Juyeon Hwang, Haruaki Yanagisawa, Keira C. Davis, Emily L. Hunter, Laura A. Fox, Ariana R. Jimenez, Reagan E. Goodwin, Sarah A. Gordon, Courtney D. E. Stuart, Raqual Bower, Mary E. Porter, Susan K. Dutcher, Winfield S. Sale, Karl F. Lechtreck, Lea M. Alford
To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of Chlamydomonas. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.
{"title":"Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia","authors":"Juyeon Hwang, Haruaki Yanagisawa, Keira C. Davis, Emily L. Hunter, Laura A. Fox, Ariana R. Jimenez, Reagan E. Goodwin, Sarah A. Gordon, Courtney D. E. Stuart, Raqual Bower, Mary E. Porter, Susan K. Dutcher, Winfield S. Sale, Karl F. Lechtreck, Lea M. Alford","doi":"10.1002/cm.21818","DOIUrl":"10.1002/cm.21818","url":null,"abstract":"<p>To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of <i>Chlamydomonas</i>. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 11","pages":"539-555"},"PeriodicalIF":2.4,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motile cilia play various important physiological roles in eukaryotic organisms including cell motility and fertility. Inside motile cilia, large motor-protein complexes called “ciliary dyneins” coordinate their activities and drive ciliary motility. The ciliary dyneins include the outer-arm dyneins, the double-headed inner-arm dynein (IDA f/I1), and several single-headed inner-arm dyneins (IDAs a, b, c, d, e, and g). Among these single-headed IDAs, one of the ciliary dyneins, IDA d, is of particular interest because of its unique properties and subunit composition. In addition, defects in this subspecies have recently been associated with several types of ciliopathies in humans, such as primary ciliary dyskinesia and multiple morphologic abnormalities of the flagellum. In this mini-review, we discuss the composition, structure, and motor properties of IDA d, which have been studied in the model organism Chlamydomonas reinhardtii, and further discuss the relationship between IDA d and human ciliopathies. In addition, we provide future perspectives and discuss remaining questions regarding this intriguing dynein subspecies.
运动纤毛在真核生物体内发挥着各种重要的生理作用,包括细胞运动和生育。在运动纤毛内部,被称为 "纤毛动力蛋白 "的大型运动蛋白复合物协调它们的活动,驱动纤毛运动。纤毛动力蛋白包括外臂动力蛋白、双头内臂动力蛋白(IDA f/I1)和几种单头内臂动力蛋白(IDAs a、b、c、d、e 和 g)。在这些单头内臂动力蛋白中,纤毛动力蛋白之一的内臂动力蛋白(IDA d)因其独特的性质和亚基组成而特别引人关注。此外,该亚种的缺陷最近还与人类的几种纤毛疾病相关,如原发性纤毛运动障碍和鞭毛的多种形态异常。在这篇微型综述中,我们讨论了在模式生物莱茵衣藻中研究的 IDA d 的组成、结构和运动特性,并进一步讨论了 IDA d 与人类纤毛疾病之间的关系。此外,我们还提供了未来的展望,并讨论了有关这一有趣的动力蛋白亚种的其余问题。
{"title":"Functional and structural significance of the inner-arm-dynein subspecies d in ciliary motility","authors":"Ryosuke Yamamoto, Takahide Kon","doi":"10.1002/cm.21828","DOIUrl":"10.1002/cm.21828","url":null,"abstract":"<p>Motile cilia play various important physiological roles in eukaryotic organisms including cell motility and fertility. Inside motile cilia, large motor-protein complexes called “ciliary dyneins” coordinate their activities and drive ciliary motility. The ciliary dyneins include the outer-arm dyneins, the double-headed inner-arm dynein (IDA f/I1), and several single-headed inner-arm dyneins (IDAs a, b, c, d, e, and g). Among these single-headed IDAs, one of the ciliary dyneins, IDA d, is of particular interest because of its unique properties and subunit composition. In addition, defects in this subspecies have recently been associated with several types of ciliopathies in humans, such as primary ciliary dyskinesia and multiple morphologic abnormalities of the flagellum. In this mini-review, we discuss the composition, structure, and motor properties of IDA d, which have been studied in the model organism <i>Chlamydomonas reinhardtii</i>, and further discuss the relationship between IDA d and human ciliopathies. In addition, we provide future perspectives and discuss remaining questions regarding this intriguing dynein subspecies.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 11","pages":"569-577"},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139426114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Both diastolic filling and systolic pumping of the heart are dependent on the passive stiffness characteristics of various mechanical elements of myocardium. However, the specific contribution from each element, including the extracellular matrix, actin filaments, microtubules, desmin intermediate filaments, and sarcomeric titin springs, remains challenging to assess. Recently, a mouse model allowing for precise and acute cleavage of the titin springs was used to remove one mechanical element after the other from cardiac fibers