首页 > 最新文献

Cytoskeleton最新文献

英文 中文
Author Profile: Dr. Subarna Dutta 作者简介:Subarna Dutta博士。
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-06-02 DOI: 10.1002/cm.22047
Subarna Dutta
{"title":"Author Profile: Dr. Subarna Dutta","authors":"Subarna Dutta","doi":"10.1002/cm.22047","DOIUrl":"10.1002/cm.22047","url":null,"abstract":"","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 7","pages":"477-478"},"PeriodicalIF":2.4,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picture of the Month by Jushuo Wang and Yingli Fan 《月图》作者:王巨硕、范颖丽。
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-31 DOI: 10.1002/cm.22044
{"title":"Picture of the Month by Jushuo Wang and Yingli Fan","authors":"","doi":"10.1002/cm.22044","DOIUrl":"10.1002/cm.22044","url":null,"abstract":"","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144192580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet Our Editorial Advisory Board—An Interview With Julien Berro, Yale University, West Haven, CT, USA 与我们的编辑顾问委员会会面——采访美国康涅狄格州西黑文耶鲁大学的朱利安·贝罗。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-21 DOI: 10.1002/cm.21941
Julien Berro, Paul Trevorrow
{"title":"Meet Our Editorial Advisory Board—An Interview With Julien Berro, Yale University, West Haven, CT, USA","authors":"Julien Berro, Paul Trevorrow","doi":"10.1002/cm.21941","DOIUrl":"10.1002/cm.21941","url":null,"abstract":"","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 10","pages":"619-620"},"PeriodicalIF":1.6,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144111509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting the Structural Organization, Recruitment and Activation Mechanisms of Centrosomal γ-TuRCs 解析中心体γ- turc的结构组织、募集和激活机制。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-12 DOI: 10.1002/cm.22040
Florian W. Hofer, Martin Würtz, Qi Gao, Bram J. A. Vermeulen, Elmar Schiebel, Stefan Pfeffer

Visualizing human centrosomes using cryo-electron tomography revealed the native structure and molecular organization of γ-tubulin ring complexes (γ-TuRCs). γ-TuRCs localized to two distinct centrosomal pools, one in the pericentriolar material (PCM) and another in the centriole lumen, which is released during mitosis. All detected γ-TuRCs were associated with the tetrameric adaptor protein NEDD1. Within the PCM, binding to the centrosomin (CM1) motif of the microcephaly protein CDK5RAP2 in different patterns correlates with conformational changes of γ-TuRCs. In the centriole lumen, the augmin complex anchors γ-TuRCs to the inner scaffold. These observations provide key insights into how the structural organization of γ-TuRCs and regulatory factors collectively govern the spatial and temporal control of microtubule nucleation in centrosomes.

利用低温电子断层成像技术观察人类中心体,揭示了γ-微管蛋白环复合物(γ-TuRCs)的天然结构和分子组织。γ-TuRCs定位于两个不同的中心体池,一个在中心粒周围物质(PCM)中,另一个在有丝分裂过程中释放的中心粒管腔中。所有检测到的γ- turc均与四聚体接头蛋白NEDD1相关。在PCM中,以不同模式结合小头畸形蛋白CDK5RAP2的中心体蛋白(CM1)基序与γ- turc的构象变化相关。在中心粒腔内,augmin复合物将γ- turc锚定在内部支架上。这些观察结果为研究γ- turc的结构组织和调节因子如何共同控制中心体微管成核的时空控制提供了关键的见解。
{"title":"Dissecting the Structural Organization, Recruitment and Activation Mechanisms of Centrosomal γ-TuRCs","authors":"Florian W. Hofer,&nbsp;Martin Würtz,&nbsp;Qi Gao,&nbsp;Bram J. A. Vermeulen,&nbsp;Elmar Schiebel,&nbsp;Stefan Pfeffer","doi":"10.1002/cm.22040","DOIUrl":"10.1002/cm.22040","url":null,"abstract":"<p>Visualizing human centrosomes using cryo-electron tomography revealed the native structure and molecular organization of γ-tubulin ring complexes (γ-TuRCs). γ-TuRCs localized to two distinct centrosomal pools, one in the pericentriolar material (PCM) and another in the centriole lumen, which is released during mitosis. All detected γ-TuRCs were associated with the tetrameric adaptor protein NEDD1. Within the PCM, binding to the centrosomin (CM1) motif of the microcephaly protein CDK5RAP2 in different patterns correlates with conformational changes of γ-TuRCs. In the centriole lumen, the augmin complex anchors γ-TuRCs to the inner scaffold. These observations provide key insights into how the structural organization of γ-TuRCs and regulatory factors collectively govern the spatial and temporal control of microtubule nucleation in centrosomes.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"83 1","pages":"53-56"},"PeriodicalIF":1.6,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12789885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoskeleton Spotlight: Dominik Brokatzky, PhD 聚焦:Dominik Brokatzky博士。
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-12 DOI: 10.1002/cm.22036
Dominik Brokatzky
{"title":"Cytoskeleton Spotlight: Dominik Brokatzky, PhD","authors":"Dominik Brokatzky","doi":"10.1002/cm.22036","DOIUrl":"10.1002/cm.22036","url":null,"abstract":"","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 6","pages":"406-407"},"PeriodicalIF":2.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144014212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Coupling With the Nuclear Envelope Shapes the Schizosaccharomyces pombe Mitotic Spindle 与核膜的机械耦合形成裂糖菌的有丝分裂纺锤体。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-10 DOI: 10.1002/cm.22035
Marcus A. Begley, Taylor Mahoney, Christian Pagán Medina, Parsa Zareiesfandabadi, Matthew B. Rapp, Mastawal Tirfe, Sharonda J. LeBlanc, Meredith D. Betterton, Mary Williard Elting

