Pub Date : 2024-05-13DOI: 10.1016/j.cagd.2024.102345
Stephen Mann
This paper describes an implementation and tests of a blending scheme for regularly sampled data interpolation, and in particular studies the order of approximation for the method. This particular implementation is a special case of an earlier scheme by Fang for fitting a parametric surface to interpolate the vertices of a closed polyhedron with n-sided faces, where a surface patch is constructed for each face of the polyhedron, and neighbouring faces can meet with a user specified order of continuity. The specialization described in this paper considers functions of the form with the patches meeting with continuity. This restriction allows for investigation of order of approximation, and it is shown that the functional version of Fang's scheme has polynomial precision.
本文描述了一种用于规则采样数据插值的混合方案的实施和测试,特别研究了该方法的近似阶次。这种特殊的实现方法是方方早先提出的参数曲面拟合方案的一个特例,该方案用于对具有 n 个面的封闭多面体的顶点进行插值,为多面体的每个面构建一个曲面补丁,相邻面可以按照用户指定的连续性顺序相接。本文中描述的特殊化考虑了z=f(x,y)形式的函数,其补丁以 C2 连续性相接。这一限制允许对近似阶数进行研究,并表明方氏方案的函数版本具有多项式精度。
{"title":"Investigations of a functional version of a blending surface scheme for regular data interpolation","authors":"Stephen Mann","doi":"10.1016/j.cagd.2024.102345","DOIUrl":"10.1016/j.cagd.2024.102345","url":null,"abstract":"<div><p>This paper describes an implementation and tests of a blending scheme for regularly sampled data interpolation, and in particular studies the order of approximation for the method. This particular implementation is a special case of an earlier scheme by Fang for fitting a parametric surface to interpolate the vertices of a closed polyhedron with <em>n</em>-sided faces, where a surface patch is constructed for each face of the polyhedron, and neighbouring faces can meet with a user specified order of continuity. The specialization described in this paper considers functions of the form <span><math><mi>z</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> with the patches meeting with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> continuity. This restriction allows for investigation of order of approximation, and it is shown that the functional version of Fang's scheme has polynomial precision.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102345"},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624000797/pdfft?md5=1305b2062d4430bed826c2aa0d0b8ef1&pid=1-s2.0-S0167839624000797-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141040547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.cagd.2024.102342
Hofit Ben-Zion Vardi, Nira Dyn, Nir Sharon
This paper introduces a family of subdivision schemes that generate curves over manifolds from manifold-Hermite data. This data consists of points and tangent directions sampled from a curve over a manifold. Using a manifold-Hermite average based on the De Casteljau algorithm as our main building block, we show how to adapt a geometric approach for curve approximation over manifold-Hermite data. The paper presents the various definitions and provides several analysis methods for characterizing properties of both the average and the resulting subdivision schemes based on it. Demonstrative figures accompany the paper's presentation and analysis.
本文介绍了一系列细分方案,这些方案可根据流形-赫米特数据生成流形上的曲线。这些数据包括从流形上的曲线中采样的点和切线方向。我们以基于 De Casteljau 算法的流形-Hermite 平均法为主要构件,展示了如何采用几何方法对流形-Hermite 数据进行曲线逼近。本文介绍了各种定义,并提供了几种分析方法,用于描述平均值和基于平均值的细分方案的特性。本文的介绍和分析还附有演示图。
{"title":"Hermite subdivision schemes for manifold-valued Hermite data","authors":"Hofit Ben-Zion Vardi, Nira Dyn, Nir Sharon","doi":"10.1016/j.cagd.2024.102342","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102342","url":null,"abstract":"<div><p>This paper introduces a family of subdivision schemes that generate curves over manifolds from manifold-Hermite data. This data consists of points and tangent directions sampled from a curve over a manifold. Using a manifold-Hermite average based on the De Casteljau algorithm as our main building block, we show how to adapt a geometric approach for curve approximation over manifold-Hermite data. The paper presents the various definitions and provides several analysis methods for characterizing properties of both the average and the resulting subdivision schemes based on it. Demonstrative figures accompany the paper's presentation and analysis.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102342"},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.cagd.2024.102330
Zhihao Wang , Juan Cao , Tuan Guan , Zhonggui Chen , Yongjie Jessica Zhang
This paper introduces a novel class of fair and interpolatory planar curves called pκ-curves. These curves are comprised of smoothly stitched Bézier curve segments, where the curvature distribution of each segment is made to closely resemble a parabola, resulting in an aesthetically pleasing shape. Moreover, each segment passes through an interpolated point at a parameter where the parabola has an extremum, encouraging the alignment of interpolated points with curvature extrema. To achieve these properties, we tailor an energy functional that guides the optimization process to obtain the desired curve characteristics. Additionally, we develop an efficient algorithm and an initialization method, enabling interactive modeling of the pκ-curves without the need for global optimization. We provide various examples and comparisons with existing state-of-the-art methods to demonstrate the curve modeling capabilities and visually pleasing appearance of pκ-curves.
