The robotic mobile fulfillment system (RMFS) has revolutionized the manufacturing and logistics industries by enhancing the efficiency of automated storage and order fulfillment through automated guided vehicles (AGVs). However, existing multi-AGV path planning methods in RMFS typically decouple path planning from conflict resolution, thereby simplifying the problem but limiting system performance, especially in dynamic and complex operational environments. To address this challenge, we introduce a novel learning-based hierarchical framework for lifelong multi-AGV path planning. Our framework integrates a dual-mode heuristic global guidance planner with a local reinforcement learning planner, leveraging asynchronous proximal policy optimization and a recurrent neural network to achieve fully decentralized, online navigation. Critically, our dual-mode guidance mechanism adapts to multi-phase transport tasks by enabling unloaded AGVs to travel beneath stationary pods—a key distinction from conventional methods. This approach mitigates congestion in narrow corridors and boosts overall system throughput. Experimental results demonstrate that our method outperforms state-of-the-art centralized and decentralized approaches in large-scale deployments, achieving higher success rates and throughput while significantly reducing computational costs. This research thus offers a scalable and efficient solution to the complex path-planning challenges inherent in RMFS.
扫码关注我们
求助内容:
应助结果提醒方式:
