Pub Date : 2025-02-06DOI: 10.1007/s00348-025-03961-x
Jacob Pantling, M. Grae Worster, Shaun D. Fitzgerald
Arctic sea ice is melting rapidly, and the Arctic is likely to experience its first ice-free summer in the next few decades unless action is taken locally. One proposed method of reducing or perhaps reversing the melting of Arctic sea ice is pumping seawater onto the surface of the sea ice where it should freeze faster and thicken the ice. This may in turn enable it to last longer or even survive the summer melting period, reflecting more sunlight and becoming stronger multi-year ice with increased resistance to future melting. Despite appearing to be a relatively simple physical problem, the technique has not been researched in depth. Here, the response of ice to water being pumped over its surface is investigated theoretically and experimentally for radial axisymmetric water flow. The dominant heat transfer mechanisms during the period shortly after placement of water onto ice are conduction through the ice away from the water–ice interface and heat transfer from the water to the interface. During this initial period of evolution, advection and radiation to the atmosphere are much smaller in magnitude and hence not included. The heat transfer from the water flow to the interface is modelled for three flows: a well-mixed uniform film flow; a uniform flow with a developing thermal boundary layer; and a laminar, viscous flow with a developing thermal boundary layer. Predictions from these models are compared with data from laboratory experiments using various initial water temperatures. The predictions of the model with a fully developed, laminar viscous flow and a developing thermal boundary layer for the evolution of the ice profile were found to be closest to the data obtained from laboratory experiments with water supplied at 0.5, 1.0 and 1.5 (^circ)C.
{"title":"Modelling the response of an ice disc to radial water flow in the context of sea ice thickening","authors":"Jacob Pantling, M. Grae Worster, Shaun D. Fitzgerald","doi":"10.1007/s00348-025-03961-x","DOIUrl":"10.1007/s00348-025-03961-x","url":null,"abstract":"<div><p>Arctic sea ice is melting rapidly, and the Arctic is likely to experience its first ice-free summer in the next few decades unless action is taken locally. One proposed method of reducing or perhaps reversing the melting of Arctic sea ice is pumping seawater onto the surface of the sea ice where it should freeze faster and thicken the ice. This may in turn enable it to last longer or even survive the summer melting period, reflecting more sunlight and becoming stronger multi-year ice with increased resistance to future melting. Despite appearing to be a relatively simple physical problem, the technique has not been researched in depth. Here, the response of ice to water being pumped over its surface is investigated theoretically and experimentally for radial axisymmetric water flow. The dominant heat transfer mechanisms during the period shortly after placement of water onto ice are conduction through the ice away from the water–ice interface and heat transfer from the water to the interface. During this initial period of evolution, advection and radiation to the atmosphere are much smaller in magnitude and hence not included. The heat transfer from the water flow to the interface is modelled for three flows: a well-mixed uniform film flow; a uniform flow with a developing thermal boundary layer; and a laminar, viscous flow with a developing thermal boundary layer. Predictions from these models are compared with data from laboratory experiments using various initial water temperatures. The predictions of the model with a fully developed, laminar viscous flow and a developing thermal boundary layer for the evolution of the ice profile were found to be closest to the data obtained from laboratory experiments with water supplied at 0.5, 1.0 and 1.5 <span>(^circ)</span>C.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 2","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03961-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-04DOI: 10.1007/s00348-025-03969-3
A. Sciacchitano, B. Leclaire, A. Schröder
Within the framework of the European Union Horizon 2020 project HOMER (Holistic Optical Metrology for Aero-Elastic Research), data assimilation (DA) algorithms for dense flow field reconstructions developed by different research teams, hereafter referred to as the participants, were comparatively assessed. The assessment is performed using a synthetic database that reproduces the turbulent flow in the wake of a cylinder in ground effect, placed at the distance of one diameter from a lower wall. Downstream of the cylinder, this wall continues either in the form of a flat steady wall, or of a flexible panel undergoing periodic oscillations; these two situations correspond to two different test cases, the latter being introduced to extend the evaluation to fluid–structure interaction problems. The input data for the data assimilation algorithms were datasets containing the particle locations and their trajectories identification numbers, at increasing tracer concentrations from 0.04 to 1.4 particles/mm3 (equivalent image density values between 0.005 and 0.16 particles per pixel, ppp). The outputs of the DA algorithms considered for the assessment were the three components of the velocity, the nine components of the velocity gradient tensor and the static pressure, defined in the flow field on a Cartesian grid, as well as the static pressure on the wall surface, and its position in the deformable wall case. The results were analysed in terms of errors of the output quantities with respect to the ground-truth values and their distributions. Additionally, the performances of the different DA algorithms were compared with that of a standard linear interpolation approach. The velocity errors were found in the range between 3 and 11% of the bulk velocity; furthermore, the use of the DA algorithms enabled an increase of the measurement spatial resolution by a factor between 3 and 4. The errors of the velocity gradients were of the order of 10–15% of the peak vorticity magnitude. Accurate pressure reconstruction was achieved in the flow field, whereas the evaluation of the surface pressure revealed more challenging. As expected, lower errors were obtained for increasing seeding concentration. The difference of accuracy among the results of the different data assimilation algorithms was noticeable especially for the pressure field and the compliance with governing equations of fluid motion, and in particular mass conservation. The analysis of the flexible panel test case showed that the panel position could be reconstructed with micrometric accuracy, rather independently of the data assimilation algorithm and the seeding concentration. The accurate evaluation of the static pressure field and of the surface pressure proved to be a challenge, with typical errors between 3 and 20% of the free-stream dynamic pressure.
