Pub Date : 2024-08-05DOI: 10.1016/j.cagd.2024.102379
Amine Kassimi , Jamal Riffi , Khalid El Fazazy , Thierry Bertin Gardelle , Hamza Mouncif , Mohamed Adnane Mahraz , Ali Yahyaouy , Hamid Tairi
In this paper, we present a novel face-based random walk method aimed at addressing the 3D semantic segmentation issue. Our method utilizes a one-dimensional convolutional neural network for detailed feature extraction from sequences of triangular faces and employs a stacked gated recurrent unit to gather information along the sequence during training. This approach allows us to effectively handle irregular meshes and utilize the inherent feature extraction potential present in mesh geometry. Our study's results show that the proposed method achieves competitive results compared to the state-of-the-art methods in mesh segmentation. Importantly, it requires fewer training iterations and demonstrates versatility by applying to a wide range of objects without the need for the mesh to adhere to manifold or watertight topology requirements.
{"title":"1D CNNs and face-based random walks: A powerful combination to enhance mesh understanding and 3D semantic segmentation","authors":"Amine Kassimi , Jamal Riffi , Khalid El Fazazy , Thierry Bertin Gardelle , Hamza Mouncif , Mohamed Adnane Mahraz , Ali Yahyaouy , Hamid Tairi","doi":"10.1016/j.cagd.2024.102379","DOIUrl":"10.1016/j.cagd.2024.102379","url":null,"abstract":"<div><p>In this paper, we present a novel face-based random walk method aimed at addressing the 3D semantic segmentation issue. Our method utilizes a one-dimensional convolutional neural network for detailed feature extraction from sequences of triangular faces and employs a stacked gated recurrent unit to gather information along the sequence during training. This approach allows us to effectively handle irregular meshes and utilize the inherent feature extraction potential present in mesh geometry. Our study's results show that the proposed method achieves competitive results compared to the state-of-the-art methods in mesh segmentation. Importantly, it requires fewer training iterations and demonstrates versatility by applying to a wide range of objects without the need for the mesh to adhere to manifold or watertight topology requirements.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102379"},"PeriodicalIF":1.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.cagd.2024.102378
Rachid Ait-Haddou , Marie-Laurence Mazure
With great enthusiasm and admiration we would like to pay tribute to Paul de Faget de Casteljau for his essential contribution to CAGD. Motivated by the development of automated human-computer collaboration for car industry, not only was he the very first pioneer in this field, but his initial geometric approach to creating shapes from poles was even undeniably the simplest and most remarkably effective. Two crucial points in this approach are to keep in mind: firstly, the idea of splitting one variable into several variables to facilitate the algorithmic construction of curves; secondly, the possibility of controlling shapes by means of osculating flats and corner-cutting algorithms. The present article is a partial survey on Chebyshevian blossoms intended to show that his ideas are still alive.
{"title":"De Casteljau's geometric approach to geometric design still alive","authors":"Rachid Ait-Haddou , Marie-Laurence Mazure","doi":"10.1016/j.cagd.2024.102378","DOIUrl":"10.1016/j.cagd.2024.102378","url":null,"abstract":"<div><p>With great enthusiasm and admiration we would like to pay tribute to Paul de Faget de Casteljau for his essential contribution to CAGD. Motivated by the development of automated <em>human-computer collaboration</em> for car industry, not only was he the very first pioneer in this field, but his initial geometric approach to creating <em>shapes from poles</em> was even undeniably the simplest and most remarkably effective. Two crucial points in this approach are to keep in mind: firstly, the idea of splitting one variable into several variables to facilitate the algorithmic construction of curves; secondly, the possibility of controlling shapes by means of osculating flats and corner-cutting algorithms. The present article is a partial survey on Chebyshevian blossoms intended to show that his ideas are still alive.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102378"},"PeriodicalIF":1.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.cagd.2024.102376
Michal Bizzarri , Lukáš Hruda , Miroslav Lávička , Jan Vršek
Analyzing the symmetries present in point clouds, which represent sets of 3D coordinates, is important for understanding their underlying structure and facilitating various applications. In this paper, we propose a novel decomposition-based method for detecting the entire symmetry group of 3D point clouds. Our approach decomposes the point cloud into simpler shapes whose symmetry groups are easier to find. The exact symmetry group of the original point cloud is then derived from the symmetries of these individual components. The method presented in this paper is a direct extension of the approach recently formulated in Bizzarri et al. (2022a) for discrete curves in plane. The method can be easily modified also for perturbed data. This work contributes to the advancement of symmetry analysis in point clouds, providing a foundation for further research and enhancing applications in computer vision, robotics, and augmented reality.