{"title":"pκ-Curves: Interpolatory curves with curvature approximating a parabola","authors":"Zhihao Wang , Juan Cao , Tuan Guan , Zhonggui Chen , Yongjie Jessica Zhang","doi":"10.1016/j.cagd.2024.102330","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102330","url":null,"abstract":"<div><p>This paper introduces a novel class of fair and interpolatory planar curves called <em>pκ</em>-curves. These curves are comprised of smoothly stitched Bézier curve segments, where the curvature distribution of each segment is made to closely resemble a parabola, resulting in an aesthetically pleasing shape. Moreover, each segment passes through an interpolated point at a parameter where the parabola has an extremum, encouraging the alignment of interpolated points with curvature extrema. To achieve these properties, we tailor an energy functional that guides the optimization process to obtain the desired curve characteristics. Additionally, we develop an efficient algorithm and an initialization method, enabling interactive modeling of the <em>pκ</em>-curves without the need for global optimization. We provide various examples and comparisons with existing state-of-the-art methods to demonstrate the curve modeling capabilities and visually pleasing appearance of <em>pκ</em>-curves.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102330"},"PeriodicalIF":1.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1016/j.cagd.2024.102322
Jiaze Li , Luo Zhang , Jiangbei Hu , Zhebin Zhang , Hongyu Sun , Gaochao Song , Ying He
Recent breakthroughs in neural radiance fields have significantly advanced the field of novel view synthesis and 3D reconstruction from multi-view images. However, the prevalent neural volume rendering techniques often suffer from long rendering time and require extensive network training. To address these limitations, recent initiatives have explored explicit voxel representations of scenes to expedite training. Yet, they often fall short in delivering accurate geometric reconstructions due to a lack of effective 3D representation. In this paper, we propose an octree-based approach for the reconstruction of implicit surfaces from multi-view images. Leveraging an explicit, network-free data structure, our method substantially increases rendering speed, achieving real-time performance. Moreover, our reconstruction technique yields surfaces with quality comparable to state-of-the-art network-based learning methods. The source code and data can be downloaded from https://github.com/LaoChui999/Octree-VolSDF.
{"title":"Real-time volume rendering with octree-based implicit surface representation","authors":"Jiaze Li , Luo Zhang , Jiangbei Hu , Zhebin Zhang , Hongyu Sun , Gaochao Song , Ying He","doi":"10.1016/j.cagd.2024.102322","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102322","url":null,"abstract":"<div><p>Recent breakthroughs in neural radiance fields have significantly advanced the field of novel view synthesis and 3D reconstruction from multi-view images. However, the prevalent neural volume rendering techniques often suffer from long rendering time and require extensive network training. To address these limitations, recent initiatives have explored explicit voxel representations of scenes to expedite training. Yet, they often fall short in delivering accurate geometric reconstructions due to a lack of effective 3D representation. In this paper, we propose an octree-based approach for the reconstruction of implicit surfaces from multi-view images. Leveraging an explicit, network-free data structure, our method substantially increases rendering speed, achieving real-time performance. Moreover, our reconstruction technique yields surfaces with quality comparable to state-of-the-art network-based learning methods. The source code and data can be downloaded from <span>https://github.com/LaoChui999/Octree-VolSDF</span><svg><path></path></svg>.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102322"},"PeriodicalIF":1.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1016/j.cagd.2024.102303
Angyan Li, Lizheng Lu, Kesheng Wang
We study planar quartic Hermite interpolation, that is, a quartic polynomial curve interpolating two planar data points along with the associated tangent directions and curvatures. When the two specified tangent directions are non-parallel, a quartic Bézier curve interpolating such data is constructed using two geometrically meaningful shape parameters which denote the magnitudes of end tangent vectors. We then determine the two parameters by minimizing a quadratic energy functional or curvature variation energy. When the two specified tangent directions are parallel, a quartic interpolating curve exists only when an additional condition on data is satisfied, and we propose a modified optimization approach. Finally, we demonstrate the achievable quality with a range of examples and the application to curve modeling, and it allows to locally create smooth complex shapes. Compared with the existing quartic interpolation scheme, our method can generate more satisfactory results in terms of approximation accuracy and curvature profiles.
