Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102316
Xiyu Bao , Meng Qi , Chenglei Yang , Wei Gai
In motion planning, two-dimensional (2D) splinegons are typically used to represent the contours of 2D objects. In general, a 2D splinegon must be pre-decomposed to support rapid queries of the shortest paths or visibility. Herein, we propose a new region decomposition strategy, known as the Voronoi-based decomposition (VBD), based on the Voronoi diagram of curved boundary-segment generators (either convex or concave). The number of regions in the VBD is O(n+). Compared with the well-established horizontal visibility decomposition (HVD), whose complexity is O(n+), the VBD decomposition generally contains less regions because ≤, where n is the number of the vertices of the input splinegon, and and are the number of inserted vertices at the boundary. We systematically discuss the usage of VBD. Based on the VBD, the shortest path tree (SPT) can be computed in linear time. Statistics show that the VBD performs faster than HVD in SPT computations. Additionally, based on the SPT, we design algorithms that can rapidly compute the visibility between two points, the visible area of a point/line-segment, and the shortest path between two points.
{"title":"Voronoi-based splinegon decomposition and shortest-path tree computation","authors":"Xiyu Bao , Meng Qi , Chenglei Yang , Wei Gai","doi":"10.1016/j.cagd.2024.102316","DOIUrl":"10.1016/j.cagd.2024.102316","url":null,"abstract":"<div><p>In motion planning, two-dimensional (2D) splinegons are typically used to represent the contours of 2D objects. In general, a 2D splinegon must be pre-decomposed to support rapid queries of the shortest paths or visibility. Herein, we propose a new region decomposition strategy, known as the Voronoi-based decomposition (VBD), based on the Voronoi diagram of curved boundary-segment generators (either convex or concave). The number of regions in the VBD is O(<em>n</em>+<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>). Compared with the well-established horizontal visibility decomposition (HVD), whose complexity is O(<em>n</em>+<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), the VBD decomposition generally contains less regions because <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>≤<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where <em>n</em> is the number of the vertices of the input splinegon, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are the number of inserted vertices at the boundary. We systematically discuss the usage of VBD. Based on the VBD, the shortest path tree (SPT) can be computed in linear time. Statistics show that the VBD performs faster than HVD in SPT computations. Additionally, based on the SPT, we design algorithms that can rapidly compute the visibility between two points, the visible area of a point/line-segment, and the shortest path between two points.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102316"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140758403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102326
Zitong He , Peisheng Zhuo , Hongwei Lin , Junfei Dai
In recent years, with the rapid development of the computer aided design and computer graphics, a large number of 3D models have emerged, making it a challenge to quickly find models of interest. As a concise and informative representation of 3D models, shape descriptors are a key factor in achieving effective retrieval. In this paper, we propose a novel global descriptor for 3D models that incorporates both geometric and topological information. We refer to this descriptor as the persistent heat kernel signature descriptor (PHKS). Constructed by concatenating our isometry-invariant geometric descriptor with topological descriptor, PHKS possesses high recognition ability, while remaining insensitive to noise and can be efficiently calculated. Retrieval experiments of 3D models on the benchmark datasets show considerable performance gains of the proposed method compared to other descriptors based on HKS and advanced topological descriptors.