{"title":"Symmetry group detection of point clouds in 3D via a decomposition method","authors":"Michal Bizzarri , Lukáš Hruda , Miroslav Lávička , Jan Vršek","doi":"10.1016/j.cagd.2024.102376","DOIUrl":"10.1016/j.cagd.2024.102376","url":null,"abstract":"<div><p>Analyzing the symmetries present in point clouds, which represent sets of 3D coordinates, is important for understanding their underlying structure and facilitating various applications. In this paper, we propose a novel decomposition-based method for detecting the entire symmetry group of 3D point clouds. Our approach decomposes the point cloud into simpler shapes whose symmetry groups are easier to find. The exact symmetry group of the original point cloud is then derived from the symmetries of these individual components. The method presented in this paper is a direct extension of the approach recently formulated in <span><span>Bizzarri et al. (2022a)</span></span> for discrete curves in plane. The method can be easily modified also for perturbed data. This work contributes to the advancement of symmetry analysis in point clouds, providing a foundation for further research and enhancing applications in computer vision, robotics, and augmented reality.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102376"},"PeriodicalIF":1.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.cagd.2024.102375
R. Krasauskas, S. Zube
Earlier results on various quaternionic Bézier parametrizations of Darboux cyclides are extended to bidegree parameterizations of a wider class of surfaces containing at least two families of circles. The focus is on one special family of such parametrizations, which depends on 4 control points and defines a pencil of surfaces tangent along the common circle. This construction is used for parametrizing two-oval Darboux cyclides and generating the Gaussian map for rational offsets of ellipsoids and two-sheet hyperboloids.
{"title":"Quaternionic Bézier parameterizations of bidegree (2,1)","authors":"R. Krasauskas, S. Zube","doi":"10.1016/j.cagd.2024.102375","DOIUrl":"10.1016/j.cagd.2024.102375","url":null,"abstract":"<div><p>Earlier results on various quaternionic Bézier parametrizations of Darboux cyclides are extended to bidegree <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> parameterizations of a wider class of surfaces containing at least two families of circles. The focus is on one special family of such parametrizations, which depends on 4 control points and defines a pencil of surfaces tangent along the common circle. This construction is used for parametrizing two-oval Darboux cyclides and generating the Gaussian map for rational offsets of ellipsoids and two-sheet hyperboloids.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102375"},"PeriodicalIF":1.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feature curves are space curves identified by color or curvature variations in a shape, which are crucial for human perception (Biederman, 1995). Detecting these characteristic lines in 3D digital models becomes important for recognition and representation processes. For recognizing plane curves in images, the Hough transform (HT) provided a very good solution to the problem. It selects the best-fitting curve in a dictionary of families of curves through a voting procedure that makes it robust to noise and missing parts. Since 3D digital models are often obtained by scanning real objects and may have many defects, the HT has been extended to recognize and approximate space curves in 3D models that correspond to relevant features
This work overviews three HT-based different approaches for identifying and approximating spatial profiles of points extracted from point clouds or meshes. A first attempt at this extension involved projecting the spatial points onto the regression plane, thus reducing the problem to planar recognition and using families of plane curves. A second approach has been proposed to recognize spatial profiles that cannot be projected onto the regression plane, using two types of space curve families. Unfortunately, the main drawback of methods based on traditional HT is that it requires prior knowledge of which family of curves to look for.
To overcome this limitation, a third method has been developed that provides a piecewise space curve approximation using specific parametric polynomial curves. Additionally, free-form curves that a parametric or implicit form cannot express can be represented using this technique.
In the paper, we also analyze the pros and cons of the various approaches and how they managed and reduced the HT's computational cost, given the large number of parameters introduced when families of space curves are considered.