and record the effect on passive stiffness. It became clear that the stiffness contribution from each element is context-dependent and varies depending on strain level and the force component considered (elastic or viscous); elements do not act in isolation but in a tensegral relationship. Titin is a substantial contributor under all conditions and dominates the elastic forces at both low and high strains. The contribution to viscous forces is more equally shared between microtubules, titin, and actin. However, the extracellular matrix substantially contributes to both force components at higher strain levels. Desmin filaments may bear low stiffness. These insights enhance our understanding of how different filament networks contribute to passive stiffness in the heart and offer new perspectives for targeting this stiffness in heart failure treatment.
{"title":"Titin takes centerstage among cytoskeletal contributions to myocardial passive stiffness","authors":"Christine M. Loescher, Wolfgang A. Linke","doi":"10.1002/cm.21827","DOIUrl":"10.1002/cm.21827","url":null,"abstract":"<p>Both diastolic filling and systolic pumping of the heart are dependent on the passive stiffness characteristics of various mechanical elements of myocardium. However, the specific contribution from each element, including the extracellular matrix, actin filaments, microtubules, desmin intermediate filaments, and sarcomeric titin springs, remains challenging to assess. Recently, a mouse model allowing for precise and acute cleavage of the titin springs was used to remove one mechanical element after the other from cardiac fibers and record the effect on passive stiffness. It became clear that the stiffness contribution from each element is context-dependent and varies depending on strain level and the force component considered (elastic or viscous); elements do not act in isolation but in a tensegral relationship. Titin is a substantial contributor under all conditions and dominates the elastic forces at both low and high strains. The contribution to viscous forces is more equally shared between microtubules, titin, and actin. However, the extracellular matrix substantially contributes to both force components at higher strain levels. Desmin filaments may bear low stiffness. These insights enhance our understanding of how different filament networks contribute to passive stiffness in the heart and offer new perspectives for targeting this stiffness in heart failure treatment.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 2-3","pages":"184-187"},"PeriodicalIF":2.9,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.
{"title":"Intraflagellar transport: A critical player in photoreceptor development and the pathogenesis of retinal degenerative diseases","authors":"Mohona Gupta, Gregory J. Pazour","doi":"10.1002/cm.21823","DOIUrl":"10.1002/cm.21823","url":null,"abstract":"<p>In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 11","pages":"556-568"},"PeriodicalIF":2.4,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138886785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
My journey with tau started when in 1974 for the first time I isolated neurofibrillary tangles of paired helical filaments (PHFs) from autopsied Alzheimer's disease (AD) brains and discovered that they were made up of a ~50–70 KDa protein on SDS-polyacrylamide gels. Subsequently my team discovered that this PHF protein and the microtubule-associated factor called tau were one and the same protein. However, we found that tau in neurofibrillary tangles/PHFs in AD brain was abnormally hyperphosphorylated, and unlike normal tau, which promoted the assembly of tubulin into microtubules, the AD-hyperphosphorylated tau inhibited microtubule assembly. These discoveries of tau pathology in AD opened a new and a major area of research on tau and on the molecular pathology of this major cause of dementia in middle- and old-age individuals. Tau pathology, which without fail is made up of the aggregated hyperphosphorylated state of the protein, is also the hallmark lesion of a family of around 20 related neurodegenerative diseases, called tauopathies. Currently, tau pathology is a major drug target for the treatment of AD and related tauopathies. Both active and passive tau immunization human clinical trials at various stages are underway. Initial results range from negative to partially promising. Future studies will reveal whether tau therapy alone or in combination with drugs targeting Aβ and/or neurodegeneration will be required to achieve the most effective treatment for AD and related disorders.
