Temperature is a critical factor for living organisms. Many microorganisms migrate toward preferable temperatures, and this behavior is called thermotaxis. In this study, the molecular and physiological bases for thermotaxis are examined in Chlamydomonas reinhardtii. A mutant with knockout of a transient receptor potential (TRP) channel, trp2-3, showed defective thermotaxis. The swimming velocity and ciliary beat frequency of wild-type Chlamydomonas increase with temperature; however, this temperature-dependent enhancement of motility was almost absent in the trp2-3 mutant. Wild-type Chlamydomonas showed negative thermotaxis, but mutants deficient in the outer or inner dynein arm showed positive thermotaxis and a defect in temperature-dependent increase in swimming velocity, suggesting involvement of both dynein arms in thermotaxis.
{"title":"Temperature-dependent augmentation of ciliary motility by the TRP2 channel in Chlamydomonas reinhardtii","authors":"Shunta Fueki, Taro Kaneko, Haruka Matsuki, Yuki Hashimoto, Megumi Yoshida, Atsuko Isu, Ken-ichi Wakabayashi, Kenjiro Yoshimura","doi":"10.1002/cm.21840","DOIUrl":"10.1002/cm.21840","url":null,"abstract":"<p>Temperature is a critical factor for living organisms. Many microorganisms migrate toward preferable temperatures, and this behavior is called thermotaxis. In this study, the molecular and physiological bases for thermotaxis are examined in <i>Chlamydomonas reinhardtii</i>. A mutant with knockout of a transient receptor potential (TRP) channel, <i>trp2-3</i>, showed defective thermotaxis. The swimming velocity and ciliary beat frequency of wild-type <i>Chlamydomonas</i> increase with temperature; however, this temperature-dependent enhancement of motility was almost absent in the <i>trp2-3</i> mutant. Wild-type <i>Chlamydomonas</i> showed negative thermotaxis, but mutants deficient in the outer or inner dynein arm showed positive thermotaxis and a defect in temperature-dependent increase in swimming velocity, suggesting involvement of both dynein arms in thermotaxis.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 11","pages":"578-585"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21840","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A key step in regulation of Hippo pathway signaling in response to mechanical tension is recruitment of the LIM domain proteins TRIP6 and LIMD1 to adherens junctions. Mechanical tension also triggers TRIP6 and LIMD1 to bind and inhibit the Hippo pathway kinase LATS1. How TRIP6 and LIMD1 are recruited to adherens junctions in response to tension is not clear, but previous studies suggested that they could be regulated by the known mechanosensory proteins α-catenin and vinculin at adherens junctions. We found that the three LIM domains of TRIP6 and LIMD1 are necessary and sufficient for tension-dependent localization to adherens junctions. The LIM domains of TRIP6, LIMD1, and certain other LIM domain proteins have been shown to bind to actin networks under strain/tension. Consistent with this, we show that TRIP6 and LIMD1 colocalize with the ends of actin fibers at adherens junctions. Point mutations in a key conserved residue in each LIM domain that are predicted to impair binding to f-actin under strain inhibits TRIP6 and LIMD1 localization to adherens junctions and their ability to bind to and recruit LATS1 to adherens junctions. Together these results show that the ability of TRIP6 and LIMD1 to bind to strained actin underlies their ability to localize to adherens junctions and regulate LATS1 in response to mechanical tension.
{"title":"The ability of the LIMD1 and TRIP6 LIM domains to bind strained f-actin is critical for their tension dependent localization to adherens junctions and association with the Hippo pathway kinase LATS1","authors":"Samriddha Ray, Chamika DeSilva, Ishani Dasgupta, Sebastian Mana-Capelli, Natasha Cruz-Calderon, Dannel McCollum","doi":"10.1002/cm.21847","DOIUrl":"10.1002/cm.21847","url":null,"abstract":"<p>A key step in regulation of Hippo pathway signaling in response to mechanical tension is recruitment of the LIM domain proteins TRIP6 and LIMD1 to adherens junctions. Mechanical tension also triggers TRIP6 and LIMD1 to bind and inhibit the Hippo pathway kinase LATS1. How TRIP6 and LIMD1 are recruited to adherens junctions in response to tension is not clear, but previous studies suggested that they could be regulated by the known mechanosensory proteins α-catenin and vinculin at adherens junctions. We found that the three LIM domains of TRIP6 and LIMD1 are necessary and sufficient for tension-dependent localization to adherens junctions. The LIM domains of TRIP6, LIMD1, and certain other LIM domain proteins have been shown to bind to actin networks under strain/tension. Consistent with this, we show that TRIP6 and LIMD1 colocalize with the ends of actin fibers at adherens junctions. Point mutations in a key conserved residue in each LIM domain that are predicted to impair binding to f-actin under strain inhibits TRIP6 and LIMD1 localization to adherens junctions and their ability to bind to and recruit LATS1 to adherens junctions. Together these results show that the ability of TRIP6 and LIMD1 to bind to strained actin underlies their ability to localize to adherens junctions and regulate LATS1 in response to mechanical tension.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 9-10","pages":"436-447"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah A. Almuhanna, Humayra Z. Oishi, Kar Men Lee, Pamela E. Hoppe
The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In Caenorhabditis elegans, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential “filament initiation function” performed by this isoform.
