fuel depending on the feedstock, with operations and maintenance impacting up to 90% of the final cost. In summary, a single bioethanol plant with an annual capacity of 250,000 Mg of biomass could replace from 5% to 7% of the Emilia-Romagna's ethanol fuel consumption, depending on the applied sourcing scenario.
{"title":"Advanced Biofuel Value Chains Sourced by New Cropping Systems With Low iLUC Risk","authors":"Andrea Parenti, Walter Zegada-Lizarazu, Karla Dussan, Ana M. López-Contreras, Truus de Vrije, Igor Staritsky, Berien Elbersen, Bert Annevelink, Fulvio Di Fulvio, Katja Oehmichen, Niels Dögnitz, Andrea Monti","doi":"10.1111/gcbb.70000","DOIUrl":"https://doi.org/10.1111/gcbb.70000","url":null,"abstract":"<p>Increasing lignocellulosic feedstock for advanced biofuels can tackle the decarbonization of the transport sector. Dedicated biomass produced alongside food systems with low indirect land use change (iLUC) impact can broaden the feedstock availability, thus streamlining the supply chains. The objective of this study was the design and evaluation of advanced ethanol value chains for the Emilia-Romagna region based on low iLUC feedstock. Two dedicated lignocellulosic crops (biomass sorghum and sunn hemp) were evaluated in double cropping systems alongside food crop residues (corn stover and wheat straw) as sources to simulate the value chains. A parcel-level regional analysis was carried out, then the LocaGIStics2.0 model was used for the spatial design and review of the biomass delivery chain options regarding cost and greenhouse gas (GHG) emissions of the different feedstock mixes. Literature data on bioethanol production from similar feedstocks were used to estimate yields, process costs, and GHG emissions of a biorefinery process based on these biomasses. Within the chain options, GHG emissions were overly sensitive to cultivation input, mostly N-fertilization. This considered, GHG emissions resulted similar across different feedstock with straw/stover (averaging 13 g CO<sub>2</sub>eq MJ<sup>−1</sup> fuel), sunn hemp (14 g CO<sub>2</sub>eq MJ<sup>−1</sup> fuel), and biomass sorghum (16 g CO<sub>2</sub>eq MJ<sup>−1</sup> fuel). On the other hand, the bioethanol produced from biomass sorghum (608 € Mg<sup>−1</sup> of bioethanol) was cheaper compared with straw (632 € Mg<sup>−1</sup>), sunn hemp (672 € Mg<sup>−1</sup>), and stover (710 € Mg<sup>−1</sup>). The bioethanol cost ranged from 0.0017 to 0.020 € MJ<sup>−1</sup> fuel depending on the feedstock, with operations and maintenance impacting up to 90% of the final cost. In summary, a single bioethanol plant with an annual capacity of 250,000 Mg of biomass could replace from 5% to 7% of the Emilia-Romagna's ethanol fuel consumption, depending on the applied sourcing scenario.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aapo Tikka, Anni Hartikainen, Olli Sippula, Antti Kilpeläinen
Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood-based materials have included greenhouse gas (GHG) emissions and have been associated with lower fossil and process-based emissions than non-wood counterparts. In addition to GHGs, aerosols released in combustion processes, for example, alter radiative forcing in the atmosphere and consequently have an influence on climate. In this study, the objective was to quantify the changes in the most important aerosol emission components for cases when wood-based materials and energy were used to replace the production of high-density polyethylene (HDPE) plastic, common fossil-based construction materials (concrete, steel and brick), non-wood textile materials and energy produced by fossil fuels and peat. For this reason, we expanded the DF calculations to include aerosol emissions of total suspended particles (TSP), respirable particulate matter (PM10), fine particles (PM2.5), black carbon (BC), nitrogen oxides (NOx), sulphur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs) based on the embodied energies of materials and energy sources. The DFs for cardboard implied a decrease in BC, SO2 and NMVOC emissions but an increase in the other emission components. DFs for sawn wood mainly indicated higher emissions of both particles and gaseous emissions compared to non-wood counterparts. DFs for wood-based textiles demonstrated increased particle emissions and reduced gaseous emissions. DFs for energy biomass mainly implied an increase in emissions, especially if biomass was combusted in small-scale appliances. Our main conclusion highlights the critical need to thoroughly assess how using forest biomass affects aerosol emissions. This improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications associated with forest biomass use.