1974年,我首次从尸检的阿尔茨海默病(AD)大脑中分离出成对螺旋丝(PHF)的神经纤维缠结,并在SDS-聚丙烯酰胺凝胶上发现它们是由一种约50-70 KDa的蛋白质组成的。随后,我的团队发现这种 PHF 蛋白和名为 tau 的微管相关因子是同一种蛋白质。然而,我们发现,AD大脑神经纤维缠结/PHFs中的tau异常过度磷酸化,与正常的tau不同,正常的tau促进微管蛋白组装成微管,而AD过度磷酸化的tau则抑制微管组装。这些关于注意力缺失症中 tau 病理学的发现,开辟了一个关于 tau 以及这个导致中老年痴呆症的主要病因的分子病理学的新的重要研究领域。Tau病理学由蛋白质的高磷酸化聚集状态构成,也是约20种相关神经退行性疾病(称为tau病)家族的标志性病变。目前,tau病理学是治疗AD和相关tau病的主要药物靶点。主动和被动 tau 免疫人体临床试验正处于不同阶段。初步结果从负面到部分乐观不等。未来的研究将揭示,tau疗法是单独使用还是与针对Aβ和/或神经变性的药物联合使用,才能实现对AD及相关疾病的最有效治疗。
{"title":"Tau and Alzheimer's disease: Past, present and future","authors":"Khalid Iqbal","doi":"10.1002/cm.21822","DOIUrl":"10.1002/cm.21822","url":null,"abstract":"<p>My journey with tau started when in 1974 for the first time I isolated neurofibrillary tangles of paired helical filaments (PHFs) from autopsied Alzheimer's disease (AD) brains and discovered that they were made up of a ~50–70 KDa protein on SDS-polyacrylamide gels. Subsequently my team discovered that this PHF protein and the microtubule-associated factor called tau were one and the same protein. However, we found that tau in neurofibrillary tangles/PHFs in AD brain was abnormally hyperphosphorylated, and unlike normal tau, which promoted the assembly of tubulin into microtubules, the AD-hyperphosphorylated tau inhibited microtubule assembly. These discoveries of tau pathology in AD opened a new and a major area of research on tau and on the molecular pathology of this major cause of dementia in middle- and old-age individuals. Tau pathology, which without fail is made up of the aggregated hyperphosphorylated state of the protein, is also the hallmark lesion of a family of around 20 related neurodegenerative diseases, called tauopathies. Currently, tau pathology is a major drug target for the treatment of AD and related tauopathies. Both active and passive tau immunization human clinical trials at various stages are underway. Initial results range from negative to partially promising. Future studies will reveal whether tau therapy alone or in combination with drugs targeting Aβ and/or neurodegeneration will be required to achieve the most effective treatment for AD and related disorders.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 1","pages":"116-121"},"PeriodicalIF":2.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21822","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Fath, Vladimir Sytnyk, Ramón Martínez-Mármol
{"title":"‘10th cell architecture in development and disease (CADD)’: Meeting report","authors":"Thomas Fath, Vladimir Sytnyk, Ramón Martínez-Mármol","doi":"10.1002/cm.21815","DOIUrl":"10.1002/cm.21815","url":null,"abstract":"","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 6-7","pages":"264-265"},"PeriodicalIF":2.9,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The microtubule-associated protein tau has gained significant attention over the last several decades primarily due to its apparent role in the pathogenesis of several diseases, most notably Alzheimer's disease. While the field has focused largely on tau's potential contributions to disease mechanisms, comparably less work has focused on normal tau physiology. Moreover, as the field has grown, some misconceptions and dogmas regarding normal tau physiology have become engrained in the traditional narrative. Here, one of the most common misconceptions regarding tau, namely its normal cellular/subcellular distribution in the CNS, is discussed. The literature describing the presence of tau in neuronal somata, dendrites, axons and synapses, as well as in glial cells is described. The origins for the erroneous description of tau as an “axon-specific,” “axon-enriched” and/or “neuron-specific” protein are discussed as well. The goal of this work is to help address these specific dogmatic misconceptions and provide a concise description of tau's normal cellular/subcellular localization in the adult CNS. This information can help refine our collective understanding of- and hypotheses about tau biology and pathobiology.