{"title":"On the accuracy of data assimilation algorithms for dense flow field reconstructions","authors":"A. Sciacchitano, B. Leclaire, A. Schröder","doi":"10.1007/s00348-025-03969-3","DOIUrl":"10.1007/s00348-025-03969-3","url":null,"abstract":"<div><p>Within the framework of the European Union Horizon 2020 project HOMER (Holistic Optical Metrology for Aero-Elastic Research), data assimilation (DA) algorithms for dense flow field reconstructions developed by different research teams, hereafter referred to as the participants, were comparatively assessed. The assessment is performed using a synthetic database that reproduces the turbulent flow in the wake of a cylinder in ground effect, placed at the distance of one diameter from a lower wall. Downstream of the cylinder, this wall continues either in the form of a flat steady wall, or of a flexible panel undergoing periodic oscillations; these two situations correspond to two different test cases, the latter being introduced to extend the evaluation to fluid–structure interaction problems. The input data for the data assimilation algorithms were datasets containing the particle locations and their trajectories identification numbers, at increasing tracer concentrations from 0.04 to 1.4 particles/mm<sup>3</sup> (equivalent image density values between 0.005 and 0.16 particles per pixel, <i>ppp</i>). The outputs of the DA algorithms considered for the assessment were the three components of the velocity, the nine components of the velocity gradient tensor and the static pressure, defined in the flow field on a Cartesian grid, as well as the static pressure on the wall surface, and its position in the deformable wall case. The results were analysed in terms of errors of the output quantities with respect to the ground-truth values and their distributions. Additionally, the performances of the different DA algorithms were compared with that of a standard linear interpolation approach. The velocity errors were found in the range between 3 and 11% of the bulk velocity; furthermore, the use of the DA algorithms enabled an increase of the measurement spatial resolution by a factor between 3 and 4. The errors of the velocity gradients were of the order of 10–15% of the peak vorticity magnitude. Accurate pressure reconstruction was achieved in the flow field, whereas the evaluation of the surface pressure revealed more challenging. As expected, lower errors were obtained for increasing seeding concentration. The difference of accuracy among the results of the different data assimilation algorithms was noticeable especially for the pressure field and the compliance with governing equations of fluid motion, and in particular mass conservation. The analysis of the flexible panel test case showed that the panel position could be reconstructed with micrometric accuracy, rather independently of the data assimilation algorithm and the seeding concentration. The accurate evaluation of the static pressure field and of the surface pressure proved to be a challenge, with typical errors between 3 and 20% of the free-stream dynamic pressure.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 2","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03969-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1007/s00348-025-03974-6
Gwibo Byun, K. Todd Lowe, Michael Ellery, Joshua Sole
The frequency-modulating filtered Rayleigh scattering (FM-FRS) technique has been developed and applied for the boundary layer measurements. The FM-FRS technique effectively extracts Rayleigh scattering information from noisy low-SNR signals caused by intense wall glare. The boundary layer velocity profiles measured by FM-FRS show excellent agreement with an independent pressure probe measurement and the law-of-the-wall, including approximately 100 μm above the wall. This technique is desirable for the practical applications of the Rayleigh scattering technique for flow diagnostics to regions that were limited due to strong background and low signal-to-noise ratio.
{"title":"Near-wall flow measurements using frequency-modulating filtered Rayleigh scattering (FM-FRS)","authors":"Gwibo Byun, K. Todd Lowe, Michael Ellery, Joshua Sole","doi":"10.1007/s00348-025-03974-6","DOIUrl":"10.1007/s00348-025-03974-6","url":null,"abstract":"<div><p>The frequency-modulating filtered Rayleigh scattering (FM-FRS) technique has been developed and applied for the boundary layer measurements. The FM-FRS technique effectively extracts Rayleigh scattering information from noisy low-SNR signals caused by intense wall glare. The boundary layer velocity profiles measured by FM-FRS show excellent agreement with an independent pressure probe measurement and the law-of-the-wall, including approximately 100 μm above the wall. This technique is desirable for the practical applications of the Rayleigh scattering technique for flow diagnostics to regions that were limited due to strong background and low signal-to-noise ratio.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 2","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03974-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1007/s00348-025-03957-7
Wei Hu, Lijun Yang, Yue Zhang, Pengcheng Wang, Jingxuan Li
This paper presents the application of various artificial fractal-like background patterns and a digital image correlation algorithm, to enhance the accuracy of image displacement measurement within background-oriented schlieren technology. A novel method for generating new fractal-like patterns is proposed, allowing for the combination of different pattern strengths. A more robust image displacement estimation algorithm that considers the self-affine property inherent in fractal patterns is introduced. Various synthetic flow tests, as well as real supersonic flow and combustion tests, were conducted to demonstrate the advantages of the estimation algorithm and to gain a comprehensive understanding of the applicability of different fractal-like backgrounds.