{"title":"Extending the Hough transform to recognize and approximate space curves in 3D models","authors":"Chiara Romanengo, Bianca Falcidieno, Silvia Biasotti","doi":"10.1016/j.cagd.2024.102377","DOIUrl":"10.1016/j.cagd.2024.102377","url":null,"abstract":"<div><p>Feature curves are space curves identified by color or curvature variations in a shape, which are crucial for human perception (<span><span>Biederman, 1995</span></span>). Detecting these characteristic lines in 3D digital models becomes important for recognition and representation processes. For recognizing plane curves in images, the Hough transform (HT) provided a very good solution to the problem. It selects the best-fitting curve in a dictionary of families of curves through a voting procedure that makes it robust to noise and missing parts. Since 3D digital models are often obtained by scanning real objects and may have many defects, the HT has been extended to recognize and approximate space curves in 3D models that correspond to relevant features</p><p>This work overviews three HT-based different approaches for identifying and approximating spatial profiles of points extracted from point clouds or meshes. A first attempt at this extension involved projecting the spatial points onto the regression plane, thus reducing the problem to planar recognition and using families of plane curves. A second approach has been proposed to recognize spatial profiles that cannot be projected onto the regression plane, using two types of space curve families. Unfortunately, the main drawback of methods based on traditional HT is that it requires prior knowledge of which family of curves to look for.</p><p>To overcome this limitation, a third method has been developed that provides a piecewise space curve approximation using specific parametric polynomial curves. Additionally, free-form curves that a parametric or implicit form cannot express can be represented using this technique.</p><p>In the paper, we also analyze the pros and cons of the various approaches and how they managed and reduced the HT's computational cost, given the large number of parameters introduced when families of space curves are considered.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102377"},"PeriodicalIF":1.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001110/pdfft?md5=6bb00fd796f369e5995f8832f3474cc5&pid=1-s2.0-S0167839624001110-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Pythagorean-Hodograph curve (PH curve) is a valuable curve type extensively utilized in computer-aided geometric design and manufacturing. This paper presents an approach to approximate a planar algebraic curve within a bounding box by employing piecewise quintic PH spline curves, while maintaining smoothness of the approximating curve and preserving second-order geometric details at singularities. The bounding box encompasses all x-coordinates of key topological points, ensuring accurate representation. The paper explores the analysis of the interpolation problem for quintic PH curves with invariant convexity, transforming the quest for interpolation solutions into identifying positive roots within a set of algebraic equations. Through infinitesimal order analysis, it is established that a solution necessarily exists following adequate subdivision, laying the groundwork for practical application. Finally, the paper introduces a novel algorithm that integrates prior research to construct the approximating curve while maintaining control over the desired error levels.
{"title":"On G2 approximation of planar algebraic curves under certified error control by quintic Pythagorean-hodograph splines","authors":"Xin-Yu Wang , Li-Yong Shen , Chun-Ming Yuan , Sonia Pérez-Díaz","doi":"10.1016/j.cagd.2024.102374","DOIUrl":"10.1016/j.cagd.2024.102374","url":null,"abstract":"<div><p>The Pythagorean-Hodograph curve (PH curve) is a valuable curve type extensively utilized in computer-aided geometric design and manufacturing. This paper presents an approach to approximate a planar algebraic curve within a bounding box by employing piecewise quintic PH spline curves, while maintaining <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smoothness of the approximating curve and preserving second-order geometric details at singularities. The bounding box encompasses all <em>x</em>-coordinates of key topological points, ensuring accurate representation. The paper explores the analysis of the <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> interpolation problem for quintic PH curves with invariant convexity, transforming the quest for interpolation solutions into identifying positive roots within a set of algebraic equations. Through infinitesimal order analysis, it is established that a solution necessarily exists following adequate subdivision, laying the groundwork for practical application. Finally, the paper introduces a novel algorithm that integrates prior research to construct the approximating curve while maintaining control over the desired error levels.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102374"},"PeriodicalIF":1.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.cagd.2024.102365
Niels Lubbes , Josef Schicho
It is known that a camera can be calibrated using three pictures of either squares, or spheres, or surfaces of revolution. We give a new method to calibrate a camera with the picture of a single torus.
{"title":"Calibrating figures","authors":"Niels Lubbes , Josef Schicho","doi":"10.1016/j.cagd.2024.102365","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102365","url":null,"abstract":"<div><p>It is known that a camera can be calibrated using three pictures of either squares, or spheres, or surfaces of revolution. We give a new method to calibrate a camera with the picture of a single torus.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"112 ","pages":"Article 102365"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.cagd.2024.102367
Arvin Rasoulzadeh, Martin Kilian, Georg Nawratil
A smooth T-surface can be thought of as a generalization of a surface of revolution in such a way that the axis of rotation is not fixed at one point but rather traces a smooth path on the base plane. Furthermore, the action, by which the aforementioned surface is obtained does not need to be merely rotation but any “suitable” planar equiform transformation applied to the points of a certain smooth profile curve. In analogy to the smooth setting, if the axis footpoints sweep a polyline on the base plane and if the profile curve is discretely chosen then a T-hedra (discrete T-surface) with trapezoidal faces is obtained.