The fission yeast Schizosaccharomyces pombe divides via closed mitosis, meaning that spindle elongation and chromosome segregation transpire entirely within the closed nuclear envelope. Both the spindle and nuclear envelope must undergo shape changes and exert varying forces on each other during this process. Previous work has demonstrated that nuclear envelope expansion (Yam, He, Zhang, Chiam, & Oliferenko, 2011; Mori & Oliferenko, 2020) and spindle pole body (SPB) embedding in the nuclear envelope are required for normal S. pombe mitosis, and mechanical modeling has described potential contributions of the spindle to nuclear morphology (Fang et al., 2020; Zhu et al., 2016). However, it is not yet fully clear how and to what extent the nuclear envelope and mitotic spindle each directly shape each other during closed mitosis. Here, we investigate this relationship by observing the behaviors of spindles and nuclei in live mitotic fission yeast following laser ablation. First, we characterize these dynamics in mitotic S. pombe nuclei with increased envelope tension, finding that nuclear envelope tension can both bend the spindle and slow elongation. Next, we directly probe the mechanical connection between spindles and nuclear envelopes by ablating each structure. We demonstrate that envelope tension can be relieved by severing spindles and that spindle compression can be relieved by rupturing the envelope. We interpret our experimental data via two quantitative models that demonstrate that fission yeast spindles and nuclear envelopes are a mechanical pair that can each shape the other's morphology.

裂糖酵母(Schizosaccharomyces pombe)通过闭合有丝分裂进行分裂,这意味着纺锤体伸长和染色体分离完全在封闭的核膜内发生。在这个过程中,纺锤体和核膜都必须经历形状变化,并相互施加不同的力。先前的研究表明,核膜扩张(Yam, He, Zhang, Chiam, & Oliferenko, 2011;Mori & Oliferenko, 2020)和纺锤极体(SPB)嵌入核膜是正常的pombe有丝分裂所必需的,机械模型描述了纺锤体对核形态的潜在贡献(Fang等人,2020;朱等人,2016)。然而,在闭式有丝分裂过程中,核膜和纺锤体是如何以及在多大程度上相互直接形成的,目前还不完全清楚。在这里,我们通过观察活的有丝分裂酵母在激光消融后纺锤体和细胞核的行为来研究这种关系。首先,我们在有丝分裂的S. pombe核中描述了这些动态,随着包膜张力的增加,发现核膜张力既可以弯曲纺锤体,也可以减缓伸长。接下来,我们通过烧蚀每个结构直接探测纺锤体和核包膜之间的机械连接。我们证明了包络张力可以通过切断主轴来缓解,主轴压缩可以通过破裂包络来缓解。我们通过两个定量模型解释我们的实验数据,证明裂变酵母纺锤体和核包膜是一对机械对,可以各自塑造对方的形态。
{"title":"Mechanical Coupling With the Nuclear Envelope Shapes the Schizosaccharomyces pombe Mitotic Spindle","authors":"Marcus A. Begley,&nbsp;Taylor Mahoney,&nbsp;Christian Pagán Medina,&nbsp;Parsa Zareiesfandabadi,&nbsp;Matthew B. Rapp,&nbsp;Mastawal Tirfe,&nbsp;Sharonda J. LeBlanc,&nbsp;Meredith D. Betterton,&nbsp;Mary Williard Elting","doi":"10.1002/cm.22035","DOIUrl":"10.1002/cm.22035","url":null,"abstract":"<p>The fission yeast <i>Schizosaccharomyces pombe</i> divides via closed mitosis, meaning that spindle elongation and chromosome segregation transpire entirely within the closed nuclear envelope. Both the spindle and nuclear envelope must undergo shape changes and exert varying forces on each other during this process. Previous work has demonstrated that nuclear envelope expansion (Yam, He, Zhang, Chiam, &amp; Oliferenko, 2011; Mori &amp; Oliferenko, 2020) and spindle pole body (SPB) embedding in the nuclear envelope are required for normal <i>S. pombe</i> mitosis, and mechanical modeling has described potential contributions of the spindle to nuclear morphology (Fang et al., 2020; Zhu et al., 2016). However, it is not yet fully clear how and to what extent the nuclear envelope and mitotic spindle each directly shape each other during closed mitosis. Here, we investigate this relationship by observing the behaviors of spindles and nuclei in live mitotic fission yeast following laser ablation. First, we characterize these dynamics in mitotic <i>S. pombe</i> nuclei with increased envelope tension, finding that nuclear envelope tension can both bend the spindle and slow elongation. Next, we directly probe the mechanical connection between spindles and nuclear envelopes by ablating each structure. We demonstrate that envelope tension can be relieved by severing spindles and that spindle compression can be relieved by rupturing the envelope. We interpret our experimental data via two quantitative models that demonstrate that fission yeast spindles and nuclear envelopes are a mechanical pair that can each shape the other's morphology.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"83 1","pages":"40-52"},"PeriodicalIF":1.6,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144013002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image 封底图像
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-09 DOI: 10.1002/cm.22038