横纹肌的 M 线是一种复杂的结构,它锚定了含肌球蛋白的粗丝,同时还参与信号传递和蛋白稳态。虽然许多 M 线成分之间的物理联系已经确定,但粗丝附着的机制还不完全清楚。在秀丽隐杆线虫中,肌球蛋白 A 对存活至关重要,它在粗丝中心形成 M 线附着点,而肌球蛋白 B 则形成粗丝臂。利用能形成异位丝的突变体肌球蛋白 A,我们研究了完整肌肉细胞中肌球蛋白 A 和 M 线蛋白之间的相互作用。异位肌球蛋白A招募巨激酶UNC-89/obscurin(一种假定的支架蛋白),这种相互作用需要锌指蛋白UNC-98,但不需要UNC-82/NUAK、UNC-97/PINCH或UNC-96。在肌球蛋白 A 突变体中,胚胎和成体中的 UNC-89/obscurin 模式高度缺陷。含有 169 个肌球蛋白 A C 端杆残基(与 UNC-98/ZnF 结合位点重合)的嵌合肌球蛋白足以在 M 线结构中实现 UNC-89/obscurin 和 UNC-98/ZnF 的共定位,而缺乏这些残基的肌球蛋白嵌合体则在缺乏 UNC-98 的 M 线中与 UNC-89/obscurin 共定位。因此,至少有两个肌球蛋白 A 杆部区域对 M 线组织做出了独立贡献。我们推测,这些 M 线组织功能与该同工酶的基本 "丝启动功能 "相对应。
{"title":"Sequences in the myosin A rod interact with UNC-89/obscurin and the zinc-finger protein UNC-98 during thick filament assembly and M-line formation in C. elegans striated muscle","authors":"Sarah A. Almuhanna, Humayra Z. Oishi, Kar Men Lee, Pamela E. Hoppe","doi":"10.1002/cm.21846","DOIUrl":"10.1002/cm.21846","url":null,"abstract":"<p>The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In <i>Caenorhabditis elegans</i>, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential “filament initiation function” performed by this isoform.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 12","pages":"775-788"},"PeriodicalIF":2.4,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metastasis-associated 1 (MTA1), a subunit of the nucleosome remodeling and histone deacetylation (NuRD) corepressor complex, was reported to be expressed in the cytoplasm of skeletal muscles. However, the exact subcellular localization and the functional implications of MTA1 in skeletal muscles have not been examined. This study aims to demonstrate the subcellular localization of MTA1 in skeletal muscles and reveal its possible roles in skeletal muscle pathogenesis. Striated muscles (skeletal and cardiac) from C57BL/6 mice of 4–5 weeks were collected to examine the expression of MTA1 by Western blotting and immunohistochemistry. Immunofluorescence and immunoelectron microscopy were performed for MTA1, α-actinin (a Z-disc marker protein), and SMN (survival of motor neuron) proteins. Gene Expression Omnibus (GEO) data sets were analyzed using the GEO2R online tool to explore the functional implications of MTA1 in skeletal muscles. MTA1 expression was detected by Western blotting and immunohistochemistry in skeletal and cardiac muscles. Subcellular localization of MTA1 was found in the Z-disc of sarcomeres, where α-actinin and SMN were expressed. Data mining of GEO profiles suggested that MTA1 dysregulation is associated with multiple skeletal muscle defects, such as Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, nemaline myopathy, and dermatomyositis. The GEO analysis also showed that MTA1 expression gradually decreased with age in mouse skeletal muscle precursor cells. The subcellular localization of MTA1 in sarcomeres of skeletal muscles implies its biological roles in sarcomere structures and its possible contribution to skeletal muscle pathology.