{"title":"Displacement Factors for Aerosol Emissions From Alternative Forest Biomass Use","authors":"Aapo Tikka, Anni Hartikainen, Olli Sippula, Antti Kilpeläinen","doi":"10.1111/gcbb.70008","DOIUrl":"https://doi.org/10.1111/gcbb.70008","url":null,"abstract":"<p>Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood-based materials have included greenhouse gas (GHG) emissions and have been associated with lower fossil and process-based emissions than non-wood counterparts. In addition to GHGs, aerosols released in combustion processes, for example, alter radiative forcing in the atmosphere and consequently have an influence on climate. In this study, the objective was to quantify the changes in the most important aerosol emission components for cases when wood-based materials and energy were used to replace the production of high-density polyethylene (HDPE) plastic, common fossil-based construction materials (concrete, steel and brick), non-wood textile materials and energy produced by fossil fuels and peat. For this reason, we expanded the DF calculations to include aerosol emissions of total suspended particles (TSP), respirable particulate matter (PM10), fine particles (PM2.5), black carbon (BC), nitrogen oxides (NO<sub>x</sub>), sulphur dioxide (SO<sub>2</sub>) and non-methane volatile organic compounds (NMVOCs) based on the embodied energies of materials and energy sources. The DFs for cardboard implied a decrease in BC, SO<sub>2</sub> and NMVOC emissions but an increase in the other emission components. DFs for sawn wood mainly indicated higher emissions of both particles and gaseous emissions compared to non-wood counterparts. DFs for wood-based textiles demonstrated increased particle emissions and reduced gaseous emissions. DFs for energy biomass mainly implied an increase in emissions, especially if biomass was combusted in small-scale appliances. Our main conclusion highlights the critical need to thoroughly assess how using forest biomass affects aerosol emissions. This improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications associated with forest biomass use.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khatab Abdalla, Hannah Uther, Valentin B. Kurbel, Andreas J. Wild, Marianne Lauerer, Johanna Pausch
Silage maize (Zea mays L.) intensification to maximise biomass production increases greenhouse gas emissions, accelerates climate change and intensifies the search for alternative bioenergy crops with high carbon (C) sequestration capacity. The perennial cup-plant (Silphium perfoliatum L.) not only serves as a viable bioenergy source but may also be a promising soil C conservator. However, the dynamics of soil organic C (SOC) under the C3 cup-plant, exposed to moderate drought conditions, that reduces growth rate without causing crop failure, compared with the drought-tolerant C4 maize, remains unexplored. Here, we investigated in a lysimeter experiment the effects of moderate drought stress on crop growth and soil CO2 efflux under cup-plant and silage maize compared with well-watered conditions. Soil CO2 efflux along with root and shoot biomass, soil moisture and temperature as well as SOC and nitrogen (N) were measured over three consecutive years. Irrespective of the watering regime, cup-plant induced a greater soil CO2 efflux (16% and 23% for 2020 and 2021, respectively), which was associated with higher root and shoot biomass compared with silage maize suggesting a substantial contribution of the roots to total soil CO2 efflux. In addition, soil CO2 efflux correlated negatively with soil dissolved N and positively with microbial C:N imbalance suggesting that low soil N availability influences soil CO2 efflux through processes related to N-limitation such as N-mining. Strikingly, moderate drought had no effect on soil CO2 efflux and C content and microbial biomass C, but increased dissolved organic C and microbial biomass N in both crops suggesting a complex interplay between C availability, N-limitation and microbial adaptation under these conditions. Although cup-plant increased soil CO2 efflux, the observed higher root and shoot biomass even under moderate drought conditions suggests a similar soil C management as silage maize; however, this still requires longer-term investigation.