ON THE BACK COVER: PC3 cells stained for Lamin A/C (red), mVenus-HN1 (Green) and DNA (Blue).

Credit: Gülseren Özduman and Kemal Sami Korkmaz (Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey)

后盖上:染色的PC3细胞为Lamin A/C(红色),mVenus-HN1(绿色)和DNA(蓝色)。来源:g lseren Özduman和Kemal Sami Korkmaz(土耳其博尔诺瓦埃大学工程学院生物工程系癌症生物学实验室)
{"title":"Back Cover Image","authors":"","doi":"10.1002/cm.22038","DOIUrl":"https://doi.org/10.1002/cm.22038","url":null,"abstract":"<p>ON THE BACK COVER: PC3 cells stained for Lamin A/C (red), mVenus-HN1 (Green) and DNA (Blue).</p><p>Credit: Gülseren Özduman and Kemal Sami Korkmaz (Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey)\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 5","pages":"C4"},"PeriodicalIF":2.4,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.22038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover Image 封面图片
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-09 DOI: 10.1002/cm.22039

ON THE FRONT COVER: Composite image of in HN1 depleted PC3 cells stained for β-tubulin (green) and DNA (Blue).

Credit: Gülseren Özduman and Kemal Sami Korkmaz (Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey)

封面:HN1缺失PC3细胞的合成图像,染色为β-微管蛋白(绿色)和DNA(蓝色)。来源:g lseren Özduman和Kemal Sami Korkmaz(土耳其博尔诺瓦埃大学工程学院生物工程系癌症生物学实验室)
{"title":"Front Cover Image","authors":"","doi":"10.1002/cm.22039","DOIUrl":"https://doi.org/10.1002/cm.22039","url":null,"abstract":"<p>ON THE FRONT COVER: Composite image of in HN1 depleted PC3 cells stained for β-tubulin (green) and DNA (Blue).</p><p>Credit: Gülseren Özduman and Kemal Sami Korkmaz (Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey)\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 5","pages":"C1"},"PeriodicalIF":2.4,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.22039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The NLS3 Motif in TPX2 Regulates Spindle Architecture in Xenopus Egg Extracts TPX2中的NLS3 Motif调控爪蟾卵提取物的纺锤体结构。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-05-06 DOI: 10.1002/cm.22034
Guadalupe E. Pena, Xiao Zhou, Lauren Slevin, Christopher Brownlee, Rebecca Heald

A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet both spindle size and architecture vary dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we characterize a conserved nuclear localization sequence (NLS) motif, 123KKLK126 in Xenopus laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA stimulated spontaneous formation of microtubule asters and increased recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles while still binding to the regulatory transport factor importin α. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.