{"title":"3D shape descriptor design based on HKS and persistent homology with stability analysis","authors":"Zitong He , Peisheng Zhuo , Hongwei Lin , Junfei Dai","doi":"10.1016/j.cagd.2024.102326","DOIUrl":"10.1016/j.cagd.2024.102326","url":null,"abstract":"<div><p>In recent years, with the rapid development of the computer aided design and computer graphics, a large number of 3D models have emerged, making it a challenge to quickly find models of interest. As a concise and informative representation of 3D models, shape descriptors are a key factor in achieving effective retrieval. In this paper, we propose a novel global descriptor for 3D models that incorporates both geometric and topological information. We refer to this descriptor as the <em>persistent heat kernel signature descriptor</em> (PHKS). Constructed by concatenating our isometry-invariant geometric descriptor with topological descriptor, PHKS possesses high recognition ability, while remaining insensitive to noise and can be efficiently calculated. Retrieval experiments of 3D models on the benchmark datasets show considerable performance gains of the proposed method compared to other descriptors based on HKS and advanced topological descriptors.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102326"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140760451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102315
Yueji Ma , Yanzun Meng , Dong Xiao , Zuoqiang Shi , Bin Wang
In this paper, we propose a novel surface reconstruction method for unoriented points by establishing and solving a nonlinear equation system. By treating normals as unknown parameters and imposing the conditions that the implicit field is constant and its gradients parallel to the normals on the input point cloud, we establish a nonlinear equation system involving the oriented normals. To simplify the system, we transform it into a 0-1 integer programming problem solely focusing on orientation by incorporating inconsistent oriented normal information through PCA. We solve the simplified problem using flipping-based iterative algorithms and propose two novel criteria for flipping based on theoretical analysis.
Extensive experiments on renowned datasets demonstrate that our flipping-based method with wavelet surface reconstruction achieves state-of-the-art results in orientation and reconstruction. Furthermore, it exhibits linear computational and storage complexity by leveraging the orthogonality and compact support properties of wavelet bases. The source code is available at https://github.com/mayueji/FISR_code.
{"title":"Flipping-based iterative surface reconstruction for unoriented points","authors":"Yueji Ma , Yanzun Meng , Dong Xiao , Zuoqiang Shi , Bin Wang","doi":"10.1016/j.cagd.2024.102315","DOIUrl":"10.1016/j.cagd.2024.102315","url":null,"abstract":"<div><p>In this paper, we propose a novel surface reconstruction method for unoriented points by establishing and solving a nonlinear equation system. By treating normals as unknown parameters and imposing the conditions that the implicit field is constant and its gradients parallel to the normals on the input point cloud, we establish a nonlinear equation system involving the oriented normals. To simplify the system, we transform it into a 0-1 integer programming problem solely focusing on orientation by incorporating inconsistent oriented normal information through PCA. We solve the simplified problem using flipping-based iterative algorithms and propose two novel criteria for flipping based on theoretical analysis.</p><p>Extensive experiments on renowned datasets demonstrate that our flipping-based method with wavelet surface reconstruction achieves state-of-the-art results in orientation and reconstruction. Furthermore, it exhibits linear computational and storage complexity by leveraging the orthogonality and compact support properties of wavelet bases. The source code is available at <span>https://github.com/mayueji/FISR_code</span><svg><path></path></svg>.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102315"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140775858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102324
Weiwei Zheng, Haiyan Wu, Gang Xu, Ran Ling, Renshu Gu
Compared to triangular meshes, high-quality quadrilateral meshes offer significant advantages in the field of simulation. However, generating high-quality quadrilateral meshes has always been a challenging task. By synthesizing high-quality quadrilateral meshes based on existing ones through Boolean operations such as mesh intersection, union, and difference, the automation level of quadrilateral mesh modeling can be improved. This significantly reduces modeling time. We propose a feature-preserving quadrilateral mesh Boolean operation method that can generate high-quality all-quadrilateral meshes through Boolean operations while preserving the geometric features and shape of the original mesh. Our method, guided by cross-field techniques, aligns mesh faces with geometric features of the model and maximally preserves the original mesh's geometric shape and layout. Compared to traditional quadrilateral mesh generation methods, our approach demonstrates higher efficiency, offering a substantial improvement to the pipeline of mesh-based modeling tools.