{"title":"Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize","authors":"Khatab Abdalla, Hannah Uther, Valentin B. Kurbel, Andreas J. Wild, Marianne Lauerer, Johanna Pausch","doi":"10.1111/gcbb.70007","DOIUrl":"https://doi.org/10.1111/gcbb.70007","url":null,"abstract":"<p>Silage maize (<i>Zea mays</i> L.) intensification to maximise biomass production increases greenhouse gas emissions, accelerates climate change and intensifies the search for alternative bioenergy crops with high carbon (C) sequestration capacity. The perennial cup-plant (<i>Silphium perfoliatum</i> L.) not only serves as a viable bioenergy source but may also be a promising soil C conservator. However, the dynamics of soil organic C (SOC) under the C3 cup-plant, exposed to moderate drought conditions, that reduces growth rate without causing crop failure, compared with the drought-tolerant C4 maize, remains unexplored. Here, we investigated in a lysimeter experiment the effects of moderate drought stress on crop growth and soil CO<sub>2</sub> efflux under cup-plant and silage maize compared with well-watered conditions. Soil CO<sub>2</sub> efflux along with root and shoot biomass, soil moisture and temperature as well as SOC and nitrogen (N) were measured over three consecutive years. Irrespective of the watering regime, cup-plant induced a greater soil CO<sub>2</sub> efflux (16% and 23% for 2020 and 2021, respectively), which was associated with higher root and shoot biomass compared with silage maize suggesting a substantial contribution of the roots to total soil CO<sub>2</sub> efflux. In addition, soil CO<sub>2</sub> efflux correlated negatively with soil dissolved N and positively with microbial C:N imbalance suggesting that low soil N availability influences soil CO<sub>2</sub> efflux through processes related to N-limitation such as N-mining. Strikingly, moderate drought had no effect on soil CO<sub>2</sub> efflux and C content and microbial biomass C, but increased dissolved organic C and microbial biomass N in both crops suggesting a complex interplay between C availability, N-limitation and microbial adaptation under these conditions. Although cup-plant increased soil CO<sub>2</sub> efflux, the observed higher root and shoot biomass even under moderate drought conditions suggests a similar soil C management as silage maize; however, this still requires longer-term investigation.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoel R. Cortés-Peña, William Woodruff, Shivali Banerjee, Yalin Li, Vijay Singh, Christopher V. Rao, Jeremy S. Guest
Oilcane—an oil-accumulating crop engineered from sugarcane—and microbial oil have the potential to improve renewable oil production and help meet the expected demand for bioderived oleochemicals and fuels. To assess the potential synergies of processing both plant and microbial oils, the economic and environmental implications of integrating microbial oil production at oilcane and sugarcane biorefineries were characterized. Due to decreased crop yields that lead to higher simulated feedstock prices and lower biorefinery capacities, current oilcane prototypes result in higher costs and carbon intensities than microbial oil from sugarcane. To inform oilcane feedstock development, we calculated the required biomass yields (as a function of oil content) for oilcane to achieve financial parity with sugarcane. At 10 dw% oil, oilcane can sustain up to 30% less yield than sugarcane and still be more profitable in all simulated scenarios. Assuming continued improvements in microbial oil production from cane juice, achieving this target results in a minimum biodiesel selling price of 1.34 [0.90, 1.85] USD∙L−1 (presented as median [5th, 95th] percentiles), a carbon intensity of 0.51 [0.47, 0.55] kg CO2e L−1, and a total biodiesel yield of 2140 [1870, 2410] L ha−1 year−1. Compared to biofuel production from soybean, this outcome is equivalent to 3.0–3.9 as much biofuel per hectare of land and a 57%–63% reduction in carbon intensity. While only 20% of simulated scenarios fell within the market price range of biodiesel (0.45–1.11 USD∙L−1), if the oilcane biomass yield would improve to 25.6 DMT∙ha−1∙y−1 (an equivalent yield to sugarcane) 87% of evaluated scenarios would have a minimum biodiesel selling price within or below the market price range.