过去几十年来,微管相关蛋白 tau 引起了人们的极大关注,这主要是因为它在几种疾病(尤其是阿尔茨海默病)的发病机制中发挥了明显的作用。虽然这一领域主要关注的是 tau 对疾病机制的潜在贡献,但关注正常 tau 生理机能的工作却相对较少。此外,随着该领域的发展,一些关于正常tau生理学的误解和教条已在传统的叙述中根深蒂固。在此,我们将讨论关于 tau 最常见的误解之一,即它在中枢神经系统中的正常细胞/亚细胞分布。文献描述了 tau 在神经元体、树突、轴突和突触以及神经胶质细胞中的存在。此外,还讨论了将 tau 错误地描述为 "轴突特异性"、"轴突丰富性 "和/或 "神经元特异性 "蛋白质的起源。这项工作的目的是帮助解决这些特定的教条式误解,并提供有关 tau 在成人中枢神经系统中正常细胞/亚细胞定位的简明描述。这些信息有助于完善我们对 tau 生物学和病理生物学的集体理解和假设。
{"title":"Tau here, tau there, tau almost everywhere: Clarifying the distribution of tau in the adult CNS","authors":"Nicholas M. Kanaan","doi":"10.1002/cm.21820","DOIUrl":"10.1002/cm.21820","url":null,"abstract":"<p>The microtubule-associated protein tau has gained significant attention over the last several decades primarily due to its apparent role in the pathogenesis of several diseases, most notably Alzheimer's disease. While the field has focused largely on tau's potential contributions to disease mechanisms, comparably less work has focused on normal tau physiology. Moreover, as the field has grown, some misconceptions and dogmas regarding normal tau physiology have become engrained in the traditional narrative. Here, one of the most common misconceptions regarding tau, namely its normal cellular/subcellular distribution in the CNS, is discussed. The literature describing the presence of tau in neuronal somata, dendrites, axons and synapses, as well as in glial cells is described. The origins for the erroneous description of tau as an “axon-specific,” “axon-enriched” and/or “neuron-specific” protein are discussed as well. The goal of this work is to help address these specific dogmatic misconceptions and provide a concise description of tau's normal cellular/subcellular localization in the adult CNS. This information can help refine our collective understanding of- and hypotheses about tau biology and pathobiology.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 1","pages":"107-115"},"PeriodicalIF":2.9,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cm.21820","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ON THE BACK COVER: The cell expresses both GFP-α-tubulin (green) and mRFP-myosin II (red). It divides into nucleate and anucleate fragments with myosin II (red) accumulating at centrosome furrows. Centrosomes are crucial for furrow positioning, while the spindle or nucleus is not essential.
Credit: Shigehiko Yumura, Emeritus Professor, Graduate School of Sciences and Technology for Innovation, Yamaguchi University