在所有真核生物中,由微管和许多相关蛋白组成的双极性纺锤体在细胞分裂过程中起分离染色体的作用,然而纺锤体的大小和结构在不同的物种和细胞类型中都有很大的不同。靶蛋白Xklp2 (TPX2)是调节纺锤体微管组织的一个候选因子,它在分支微管成核、有丝分裂激酶Aurora A的激活以及与激酶5 (Eg5)马达的关联中发挥作用。我们在非洲爪蟾(Xenopus laevis) TPX2中鉴定了一个保守的核定位序列(NLS)基序123KKLK126,该基序调控爪蟾卵提取物的星状微管形成和纺锤极形态。添加AALA突变序列的重组TPX2刺激了微管母细胞的自发形成,并增加了磷酸化的Aurora A、中心周蛋白和Eg5在减数分裂纺锤极上的募集,同时仍与调节运输因子输入蛋白α结合。我们认为TPX2是一个关键的纺锤体组装因子,其调节有助于激活多种微管聚合和组织蛋白,产生不同的纺锤体结构。
{"title":"The NLS3 Motif in TPX2 Regulates Spindle Architecture in Xenopus Egg Extracts","authors":"Guadalupe E. Pena,&nbsp;Xiao Zhou,&nbsp;Lauren Slevin,&nbsp;Christopher Brownlee,&nbsp;Rebecca Heald","doi":"10.1002/cm.22034","DOIUrl":"10.1002/cm.22034","url":null,"abstract":"<p>A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet both spindle size and architecture vary dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we characterize a conserved nuclear localization sequence (NLS) motif, <sup>123</sup>KKLK<sup>126</sup> in \u0000 <i>Xenopus laevis</i>\u0000 TPX2, which regulates astral microtubule formation and spindle pole morphology in <i>Xenopus</i> egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA stimulated spontaneous formation of microtubule asters and increased recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles while still binding to the regulatory transport factor importin α. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"83 1","pages":"29-39"},"PeriodicalIF":1.6,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143998983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actin-Bundling Protein, Fascin-1, as a Target of Osteoarthritis Progression 肌动蛋白捆绑蛋白,筋膜蛋白-1,作为骨关节炎进展的靶标。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-04-23 DOI: 10.1002/cm.22028
Rylee E. King, Marin Herrick, Justin Parreno

The cellular mechanisms underlying osteoarthritis pathogenesis are not fully understood. However, recent in vivo and in vitro studies show that actin cytoskeletal reorganization plays a critical role in the progression of osteoarthritis. It has been shown that targeting the inhibition of actin-bundling protein, fascin, is a favorable way to reorganize actin and prevent chondrocyte dedifferentiation that occurs in osteoarthritis. In a surgical model of osteoarthritis, targeting fascin reduces cartilage degradation and disease severity. These findings highlight the therapeutic potential of targeting fascin in osteoarthritis. Future research to develop a further mechanistic understanding on the critical role actin and actin network molecules play in osteoarthritis may lead to the development of actin-based therapies against disease progression.

骨关节炎发病的细胞机制尚不完全清楚。然而,最近的体内和体外研究表明,肌动蛋白细胞骨架重组在骨关节炎的进展中起着关键作用。已有研究表明,靶向抑制肌动蛋白捆绑蛋白(fastin)是重组肌动蛋白和防止骨关节炎中发生的软骨细胞去分化的有利途径。在骨关节炎的外科模型中,靶向筋膜蛋白可减少软骨退化和疾病严重程度。这些发现突出了靶向筋膜蛋白治疗骨关节炎的潜力。未来的研究将进一步了解肌动蛋白和肌动蛋白网络分子在骨关节炎中的关键作用,这可能会导致基于肌动蛋白的治疗疾病进展的发展。
{"title":"Actin-Bundling Protein, Fascin-1, as a Target of Osteoarthritis Progression","authors":"Rylee E. King,&nbsp;Marin Herrick,&nbsp;Justin Parreno","doi":"10.1002/cm.22028","DOIUrl":"10.1002/cm.22028","url":null,"abstract":"<div>\u0000 \u0000 <p>The cellular mechanisms underlying osteoarthritis pathogenesis are not fully understood. However, recent <i>in vivo</i> and <i>in vitro</i> studies show that actin cytoskeletal reorganization plays a critical role in the progression of osteoarthritis. It has been shown that targeting the inhibition of actin-bundling protein, fascin, is a favorable way to reorganize actin and prevent chondrocyte dedifferentiation that occurs in osteoarthritis. In a surgical model of osteoarthritis, targeting fascin reduces cartilage degradation and disease severity. These findings highlight the therapeutic potential of targeting fascin in osteoarthritis. Future research to develop a further mechanistic understanding on the critical role actin and actin network molecules play in osteoarthritis may lead to the development of actin-based therapies against disease progression.</p>\u0000 </div>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"82 9","pages":"601-606"},"PeriodicalIF":1.6,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cytoskeleton
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1