{"title":"Integration of plant and microbial oil processing at oilcane biorefineries for more sustainable biofuel production","authors":"Yoel R. Cortés-Peña, William Woodruff, Shivali Banerjee, Yalin Li, Vijay Singh, Christopher V. Rao, Jeremy S. Guest","doi":"10.1111/gcbb.13183","DOIUrl":"https://doi.org/10.1111/gcbb.13183","url":null,"abstract":"<p>Oilcane—an oil-accumulating crop engineered from sugarcane—and microbial oil have the potential to improve renewable oil production and help meet the expected demand for bioderived oleochemicals and fuels. To assess the potential synergies of processing both plant and microbial oils, the economic and environmental implications of integrating microbial oil production at oilcane and sugarcane biorefineries were characterized. Due to decreased crop yields that lead to higher simulated feedstock prices and lower biorefinery capacities, current oilcane prototypes result in higher costs and carbon intensities than microbial oil from sugarcane. To inform oilcane feedstock development, we calculated the required biomass yields (as a function of oil content) for oilcane to achieve financial parity with sugarcane. At 10 dw% oil, oilcane can sustain up to 30% less yield than sugarcane and still be more profitable in all simulated scenarios. Assuming continued improvements in microbial oil production from cane juice, achieving this target results in a minimum biodiesel selling price of 1.34 [0.90, 1.85] USD∙L<sup>−1</sup> (presented as median [5th, 95th] percentiles), a carbon intensity of 0.51 [0.47, 0.55] kg CO<sub>2</sub>e L<sup>−1</sup>, and a total biodiesel yield of 2140 [1870, 2410] L ha<sup>−1</sup> year<sup>−1</sup>. Compared to biofuel production from soybean, this outcome is equivalent to 3.0–3.9 as much biofuel per hectare of land and a 57%–63% reduction in carbon intensity. While only 20% of simulated scenarios fell within the market price range of biodiesel (0.45–1.11 USD∙L<sup>−1</sup>), if the oilcane biomass yield would improve to 25.6 DMT∙ha<sup>−1</sup>∙y<sup>−1</sup> (an equivalent yield to sugarcane) 87% of evaluated scenarios would have a minimum biodiesel selling price within or below the market price range.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 11","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabel Hilber, Nikolas Hagemann, José María de la Rosa, Heike Knicker, Thomas D. Bucheli, Hans-Peter Schmidt
Anaerobic digestion and composting of biowastes are vital pathways to recycle carbon and nutrients for agriculture. However, plastic contamination of soil amendments and fertilizers made from biowastes is a relevant source of (micro-) plastics in (agricultural) ecosystems. To avoid this contamination, plastic containing biowastes could be pyrolyzed to eliminate the plastic, recycle most of the nutrients, and create carbon sinks when the resulting biochar is applied to soil. Literature suggests plastic elimination mainly by devolatilization at co-pyrolysis temperatures of > 520°C. However, it is uncertain if the presence of plastic during biomass pyrolysis induces the formation of organic contaminants or has any other adverse effects on biochar properties. Here, we produced biochar from wood residues (WR) obtained from sieving of biowaste derived digestate. The plastic content was artificially enriched to 10%, and this mixture was pyrolyzed at 450°C and 600°C. Beech wood (BW) chips and the purified, that is, (macro-) plastic-free WR served as controls. All biochars produced were below limit values of the European Biochar Certificate (EBC) regarding trace element content and organic contaminants. Under study conditions, pyrolysis of biowaste, even when contaminated with plastic, can produce a biochar suitable for agricultural use. However, thermogravimetric and nuclear magnetic resonance spectroscopic analysis of the WR + 10% plastics biochar suggested the presence of plastic residues at pyrolysis temperatures of 450°C. More research is needed to define minimum requirements for the pyrolysis of plastic containing biowaste and to cope with the automated identification and determination of plastic types in biowaste at large scales.