{"title":"Planar quartic G2 Hermite interpolation for curve modeling","authors":"Angyan Li, Lizheng Lu, Kesheng Wang","doi":"10.1016/j.cagd.2024.102303","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102303","url":null,"abstract":"<div><p>We study planar quartic <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Hermite interpolation, that is, a quartic polynomial curve interpolating two planar data points along with the associated tangent directions and curvatures. When the two specified tangent directions are non-parallel, a quartic Bézier curve interpolating such <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> data is constructed using two geometrically meaningful shape parameters which denote the magnitudes of end tangent vectors. We then determine the two parameters by minimizing a quadratic energy functional or curvature variation energy. When the two specified tangent directions are parallel, a quartic <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> interpolating curve exists only when an additional condition on <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> data is satisfied, and we propose a modified optimization approach. Finally, we demonstrate the achievable quality with a range of examples and the application to curve modeling, and it allows to locally create <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smooth complex shapes. Compared with the existing quartic interpolation scheme, our method can generate more satisfactory results in terms of approximation accuracy and curvature profiles.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102303"},"PeriodicalIF":1.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140947280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1016/j.cagd.2024.102323
Long Ma, Yuanfeng Zhou
An ellipse can be uniquely determined by five tangents. Given a convex quadrilateral, there are infinitely many ellipses inscribed in it, but the one with maximum area is unique. In this paper, we give a concise and effective solution of this problem. Our solution is composed of three steps: First, we transform the problem from the maximal ellipse construction problem into the minimal quadrilateral construction problem by an affine transformation. And then, we convert the construction problem into a conditional extremum problem by analyzing the key angles. At last, we derive the solution of the conditional extremum problem with Lagrangian multiplier. Based on the conclusion, we designed an algorithm to achieve the construction. The numerical experiment shows that the ellipse constructed by our algorithm has the maximum area. It is interesting and surprising that our constructions only need to solve quadratic equations, which means the geometric information of the ellipse can even be derived with ruler and compass constructions. The solution of this problem means all the construction problems of conic with extremum area from given pure tangents are solved, which is a necessary step to solve more problems of constructing ellipses with extremum areas. Our work also provides a useful conclusion to solve the maximal inscribed ellipse problem for an arbitrary polygon in Computational Geometry.
{"title":"Construction of the ellipse with maximum area inscribed in an arbitrary convex quadrilateral","authors":"Long Ma, Yuanfeng Zhou","doi":"10.1016/j.cagd.2024.102323","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102323","url":null,"abstract":"<div><p>An ellipse can be uniquely determined by five tangents. Given a convex quadrilateral, there are infinitely many ellipses inscribed in it, but the one with maximum area is unique. In this paper, we give a concise and effective solution of this problem. Our solution is composed of three steps: First, we transform the problem from the maximal ellipse construction problem into the minimal quadrilateral construction problem by an affine transformation. And then, we convert the construction problem into a conditional extremum problem by analyzing the key angles. At last, we derive the solution of the conditional extremum problem with Lagrangian multiplier. Based on the conclusion, we designed an algorithm to achieve the construction. The numerical experiment shows that the ellipse constructed by our algorithm has the maximum area. It is interesting and surprising that our constructions only need to solve quadratic equations, which means the geometric information of the ellipse can even be derived with ruler and compass constructions. The solution of this problem means all the construction problems of conic with extremum area from given pure tangents are solved, which is a necessary step to solve more problems of constructing ellipses with extremum areas. Our work also provides a useful conclusion to solve the maximal inscribed ellipse problem for an arbitrary polygon in Computational Geometry.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102323"},"PeriodicalIF":1.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.cagd.2024.102331
Emil Adiels, Mats Ander, Chris J.K. Williams
Surface geometry plays a central role in the design of bridges, vaults and shells, using various techniques for generating a geometry which aims to balance structural, spatial, aesthetic and construction requirements.