{"title":"Feature-preserving quadrilateral mesh Boolean operation with cross-field guided layout blending","authors":"Weiwei Zheng, Haiyan Wu, Gang Xu, Ran Ling, Renshu Gu","doi":"10.1016/j.cagd.2024.102324","DOIUrl":"10.1016/j.cagd.2024.102324","url":null,"abstract":"<div><p>Compared to triangular meshes, high-quality quadrilateral meshes offer significant advantages in the field of simulation. However, generating high-quality quadrilateral meshes has always been a challenging task. By synthesizing high-quality quadrilateral meshes based on existing ones through Boolean operations such as mesh intersection, union, and difference, the automation level of quadrilateral mesh modeling can be improved. This significantly reduces modeling time. We propose a feature-preserving quadrilateral mesh Boolean operation method that can generate high-quality all-quadrilateral meshes through Boolean operations while preserving the geometric features and shape of the original mesh. Our method, guided by cross-field techniques, aligns mesh faces with geometric features of the model and maximally preserves the original mesh's geometric shape and layout. Compared to traditional quadrilateral mesh generation methods, our approach demonstrates higher efficiency, offering a substantial improvement to the pipeline of mesh-based modeling tools.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102324"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140769741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102313
Zheng Zhan , Wenping Wang , Falai Chen
One prominent step in isogeometric analysis (IGA) is known as domain parameterization, that is, finding a parametric spline representation for a computational domain. Typically, domain parameterization is divided into two separate steps: identifying an appropriate boundary correspondence and then parameterizing the interior region. However, this separation significantly degrades the quality of the parameterization. To attain high-quality parameterization, it is necessary to optimize both the boundary correspondence and the interior mapping simultaneously, referred to as integral parameterization. In a prior research, an integral parameterization approach for planar domains based on neural networks was introduced. One limitation of this approach is that the neural network has no ability of generalization, that is, a network has to be trained to obtain a parameterization for each specific computational domain. In this article, we propose an efficient enhancement over this work, and we train a network which has the capacity of generalization—once the network is trained, a parameterization can be immediately obtained for each specific computational via evaluating the network. The new network greatly speeds up the parameterization process by two orders of magnitudes. We evaluate the performance of the new network on the MPEG data set and a self-design data set, and experimental results demonstrate the superiority of our algorithm compared to state-of-the-art parameterization methods.
{"title":"Fast parameterization of planar domains for isogeometric analysis via generalization of deep neural network","authors":"Zheng Zhan , Wenping Wang , Falai Chen","doi":"10.1016/j.cagd.2024.102313","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102313","url":null,"abstract":"<div><p>One prominent step in isogeometric analysis (IGA) is known as domain parameterization, that is, finding a parametric spline representation for a computational domain. Typically, domain parameterization is divided into two separate steps: identifying an appropriate boundary correspondence and then parameterizing the interior region. However, this separation significantly degrades the quality of the parameterization. To attain high-quality parameterization, it is necessary to optimize both the boundary correspondence and the interior mapping simultaneously, referred to as integral parameterization. In a prior research, an integral parameterization approach for planar domains based on neural networks was introduced. One limitation of this approach is that the neural network has no ability of generalization, that is, a network has to be trained to obtain a parameterization for each specific computational domain. In this article, we propose an efficient enhancement over this work, and we train a network which has the capacity of generalization—once the network is trained, a parameterization can be immediately obtained for each specific computational via evaluating the network. The new network greatly speeds up the parameterization process by two orders of magnitudes. We evaluate the performance of the new network on the MPEG data set and a self-design data set, and experimental results demonstrate the superiority of our algorithm compared to state-of-the-art parameterization methods.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102313"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102302
Yang Ji , Shibo Liu , Jia-Peng Guo , Jian-Ping Su , Xiao-Ming Fu
High-order mesh optimization has many goals, such as improving smoothness, reducing approximation error, and improving mesh quality. The previous methods do not optimize these objectives together, resulting in suboptimal results. To this end, we propose a multi-objective optimization method for high-order meshes. Central to our algorithm is using the multi-objective genetic algorithm (MOGA) to adapt to the multiple optimization objectives. Specifically, we optimize each control point one by one, where the MOGA is applied. We demonstrate the feasibility and effectiveness of our method over various models. Compared to other state-of-the-art methods, our method achieves a favorable trade-off between multiple objectives.