The goal of this article is to reconstruct a T-hedron from an already given unorganized point cloud of a T-surface. In doing so, a kinematic approach is taken into account, where the algorithm at first tries to find the aforementioned axis direction associated with the point cloud. Then the algorithm finds a polygonal path through which the axis footpoint moves. Finally, by properly cutting the point cloud with the planes passing through the axis and its footpoints, it reconstructs the surface. The presented method is demonstrated using examples.
From an applied point of view, the straightforwardness of the generation of these surfaces predestines them for building and design processes. In fact, one can find many built objects belonging to the sub-classes of T-surfaces such as surfaces of revolution and moulding surfaces. Furthermore, the planarity of the faces of the discrete version paves the way for steel/glass construction in industry. Finally, these surfaces are also suitable for transformable designs as they allow an isometric deformation within their class.
光滑的 T 型曲面可以看作是旋转曲面的一般化,它的旋转轴不是固定在一点上,而是在基面上沿着光滑的轨迹旋转。此外,获得上述曲面的作用并不需要仅仅是旋转,而是将任何 "合适的 "平面等值变换应用于某一光滑轮廓曲线的各点。与平滑设置类比,如果轴脚点在基平面上扫过一条折线,如果轮廓曲线是离散选择的,那么就会得到一个具有梯形面的 T 型面体(离散 T 型面)。在此过程中,采用了一种运动学方法,即算法首先尝试找到与点云相关的上述轴线方向。然后,算法会找到一条多边形路径,轴脚点就会在这条路径上移动。最后,通过对经过轴线及其脚点的平面对点云进行适当切割,重建曲面。从应用的角度来看,生成这些曲面的直接性决定了它们可以用于建筑和设计过程。事实上,我们可以发现许多建筑物体都属于 T 型曲面的子类,如旋转曲面和成型曲面。此外,离散型表面的平面性为工业中的钢结构/玻璃结构铺平了道路。最后,这些曲面还适用于可变换设计,因为它们允许在其类别内进行等距变形。
{"title":"Shape reconstruction of trapezoidal surfaces from unorganized point clouds","authors":"Arvin Rasoulzadeh, Martin Kilian, Georg Nawratil","doi":"10.1016/j.cagd.2024.102367","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102367","url":null,"abstract":"<div><p>A smooth T-surface can be thought of as a generalization of a surface of revolution in such a way that the axis of rotation is not fixed at one point but rather traces a smooth path on the base plane. Furthermore, the action, by which the aforementioned surface is obtained does not need to be merely rotation but any “suitable” planar equiform transformation applied to the points of a certain smooth profile curve. In analogy to the smooth setting, if the axis footpoints sweep a polyline on the base plane and if the profile curve is discretely chosen then a T-hedra (discrete T-surface) with trapezoidal faces is obtained.</p><p>The goal of this article is to reconstruct a T-hedron from an already given unorganized point cloud of a T-surface. In doing so, a kinematic approach is taken into account, where the algorithm at first tries to find the aforementioned axis direction associated with the point cloud. Then the algorithm finds a polygonal path through which the axis footpoint moves. Finally, by properly cutting the point cloud with the planes passing through the axis and its footpoints, it reconstructs the surface. The presented method is demonstrated using examples.</p><p>From an applied point of view, the straightforwardness of the generation of these surfaces predestines them for building and design processes. In fact, one can find many built objects belonging to the sub-classes of T-surfaces such as <em>surfaces of revolution</em> and <em>moulding surfaces</em>. Furthermore, the planarity of the faces of the discrete version paves the way for steel/glass construction in industry. Finally, these surfaces are also suitable for transformable designs as they allow an isometric deformation within their class.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102367"},"PeriodicalIF":1.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001018/pdfft?md5=a89afc76375e1a62b939020faa4c744d&pid=1-s2.0-S0167839624001018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geometric surface models are extensively utilized in brain imaging to analyze and compare three-dimensional anatomical shapes. Due to the intricate nature of the brain surface, rather than examining the entire cortical surface, we are introducing a new set of signatures focused on characteristics of the hippocampal region, which is linked to aspects of Alzheimer's disease. Our approach focuses on Ricci flow as a conformal parameterization method, permitting us to calculate the conformal factor and mean curvature as conformal surface representations to identify distinct regions within a three-dimensional mesh. For the first time for such settings, we propose a simple while elegant formulation by employing the well-established concept of Shannon entropy on these well-known features. This compact while rich feature formulation turns out to lead to an efficient local surface encoding. We are validating its effectiveness through a series of preliminary experiments on 3D MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), with the aim of diagnosing Alzheimer's disease. The feature vectors generated and inputted into the XGBoost classifier demonstrate a remarkable level of accuracy, further emphasizing their potential as a valuable additional measure for surface-based cortical morphometry in Alzheimer's disease research.