In this paper we propose the use of surfaces defined such that given closed curves subtend a constant solid angle at all points on the surface and form its boundary. Constant solid angle surfaces enable one to control the boundary slope and hence achieve an approximately constant span-to-height ratio as the span varies, making them structurally viable for shell structures. In addition, when the entire surface boundary is in the same plane, the slope of the surface around the boundary is constant and thus follows a principal curvature direction. Such surfaces are suitable for surface grids where planar quadrilaterals meet the surface boundaries. They can also be used as the Airy stress function in the form finding of shells having forces concentrated at the corners.
Our technique employs the Gauss-Bonnet theorem to calculate the solid angle of a point in space and Newton's method to move the point onto the constant solid angle surface. We use the Biot-Savart law to find the gradient of the solid angle. The technique can be applied in parallel to each surface point without an initial mesh, opening up for future studies and other applications when boundary curves are known but the initial topology is unknown.
We show the geometrical properties, possibilities and limitations of surfaces of constant solid angle using examples in three dimensions.
{"title":"The architectural application of shells whose boundaries subtend a constant solid angle","authors":"Emil Adiels, Mats Ander, Chris J.K. Williams","doi":"10.1016/j.cagd.2024.102331","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102331","url":null,"abstract":"<div><p>Surface geometry plays a central role in the design of bridges, vaults and shells, using various techniques for generating a geometry which aims to balance structural, spatial, aesthetic and construction requirements.</p><p>In this paper we propose the use of surfaces defined such that given closed curves subtend a constant solid angle at all points on the surface and form its boundary. Constant solid angle surfaces enable one to control the boundary slope and hence achieve an approximately constant span-to-height ratio as the span varies, making them structurally viable for shell structures. In addition, when the entire surface boundary is in the same plane, the slope of the surface around the boundary is constant and thus follows a principal curvature direction. Such surfaces are suitable for surface grids where planar quadrilaterals meet the surface boundaries. They can also be used as the Airy stress function in the form finding of shells having forces concentrated at the corners.</p><p>Our technique employs the Gauss-Bonnet theorem to calculate the solid angle of a point in space and Newton's method to move the point onto the constant solid angle surface. We use the Biot-Savart law to find the gradient of the solid angle. The technique can be applied in parallel to each surface point without an initial mesh, opening up for future studies and other applications when boundary curves are known but the initial topology is unknown.</p><p>We show the geometrical properties, possibilities and limitations of surfaces of constant solid angle using examples in three dimensions.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102331"},"PeriodicalIF":1.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140879527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.cagd.2024.102294
Shiyi Wang , Bochun Yang , Hujun Bao , Jin Huang
Tessellating CAD models into triangular meshes is a long-lasting problem. Size field is widely used to accommodate varieties of requirements in remeshing, and it is usually discretized and optimized on a prescribed background mesh and kept constant in the subsequent remeshing procedure. Instead, we propose optimizing the size field on the current mesh, then using it as guidance to generate the next mesh. This simple strategy eliminates the need of building a proper background mesh and greatly simplifies the size field query. For better quality and convergence, we also propose a geodesic distance based initialization and adaptive re-weighting strategy in size field optimization. Similar to existing methods, we also view the remeshing of a CAD model as the remeshing of its parameterization domain, which guarantees that all the vertices lie exactly on the CAD surfaces and eliminates the need for costly and error-prone projection operations. However, for vertex smoothing which is important for mesh quality, we carefully optimize the vertex's location in the parameterization domain for the optimal Delaunay triangulation condition, along with a high-order cubature scheme for better accuracy. Experiments show that our method is fast, accurate and controllable. Compared with state-of-the-art methods, our approach is fast and usually generates meshes with smaller Hausdorff error, larger minimal angle with a comparable number of triangles.