{"title":"Evolutionary multi-objective high-order tetrahedral mesh optimization","authors":"Yang Ji , Shibo Liu , Jia-Peng Guo , Jian-Ping Su , Xiao-Ming Fu","doi":"10.1016/j.cagd.2024.102302","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102302","url":null,"abstract":"<div><p>High-order mesh optimization has many goals, such as improving smoothness, reducing approximation error, and improving mesh quality. The previous methods do not optimize these objectives together, resulting in suboptimal results. To this end, we propose a multi-objective optimization method for high-order meshes. Central to our algorithm is using the multi-objective genetic algorithm (MOGA) to adapt to the multiple optimization objectives. Specifically, we optimize each control point one by one, where the MOGA is applied. We demonstrate the feasibility and effectiveness of our method over various models. Compared to other state-of-the-art methods, our method achieves a favorable trade-off between multiple objectives.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102302"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102321
Jiayi Dai , Yiqun Wang , Dong-Ming Yan
Recent advancements in shrink-wrapping-based mesh approximation have shown tremendous advantages for non-manifold defective meshes. However, these methods perform unsatisfactorily when maintaining the regions with sharp features and rich details of the input mesh. We propose an adaptive shrink-wrapping method based on the recent Alpha Wrapping technique, offering improved feature preservation while handling defective inputs. The proposed approach comprises three main steps. First, we compute a new sizing field with the capability to assess the discretization density of non-manifold defective meshes. Then, we generate a mesh feature skeleton by projecting input feature lines onto the offset surface, ensuring the preservation of sharp features. Finally, an adaptive wrapping approach based on normal projection is applied to preserve the regions with sharp features and rich details simultaneously. By conducting experimental tests on various datasets including Thingi10k, ABC, and GrabCAD, we demonstrate that our method exhibits significant improvements in mesh fidelity compared to the Alpha Wrapping method, while maintaining the advantage of manifold property inherited from shrink-wrapping methods.
{"title":"Feature-preserving shrink wrapping with adaptive alpha","authors":"Jiayi Dai , Yiqun Wang , Dong-Ming Yan","doi":"10.1016/j.cagd.2024.102321","DOIUrl":"10.1016/j.cagd.2024.102321","url":null,"abstract":"<div><p>Recent advancements in shrink-wrapping-based mesh approximation have shown tremendous advantages for non-manifold defective meshes. However, these methods perform unsatisfactorily when maintaining the regions with sharp features and rich details of the input mesh. We propose an adaptive shrink-wrapping method based on the recent Alpha Wrapping technique, offering improved feature preservation while handling defective inputs. The proposed approach comprises three main steps. First, we compute a new sizing field with the capability to assess the discretization density of non-manifold defective meshes. Then, we generate a mesh feature skeleton by projecting input feature lines onto the offset surface, ensuring the preservation of sharp features. Finally, an adaptive wrapping approach based on normal projection is applied to preserve the regions with sharp features and rich details simultaneously. By conducting experimental tests on various datasets including Thingi10k, ABC, and GrabCAD, we demonstrate that our method exhibits significant improvements in mesh fidelity compared to the Alpha Wrapping method, while maintaining the advantage of manifold property inherited from shrink-wrapping methods.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102321"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140769915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102306
Sipeng Yang , Wenhui Ren , Xiwen Zeng , Qingchuan Zhu , Hongbo Fu , Kaijun Fan , Lei Yang , Jingping Yu , Qilong Kou , Xiaogang Jin
3D mesh denoising is a crucial pre-processing step in many graphics applications. However, existing data-driven mesh denoising models, primarily trained on synthetic white noise, are less effective when applied to real-world meshes with the noise of complex intensities and distributions. Moreover, how to comprehensively capture information from input meshes and apply suitable denoising models for feature-preserving mesh denoising remains a critical and unresolved challenge. This paper presents a rotation-Equivariant model-based Mesh Denoising (EMD) model and a Realistic Mesh Noise Generation (RMNG) model to address these issues. Our EMD model leverages rotation-equivariant features and self-attention weights of geodesic patches for more effective feature extraction, thereby achieving SOTA denoising results. The RMNG model, based on the Generative Adversarial Networks (GANs) architecture, generates massive amounts of realistic noisy and noiseless mesh pairs data for data-driven mesh denoising model training, significantly benefiting real-world denoising tasks. To address the smooth degradation and loss of sharp edges commonly observed in captured meshes, we further introduce varying levels of Laplacian smoothing to input meshes during the paired training data generation, endowing the trained denoising model with feature recovery capabilities. Experimental results demonstrate the superior performance of our proposed method in preserving fine-grained features while removing noise on real-world captured meshes.