{"title":"Alzheimer's disease diagnosis by applying Shannon entropy to Ricci flow-based surface indexing and extreme gradient boosting","authors":"Fatemeh Ahmadi, Behroz Bidabad, Mohamad-Ebrahim Shiri, Maral Sedaghat","doi":"10.1016/j.cagd.2024.102364","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102364","url":null,"abstract":"<div><p>Geometric surface models are extensively utilized in brain imaging to analyze and compare three-dimensional anatomical shapes. Due to the intricate nature of the brain surface, rather than examining the entire cortical surface, we are introducing a new set of signatures focused on characteristics of the hippocampal region, which is linked to aspects of Alzheimer's disease. Our approach focuses on Ricci flow as a conformal parameterization method, permitting us to calculate the conformal factor and mean curvature as conformal surface representations to identify distinct regions within a three-dimensional mesh. For the first time for such settings, we propose a simple while elegant formulation by employing the well-established concept of Shannon entropy on these well-known features. This compact while rich feature formulation turns out to lead to an efficient local surface encoding. We are validating its effectiveness through a series of preliminary experiments on 3D MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), with the aim of diagnosing Alzheimer's disease. The feature vectors generated and inputted into the XGBoost classifier demonstrate a remarkable level of accuracy, further emphasizing their potential as a valuable additional measure for surface-based cortical morphometry in Alzheimer's disease research.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102364"},"PeriodicalIF":1.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.cagd.2024.102366
Andreas Müller
Whilst Paul de Casteljau is now famous for his fundamental algorithm of curve and surface approximation, little is known about his other findings. This article offers an insight into his results in geometry, algebra and number theory.
Related to geometry, his classical algorithm is reviewed as an index reduction of a polar form. This idea is used to show de Casteljau's algebraic way of smoothing, which long went unnoticed. We will also see an analytic polar form and its use in finding the intersection of two curves. The article summarises unpublished material on metric geometry. It includes theoretical advances, e.g., the 14-point strophoid or a way to link Apollonian circles with confocal conics, and also practical applications such as a recurrence for conjugate mirrors in geometric optics. A view on regular polygons leads to an approximation of their diagonals by golden matrices, a generalisation of the golden ratio.
Relevant algebraic findings include matrix quaternions (and anti-quaternions) and their link with Lorentz' equations. De Casteljau generalised the Euclidean algorithm and developed an automated method for approximating the roots of a class of polynomial equations. His contributions to number theory not only include aspects on the sum of four squares as in quaternions, but also a view on a particular sum of three cubes. After a review of a complete quadrilateral in a heptagon and its angles, the paper concludes with a summary of de Casteljau's key achievements.
The article contains a comprehensive bibliography of de Casteljau's works, including previously unpublished material.
{"title":"A tour d'horizon of de Casteljau's work","authors":"Andreas Müller","doi":"10.1016/j.cagd.2024.102366","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102366","url":null,"abstract":"<div><p>Whilst Paul de Casteljau is now famous for his fundamental algorithm of curve and surface approximation, little is known about his other findings. This article offers an insight into his results in geometry, algebra and number theory.</p><p>Related to geometry, his classical algorithm is reviewed as an index reduction of a polar form. This idea is used to show de Casteljau's algebraic way of smoothing, which long went unnoticed. We will also see an analytic polar form and its use in finding the intersection of two curves. The article summarises unpublished material on metric geometry. It includes theoretical advances, e.g., the 14-point strophoid or a way to link Apollonian circles with confocal conics, and also practical applications such as a recurrence for conjugate mirrors in geometric optics. A view on regular polygons leads to an approximation of their diagonals by golden matrices, a generalisation of the golden ratio.</p><p>Relevant algebraic findings include matrix quaternions (and anti-quaternions) and their link with Lorentz' equations. De Casteljau generalised the Euclidean algorithm and developed an automated method for approximating the roots of a class of polynomial equations. His contributions to number theory not only include aspects on the sum of four squares as in quaternions, but also a view on a particular sum of three cubes. After a review of a complete quadrilateral in a heptagon and its angles, the paper concludes with a summary of de Casteljau's key achievements.</p><p>The article contains a comprehensive bibliography of de Casteljau's works, including previously unpublished material.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102366"},"PeriodicalIF":1.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001006/pdfft?md5=3258b55a89826636b158851c6197a7cf&pid=1-s2.0-S0167839624001006-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}