{"title":"Biochar Production From Plastic-Contaminated Biomass","authors":"Isabel Hilber, Nikolas Hagemann, José María de la Rosa, Heike Knicker, Thomas D. Bucheli, Hans-Peter Schmidt","doi":"10.1111/gcbb.70005","DOIUrl":"https://doi.org/10.1111/gcbb.70005","url":null,"abstract":"<p>Anaerobic digestion and composting of biowastes are vital pathways to recycle carbon and nutrients for agriculture. However, plastic contamination of soil amendments and fertilizers made from biowastes is a relevant source of (micro-) plastics in (agricultural) ecosystems. To avoid this contamination, plastic containing biowastes could be pyrolyzed to eliminate the plastic, recycle most of the nutrients, and create carbon sinks when the resulting biochar is applied to soil. Literature suggests plastic elimination mainly by devolatilization at co-pyrolysis temperatures of > 520°C. However, it is uncertain if the presence of plastic during biomass pyrolysis induces the formation of organic contaminants or has any other adverse effects on biochar properties. Here, we produced biochar from wood residues (WR) obtained from sieving of biowaste derived digestate. The plastic content was artificially enriched to 10%, and this mixture was pyrolyzed at 450°C and 600°C. Beech wood (BW) chips and the purified, that is, (macro-) plastic-free WR served as controls. All biochars produced were below limit values of the European Biochar Certificate (EBC) regarding trace element content and organic contaminants. Under study conditions, pyrolysis of biowaste, even when contaminated with plastic, can produce a biochar suitable for agricultural use. However, thermogravimetric and nuclear magnetic resonance spectroscopic analysis of the WR + 10% plastics biochar suggested the presence of plastic residues at pyrolysis temperatures of 450°C. More research is needed to define minimum requirements for the pyrolysis of plastic containing biowaste and to cope with the automated identification and determination of plastic types in biowaste at large scales.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 11","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raúl Castejón-del Pino, María L. Cayuela, María Sánchez-García, Jose A. Siles, Miguel A. Sánchez-Monedero
The interaction of biochar with mineral fertilization has attracted attention as a strategy to reduce N losses and enhance nitrogen use efficiency. In this study, we investigated the coapplication of biochar with two optimized fertilization strategies based on split urea and a microbial inoculant (Azospirillum brasilense) in a commercial pointed white cabbage crop. Additionally, we evaluated a third optimized N fertilization alternative, a biochar-based fertilizer (BBF) enriched in plant-available N, which was developed from the same biochar. We assessed environmental impacts such as greenhouse gasses (GHG) and NH3 emissions, yield-scaled N2O emissions, and global warming potential (GWP). Additionally, we evaluated agronomical outcomes such as crop yield, plant N, and chlorophyll concentration. Moreover, we examined the N-fixing gene's total and relative abundance (nifH and nifH/16S). Biochar and BBF exhibited similar crop yield, GHG, and NH3 emissions compared to split applications of the synthetic fertilizer. The main difference was associated with the higher soil C sequestration in biochar and BBF treatments that reduced the associated GWP of these fertilization strategies. Finally, biochar favored the activity of the N-fixing bacteria spread, compared to the sole application of bacteria and BBF demonstrated a promoting effect in the soil's total abundance of natural N-fixing bacteria.
{"title":"Field Assessment of Biochar Interactions With Chemical and Biological N Fertilization in Pointed White Cabbage","authors":"Raúl Castejón-del Pino, María L. Cayuela, María Sánchez-García, Jose A. Siles, Miguel A. Sánchez-Monedero","doi":"10.1111/gcbb.70006","DOIUrl":"https://doi.org/10.1111/gcbb.70006","url":null,"abstract":"<p>The interaction of biochar with mineral fertilization has attracted attention as a strategy to reduce N losses and enhance nitrogen use efficiency. In this study, we investigated the coapplication of biochar with two optimized fertilization strategies based on split urea and a microbial inoculant (<i>Azospirillum brasilense</i>) in a commercial pointed white cabbage crop. Additionally, we evaluated a third optimized N fertilization alternative, a biochar-based fertilizer (BBF) enriched in plant-available N, which was developed from the same biochar. We assessed environmental impacts such as greenhouse gasses (GHG) and NH<sub>3</sub> emissions, yield-scaled N<sub>2</sub>O emissions, and global warming potential (GWP). Additionally, we evaluated agronomical outcomes such as crop yield, plant N, and chlorophyll concentration. Moreover, we examined the N-fixing gene's total and relative abundance (<i>nifH</i> and <i>nifH</i>/16S). Biochar and BBF exhibited similar crop yield, GHG, and NH<sub>3</sub> emissions compared to split applications of the synthetic fertilizer. The main difference was associated with the higher soil C sequestration in biochar and BBF treatments that reduced the associated GWP of these fertilization strategies. Finally, biochar favored the activity of the N-fixing bacteria spread, compared to the sole application of bacteria and BBF demonstrated a promoting effect in the soil's total abundance of natural N-fixing bacteria.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 11","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanne Lebrun Thauront, Gerhard Soja, Hans-Peter Schmidt, Samuel Abiven
<p>Biochar is the product of intentional pyrolysis of organic feedstocks. It is made under controlled conditions in order to achieve desired physico-chemical characteristics. These characteristics ultimately affect biochar properties as a soil amendment. When biochar is used for carbon storage, an important property is its persistence in soil, often described by the proportion of biochar carbon remaining in soil after a 100 years (<span></span><math>