三维网格去噪是许多图形应用中至关重要的预处理步骤。然而,现有的数据驱动网格去噪模型主要是在合成白噪声的基础上进行训练的,当应用到具有复杂强度和分布噪声的真实世界网格时,其效果并不理想。此外,如何从输入网格中全面捕捉信息,并应用合适的去噪模型对网格进行保全特征去噪,仍然是一个关键且尚未解决的难题。本文提出了基于旋转-等变模型的网格去噪模型(EMD)和现实网格噪声生成模型(RMNG)来解决这些问题。我们的 EMD 模型利用旋转平方特征和测地补丁的自关注权重进行更有效的特征提取,从而实现 SOTA 去噪效果。基于生成对抗网络(GANs)架构的RMNG模型可生成大量真实的有噪声和无噪声网格对数据,用于数据驱动的网格去噪模型训练,极大地改进了现实世界中的去噪任务。为了解决捕捉到的网格中常见的平滑退化和锐利边缘丢失问题,我们在生成成对训练数据时进一步对输入网格引入了不同程度的拉普拉斯平滑处理,从而赋予训练好的去噪模型以特征恢复能力。实验结果表明,我们提出的方法在保留细粒度特征的同时,还能去除真实世界中捕捉到的网格上的噪声,性能优越。
{"title":"Generated realistic noise and rotation-equivariant models for data-driven mesh denoising","authors":"Sipeng Yang , Wenhui Ren , Xiwen Zeng , Qingchuan Zhu , Hongbo Fu , Kaijun Fan , Lei Yang , Jingping Yu , Qilong Kou , Xiaogang Jin","doi":"10.1016/j.cagd.2024.102306","DOIUrl":"10.1016/j.cagd.2024.102306","url":null,"abstract":"<div><p>3D mesh denoising is a crucial pre-processing step in many graphics applications. However, existing data-driven mesh denoising models, primarily trained on synthetic white noise, are less effective when applied to real-world meshes with the noise of complex intensities and distributions. Moreover, how to comprehensively capture information from input meshes and apply suitable denoising models for feature-preserving mesh denoising remains a critical and unresolved challenge. This paper presents a rotation-Equivariant model-based Mesh Denoising (EMD) model and a Realistic Mesh Noise Generation (RMNG) model to address these issues. Our EMD model leverages rotation-equivariant features and self-attention weights of geodesic patches for more effective feature extraction, thereby achieving SOTA denoising results. The RMNG model, based on the Generative Adversarial Networks (GANs) architecture, generates massive amounts of realistic noisy and noiseless mesh pairs data for data-driven mesh denoising model training, significantly benefiting real-world denoising tasks. To address the smooth degradation and loss of sharp edges commonly observed in captured meshes, we further introduce varying levels of Laplacian smoothing to input meshes during the paired training data generation, endowing the trained denoising model with feature recovery capabilities. Experimental results demonstrate the superior performance of our proposed method in preserving fine-grained features while removing noise on real-world captured meshes.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102306"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140787282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102325
Hang Li, Zheng Guan, Xue Wang, Qiuhan Shao
Current infrared and visible image fusion (IVIF) methods lack ground truth and require prior knowledge to guide the feature fusion process. However, in the fusion process, these features have not been placed in an equal and well-defined position, which causes the degradation of image quality. To address this challenge, this study develops a new end-to-end model, termed unpaired high-quality image-guided generative adversarial network (UHG-GAN). Specifically, we introduce the high-quality image as the reference standard of the fused image and employ a global discriminator and a local discriminator to identify the distribution difference between the high-quality image and the fused image. Through adversarial learning, the generator can generate images that are more consistent with high-quality expression. In addition, we also designed the laplacian pyramid augmentation (LPA) module in the generator, which integrates multi-scale features of source images across domains so that the generator can more fully extract the structure and texture information. Extensive experiments demonstrate that our method can effectively preserve the target information in the infrared image and the scene information in the visible image and significantly improve the image quality.