{"title":"Alternating size field optimizing and parameterization domain CAD model remeshing","authors":"Shiyi Wang , Bochun Yang , Hujun Bao , Jin Huang","doi":"10.1016/j.cagd.2024.102294","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102294","url":null,"abstract":"<div><p>Tessellating CAD models into triangular meshes is a long-lasting problem. Size field is widely used to accommodate varieties of requirements in remeshing, and it is usually discretized and optimized on a prescribed background mesh and kept constant in the subsequent remeshing procedure. Instead, we propose optimizing the size field on the current mesh, then using it as guidance to generate the next mesh. This simple strategy eliminates the need of building a proper background mesh and greatly simplifies the size field query. For better quality and convergence, we also propose a geodesic distance based initialization and adaptive re-weighting strategy in size field optimization. Similar to existing methods, we also view the remeshing of a CAD model as the remeshing of its parameterization domain, which guarantees that all the vertices lie exactly on the CAD surfaces and eliminates the need for costly and error-prone projection operations. However, for vertex smoothing which is important for mesh quality, we carefully optimize the vertex's location in the parameterization domain for the optimal Delaunay triangulation condition, along with a high-order cubature scheme for better accuracy. Experiments show that our method is fast, accurate and controllable. Compared with state-of-the-art methods, our approach is fast and usually generates meshes with smaller Hausdorff error, larger minimal angle with a comparable number of triangles.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102294"},"PeriodicalIF":1.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140879312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.cagd.2024.102290
Juan Gerardo Alcázar , Miroslav Lávička , Jan Vršek
In this paper, we address the computation of the symmetries of polynomial (and thus also rational) planar vector fields using elements from Computer Algebra. We show that they can be recovered from the symmetries of the roots of an associated univariate complex polynomial which is constructed as a generator of a certain elimination ideal. Computing symmetries of the roots of the auxiliary polynomial is a task considerably simpler than the original problem, which can be done efficiently working with classical Computer Algebra tools. Special cases, in which the group of symmetries of the polynomial roots is infinite, are separately considered and investigated. The presented theory is complemented by illustrative examples. The main steps of the procedure for investigating the symmetries of a given polynomial vector field are summarized in a flow chart for clarity.
{"title":"Symmetries of planar algebraic vector fields","authors":"Juan Gerardo Alcázar , Miroslav Lávička , Jan Vršek","doi":"10.1016/j.cagd.2024.102290","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102290","url":null,"abstract":"<div><p>In this paper, we address the computation of the symmetries of polynomial (and thus also rational) planar vector fields using elements from Computer Algebra. We show that they can be recovered from the symmetries of the roots of an associated univariate complex polynomial which is constructed as a generator of a certain elimination ideal. Computing symmetries of the roots of the auxiliary polynomial is a task considerably simpler than the original problem, which can be done efficiently working with classical Computer Algebra tools. Special cases, in which the group of symmetries of the polynomial roots is infinite, are separately considered and investigated. The presented theory is complemented by illustrative examples. The main steps of the procedure for investigating the symmetries of a given polynomial vector field are summarized in a flow chart for clarity.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102290"},"PeriodicalIF":1.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.cagd.2024.102338
Kaikai Qin, Yajuan Li, Chongyang Deng
In recent years, there has been growing interest in the representation of volumes within the field of geometric modeling (GM). While polygonal patches for surface modeling have been extensively studied, there has been little focus on the representation of polyhedral volumes. Inspired by the polygonal representation of the Generalized Bézier (GB) patch proposed by Várady et al. (2016), this paper introduces a novel method for polyhedral volumetric modeling called the Generalized Bézier (GB) volume.
GB volumes are defined over simple convex polyhedra using generalized barycentric coordinates (GBCs), with the control nets which are a direct generalization of those of tensor-product Bézier volumes. GB volumes can be smoothly connected to adjacent tensor-product Bézier or GB volumes with or continuity. Besides, when the parametric polyhedron becomes a prism, the GB volume also degenerates into a tensor-product form. We provide some practical examples to demonstrate the advantages of GB volumes. Suggestions for future work are also discussed.
{"title":"Generalized Bézier volumes over simple convex polyhedra","authors":"Kaikai Qin, Yajuan Li, Chongyang Deng","doi":"10.1016/j.cagd.2024.102338","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102338","url":null,"abstract":"<div><p>In recent years, there has been growing interest in the representation of volumes within the field of geometric modeling (GM). While <em>polygonal</em> patches for surface modeling have been extensively studied, there has been little focus on the representation of <em>polyhedral</em> volumes. Inspired by the polygonal representation of the <em>Generalized Bézier (GB)</em> patch proposed by <span>Várady et al. (2016)</span>, this paper introduces a novel method for polyhedral volumetric modeling called the Generalized Bézier (GB) volume.</p><p>GB volumes are defined over <em>simple convex polyhedra</em> using <em>generalized barycentric coordinates</em> (GBCs), with the control nets which are a direct generalization of those of tensor-product Bézier volumes. GB volumes can be smoothly connected to adjacent tensor-product Bézier or GB volumes with <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> or <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> continuity. Besides, when the parametric polyhedron becomes a prism, the GB volume also degenerates into a tensor-product form. We provide some practical examples to demonstrate the advantages of GB volumes. Suggestions for future work are also discussed.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102338"},"PeriodicalIF":1.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}