{"title":"Metastasis-associated 1 localizes to the sarcomeric Z-disc and is implicated in skeletal muscle pathology","authors":"Hongsheng Xue, Li Han, Haidi Sun, Zhe Piao, Wenjun Cao, Haili Qian, Zhilong Zhao, Ming-Fei Lang, Chundong Gu","doi":"10.1002/cm.21841","DOIUrl":"10.1002/cm.21841","url":null,"abstract":"<p>Metastasis-associated 1 (MTA1), a subunit of the nucleosome remodeling and histone deacetylation (NuRD) corepressor complex, was reported to be expressed in the cytoplasm of skeletal muscles. However, the exact subcellular localization and the functional implications of MTA1 in skeletal muscles have not been examined. This study aims to demonstrate the subcellular localization of MTA1 in skeletal muscles and reveal its possible roles in skeletal muscle pathogenesis. Striated muscles (skeletal and cardiac) from C57BL/6 mice of 4–5 weeks were collected to examine the expression of MTA1 by Western blotting and immunohistochemistry. Immunofluorescence and immunoelectron microscopy were performed for MTA1, α-actinin (a Z-disc marker protein), and SMN (survival of motor neuron) proteins. Gene Expression Omnibus (GEO) data sets were analyzed using the GEO2R online tool to explore the functional implications of MTA1 in skeletal muscles. MTA1 expression was detected by Western blotting and immunohistochemistry in skeletal and cardiac muscles. Subcellular localization of MTA1 was found in the Z-disc of sarcomeres, where α-actinin and SMN were expressed. Data mining of GEO profiles suggested that MTA1 dysregulation is associated with multiple skeletal muscle defects, such as Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, nemaline myopathy, and dermatomyositis. The GEO analysis also showed that MTA1 expression gradually decreased with age in mouse skeletal muscle precursor cells. The subcellular localization of MTA1 in sarcomeres of skeletal muscles implies its biological roles in sarcomere structures and its possible contribution to skeletal muscle pathology.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 9-10","pages":"427-435"},"PeriodicalIF":2.4,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prashali Chauhan, Hong Beom Lee, Niaz Goodbee, Sophia Martin, Ruell Branch, Sumon Sahu, Jennifer M. Schwarz, Jennifer L. Ross
The microtubule cytoskeleton is a major structural element inside cells that directs self-organization using microtubule-associated proteins and motors. It has been shown that finite-sized, spindle-like microtubule organizations, called “tactoids,” can form in vitro spontaneously from mixtures of tubulin and the antiparallel crosslinker, MAP65, from the MAP65/PRC1/Ase family. Here, we probe the ability of MAP65 to form tactoids as a function of the ionic strength of the buffer to attempt to break the electrostatic interactions binding MAP65 to microtubules and inter-MAP65 binding. We observe that, with increasing monovalent salts, the organizations change from finite tactoids to unbounded length bundles, yet the MAP65 binding and crosslinking appear to stay intact. We further explore the effects of ionic strength on the dissociation constant of MAP65 using both microtubule pelleting and single-molecule binding assays. We find that salt can reduce the binding, yet salt never negates it. Instead, we believe that the salt is affecting the ability of the MAP65 to form phase-separated droplets, which cause the nucleation and growth of tactoids, as recently demonstrated.
{"title":"Ionic strength alters crosslinker-driven self-organization of microtubules","authors":"Prashali Chauhan, Hong Beom Lee, Niaz Goodbee, Sophia Martin, Ruell Branch, Sumon Sahu, Jennifer M. Schwarz, Jennifer L. Ross","doi":"10.1002/cm.21839","DOIUrl":"10.1002/cm.21839","url":null,"abstract":"<p>The microtubule cytoskeleton is a major structural element inside cells that directs self-organization using microtubule-associated proteins and motors. It has been shown that finite-sized, spindle-like microtubule organizations, called “tactoids,” can form in vitro spontaneously from mixtures of tubulin and the antiparallel crosslinker, MAP65, from the MAP65/PRC1/Ase family. Here, we probe the ability of MAP65 to form tactoids as a function of the ionic strength of the buffer to attempt to break the electrostatic interactions binding MAP65 to microtubules and inter-MAP65 binding. We observe that, with increasing monovalent salts, the organizations change from finite tactoids to unbounded length bundles, yet the MAP65 binding and crosslinking appear to stay intact. We further explore the effects of ionic strength on the dissociation constant of MAP65 using both microtubule pelleting and single-molecule binding assays. We find that salt can reduce the binding, yet salt never negates it. Instead, we believe that the salt is affecting the ability of the MAP65 to form phase-separated droplets, which cause the nucleation and growth of tactoids, as recently demonstrated.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 8","pages":"328-338"},"PeriodicalIF":2.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21839","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ON THE FRONT COVER: Image of the myocardium. Microtubules (cyan), titin (magenta), and the nuclei (yellow) are fluorescently labeled and visualized by confocal microscopy.
Credit: Andreas Unger and Wolfgang A. Linke, Institute of Physiology II, University Hospital, Münster, Germany