{"title":"Unpaired high-quality image-guided infrared and visible image fusion via generative adversarial network","authors":"Hang Li, Zheng Guan, Xue Wang, Qiuhan Shao","doi":"10.1016/j.cagd.2024.102325","DOIUrl":"10.1016/j.cagd.2024.102325","url":null,"abstract":"<div><p>Current infrared and visible image fusion (IVIF) methods lack ground truth and require prior knowledge to guide the feature fusion process. However, in the fusion process, these features have not been placed in an equal and well-defined position, which causes the degradation of image quality. To address this challenge, this study develops a new end-to-end model, termed unpaired high-quality image-guided generative adversarial network (UHG-GAN). Specifically, we introduce the high-quality image as the reference standard of the fused image and employ a global discriminator and a local discriminator to identify the distribution difference between the high-quality image and the fused image. Through adversarial learning, the generator can generate images that are more consistent with high-quality expression. In addition, we also designed the laplacian pyramid augmentation (LPA) module in the generator, which integrates multi-scale features of source images across domains so that the generator can more fully extract the structure and texture information. Extensive experiments demonstrate that our method can effectively preserve the target information in the infrared image and the scene information in the visible image and significantly improve the image quality.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102325"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140797052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.cagd.2024.102314
Yueqing Dai , Jian-Ping Su , Xiao-Ming Fu
We propose a novel method to generate high-quality triangular meshes with specified anisotropy. Central to our algorithm is to present metric-adapted embeddings for converting the anisotropic meshing problem to an isotropic meshing problem with constant density. Moreover, the orientation of the input Riemannian metric forms a field, enabling us to use field-based meshing techniques to improve regularity and penalize obtuse angles. To achieve such metric-adapted embeddings, we use the cone singularities, which are generated to adapt to the input Riemannian metric. We demonstrate the feasibility and effectiveness of our method over various models. Compared to other state-of-the-art methods, our method achieves higher quality on all metrics in most models.
{"title":"Anisotropic triangular meshing using metric-adapted embeddings","authors":"Yueqing Dai , Jian-Ping Su , Xiao-Ming Fu","doi":"10.1016/j.cagd.2024.102314","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102314","url":null,"abstract":"<div><p>We propose a novel method to generate high-quality triangular meshes with specified anisotropy. Central to our algorithm is to present metric-adapted embeddings for converting the anisotropic meshing problem to an isotropic meshing problem with constant density. Moreover, the orientation of the input Riemannian metric forms a field, enabling us to use field-based meshing techniques to improve regularity and penalize obtuse angles. To achieve such metric-adapted embeddings, we use the cone singularities, which are generated to adapt to the input Riemannian metric. We demonstrate the feasibility and effectiveness of our method over various models. Compared to other state-of-the-art methods, our method achieves higher quality on all metrics in most models.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102314"},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}